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Abstract

Many partitioning methods may be used to partition a network into smaller clusters while

minimizing the number of cuts needed. However, other considerations must also be taken into

account when a network represents a real system such as a power grid. In this paper we use a

simulated annealing Monte Carlo (MC) method to optimize initial clusters on the Florida high-

voltage power-grid network that were formed by associating each load with its “closest” gener-

ator. The clusters are optimized to maximize internal connectivity within the individual clusters

and minimize the power deficiency or surplus that clusters may otherwise have.

Keywords: power grid, intentional islanding, catastrophic failure, blackout prevention, network

theory, graph partitioning, spectral matrix methods

1. Introduction

The lack of a pre-planned strategy for splitting a power-grid system into separate parts with

self-sufficient power generation is one of the reasons for large-scale blackouts that have devas-

tating effects on the economy and welfare of any modern society [1, 2]. This defensive strategy

(intentional islanding) is effective in preventing cascading outages [2, 3].

Multiple approaches to intentional islanding (see, e.g., [1, 2, 3, 4, 5, 6, 7]) have been sug-

gested for optimizing the selection of the lines to be cut. These studies can be based on the anal-

ysis of the system topology based on a representation of the network as a graph [8, 9, 10, 11].

Some topologies are easier to split into islands than others. The identification of “weak” links

and their removal can split a given topology into independent islands. While many of the above

approaches are very good at the identification of “weak” links, the resulting clusters or islands

are usually not optimized for other qualities such as generating capacity.

Here we present a study utilizing a matrix method for intentional islanding of a utility power

grid. The method uses a Monte Carlo (MC) simulated annealing [12] technique for optimizing

the resulting islands’ internal connectivity as well as balancing their generating capacity. The

concept is illustrated by application to the Floridian high-voltage power grid.
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2. Methods

The quality of a particular partitioning of a graph into M communities, C = {C1, ...,CM} can

be estimated by Newman’s modularity [10]. It compares the proportion of edges that are internal

to a community in the particular graph with the same proportion in an average null-model. It is

defined as follows:

Q =
1

w

∑
i j

(
wi j − wiwj

w

)
δ (C(i),C( j)) , (1)

where δ (C(i),C( j)) = 1 if nodes i and j belong to the same community, and 0 otherwise. Ideally,

one would like to maximize Q while partitioning a power-grid network. This will ensure that

the different communities are well connected internally. Moreover, one would like to minimize

the generating power surplus or deficiency over all the clusters. Here we will use a partitioning

scheme consistent with a power-grid network and try to optimize the resulting clusters for inter-

nal connectivity and power self-sufficiency using a Monte Carlo simulated annealing approach.

The resulting set of clusters form a new network (in a renormalization-group sense) where each

cluster is represented by a node on the new network. The islanding procedure and MC optimiza-

tion are repeated until some required criteria are met.

2.1. Partitioning

We use a simplified representation of the power grid as an undirected graph [8, 10] defined

by the N × N symmetric conductivity matrix W, whose elements wi j ≥ 0 represent the “conduc-

tivities” of the edges (transmission lines) between vertices (generators or loads) i and j,

wi j =
number of lines between vertices i and j

normalized geographical distance
, (2)

where the “geographical distance” is the length of the edge connecting nodes i and j, and is

normalized by the minimum geographical distance between two nodes over the whole network.

The row sums of W define the diagonal matrix D. Graph analysis can be performed using

one of several matrices derived from W. The Laplacian, L = D −W, is a symmetric matrix with

vanishing row sums. It embodies Kirchhoff’s laws and thus represents a simple resistor network

with conductances wi j. Multiplied by a column vector |φ〉 of vertex potentials, it yields the

vector of currents entering the circuit at each vertex, L|φ〉 = |I〉. This equation can be rewritten

as L(−1)|I〉 = |φ〉, where L(−1) is the pseudo-inverse of the Laplacian. In other words, given a

current vector, defined as being positive at generator nodes and negative at load nodes, one can

calculate the potential vector |φ〉. Using this potential vector and the matrix W, we calculate the

network-current matrix K, whose elements are the currents between the corresponding nodes:

ki j = (φ j − φi)wi j. Additionally using the matrix L(−1), one can calculate an effective distance

or equivalent resistance R between any two nodes [13]: (R)i j = (L(−1))ii + (L(−1)) j j − 2(L(−1))i j.

Consequently, given a current vector and a conductivity matrix W, the network-current matrix

K and the equivalent resistance matrix R can be evaluated. In this paper we use these two last

matrices to achieve an initial partitioning of the Floridian high-voltage grid.

The goal is to partition the power grid into communities of vertices that are highly connected

internally, but only sparsely connected to the rest of the network. For the islanding to be useful,

each island should contain at least one generating plant. To accomplish this, we use a clustering

algorithm where each load i is connected to the “nearest” generator j. The nearest generator j



4  Ibrahim Abou Hamad et al. / Physics Procedia 15 (2011) 2–6

y

1
4

1
4

1
4 1
4

1
5

1
5

1
0

2
22
2

1
0

1
0

1
0

2
8

2

2

2

2
2 2
7 2

2

2
2

9

1
73

0

2
3

4

2
3

4

2
4

2
6

2
3 2

5

2
3

2
6

2
0

11
7

1
2

1
7 2
3

2
1

2
8 4

5

3

3
0

2
5

2
9 2
8

0 12
9

2
9

2
9

0

1
6 1
8

1
91

2
0

2
0

1
9

1

1
2

8

8 8

3

1
2 3

1
1

8

1
2

3

8

3

3

87

51
1

3

61
3

(a)

1
4

1
4

1
4 1
4

1
5

1
5

1
5

2
22
2

1
0

1
0

1
0

2
8

2

2

2
6

2
2 2
7 2

2
6

2
2

9

1
73

0

2
3

4

2
3

4

2
4

2
6

2
4 2

5

2
4

2
5

2
0

1
9

1
7

1

1
7 2
3

2
1

2
8 4

5

3

3
0

2
4

1
6 2
8

0 2
0

2
9

2
9

2
9

0

1
6 1
8

1
91

2
0

2
1

1
9

1

1
2

6

6 8

3

1
2 3

1
1

8

1
2

1
3

8

3

3

87

51
1

3

61
3

(b)

Figure 1: (a) Florida high-voltage power grid partitioned by connecting loads (ovals) to their “nearest” generators

(squares). (b) Grid clustering after the MC simulated annealing algorithm is used for optimizing modularity and power

sufficiency of the partitioned network shown in (a). Nodes of the same color and label belong to the same cluster. To

maximize their size, the maps were oriented with North to the left. See text for discussion.

is the one located “upstream” from load i, i.e. φ j > φi, and for which (R)i j is minimum. The

Floridian high-voltage grid [14] at this first level of islanding is shown in figure 1(a).

Kirchhoff’s junction law, when applied at each node, tells us that the sum of all network

currents going in and out of node i is equal to |I〉i. Thus we can think of |I〉i as the current provided

by a generator at node i if it is positive, or consumed by a load if it is negative. Moreover, given

the constant voltage rating (138, 230, 345, ... kV), |I〉i becomes proportional to the power being

generated or consumed at node i. This means that we can choose our initial current vector

proportional to the generating power of each power plant. Since the actual power rating for

power plants on the grid was not available to us, we here assume that each generator’s power is

proportional to the number of edges linking to it, or its degree. The current vector component at

each node i is then defined as |I〉i = degreei∑
generators degree j

for generators and |I〉i = − degreei∑
loads degree j

for loads.

2.2. Monte Carlo
Since the power generation or consumption rate of any generator or load is directly propor-

tional to its current-vector component |I〉i, a community’s total generating surplus or deficiency

is proportional to the sum of its members’ current-vector components. Thus, to optimize our

partitioning for well-balanced communities, we try to minimize the variance of the new current

vector |Ĩ〉, whose components are defined as |Ĩ〉i = ∑i≥ j |I〉 jδ(C(i),C( j)) after each iteration of

the islanding procedure. We need to maximize the modularity Q for better internal connectivity

at the same time. For this purpose, we define an optimization parameter

E =
Q

Qinit

−
√

VAR(|Ĩ〉)
VAR(|Ĩ〉init)

, (3)

where the subscript “init” designates the initial value after recombination, but before any MC

steps. This form gives equal emphasis on optimizing modularity and load balance. More empha-

sis could be given to the optimization of one quantity versus the other by multiplying the term

corresponding to it by some weighting factor.

The MC process proceeds as follows. First, a load node i is selected at random. Then, if

i is at the edge of the cluster it belongs to, i.e, if it is connected to a neighboring cluster, we

randomly select one of the neighboring clusters connected to i and attempt to move this load
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to that neighboring cluster. If this move does not break the first cluster into two disconnected

parts, the move is accepted with a Metropolis acceptance rate [15] R = min(1, e(−βΔE)), where

ΔE = Ea − Ei is the difference between the attempted state and the initial state for that move,

and β is an “inverse temperature.” In a fashion similar to simulated annealing, we start at a

high temperature and gradually decrease it to zero while saving the configuration for which E is

maximum. This process is repeated to look for the global maximum of E.

2.3. Recombination
After the initial partitioning and MC, the number of clusters produced is equal to the number

of the generators in the circuit (Fig. 1(a)), as expected from our clustering scheme. A new

network can be constructed from this group of clusters by regarding each cluster as a new node.

The connections between the new nodes are the same as the connections between the previous

clusters. This defines a new network with new connections and a new conductivity matrix. The

current vector defined above, |Ĩ〉, is the new current vector because its components represent

the generating surplus or deficiency of each of the old clusters or new “super-generators” or

“super-loads,” respectively. Given the new network and the new current vector, we repeat the

above partitioning and MC schemes on the new network. The number of clusters at this stage is

equal to the number of “super-generators.” This process of recombination is repeated to look for

the optimum configuration until all the original nodes belong to one cluster. The optimization

parameter vs.MC step and the corresponding modularity are shown in figure 2(b), where the red

circles are the values of Q for maximum E at each level of recombination.

3. Results and Conclusion

The map of the Floridian high-voltage grid [14] is a network with 84 vertices, 31 of which are

generating plants. We have modeled it as an undirected graph with 137 edges. The conductivities

were calculated according to equation (2).

While figure 1(a) shows the clusters resulting from the first partitioning scheme, figure 1(b)

shows the same network after the MC annealing procedure is performed. The current vector and

the corresponding modularity before and after the MC annealing are shown in figure 2(a). As can

be seen, the MC process narrows the spread of the current values or in other words, the average

power surplus or deficiency for the clusters is smaller. Moreover, while the modularity starts at a

value of 0.33, it ends at a value of 0.47 after MC optimization and before the first recombination.

The maximum optimization parameter, Emax = 1.33 with a corresponding Q = 0.63 was achieved

shortly after the first recombination. Comparable values (E = 1.31 and Q = 0.62) are obtained

in the second iteration.

While many methods can be used to partition a network into smaller clusters, there remains

the need for further optimization of the resulting cluster properties. Here we have used a cluster-

ing procedure to partition the Floridian power-grid network that takes into account the generating

power of each of the power plants. Moreover, we have used MC simulated annealing to optimize

the resulting clusters for better internal connectivity and power self-sufficiency.
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Figure 2: (a) Components of the current vector |Ĩ〉 vs. the cluster index. It can be seen that the MC procedure narrows the

spread of the current values, meaning that, on average, the individual clusters are closer to self-sufficiency than before

MC. The legend shows the significant improvement in modularity. (b) Q and the optimization parameter E vs.MC step.
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