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Abstract

In this paper, we study exponential stability for impulsive delay differential equation of the f

ẋ(t) = f (t, xt ), t �= tk,

∆x(t) = Ik(t, xt−), t = tk, k ∈ N.

By employing the Razumikhin technique and Lyapunov functions, several exponential stabili
teria are established. Some examples are also discussed to illustrate our results.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Impulsive differential equations have attracted many researchers’ attention due t
wide applications in many fields such as control technology, drug administration
threshold theory in biology and the like. Many classical results have been extend
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impulsive systems [2,7,9–15]. By Lyapunov’s direct method, various stability prob
have been discussed for impulsive delay differential equations [3,10,17].

On the other hand, there have been many papers and monographs recently on
analysis of delay differential equations, see [6,8,16] and references therein. The m
of Lyapunov functions and Razumikhin technique have been widely applied to sta
analysis of various delay differential equations, and they have also proved to be a po
tool in the investigation of asymptotical properties of impulsive delay differential equa
(see [18–20]).

Recently, Liu et al. [16] have investigated exponential stability for singularly pertu
delay systems without impulses by using the method of inequalities. Anokhin et a
and Berezansky and Idels [4] have studied exponential stability, by using fundam
function and inequalities, for linear impulsive delay differential equations. However,
is little work done on exponential stability for impulsive delay differential equations
the Lyapunov–Razumikhin method. In this paper, we shall extend Lyapunov–Razum
method to general impulsive delay differential equations and establish some expo
stability criteria.

The rest of this paper is organized as follows. In Section 2, we introduce some not
and definitions. Then in Section 3, we obtain several Razumikhin-type criteria on exp
tial stability for impulsive delay differential equations by using Lyapunov functions,
in the last section, we discuss some examples to illustrate our results.

2. Preliminaries

Let R denote the set of real numbers,R+ the set of nonnegative real numbers andRn

then-dimensional real space equipped with the Euclidean norm‖ · ‖. Let N denote the se
of positive integers, i.e.,N = {1,2, . . .}.

Denoteψ(t+) = lims→t+ ψ(s) andψ(t−) = lims→t− ψ(s). For a, b ∈ R with a < b

and forS ⊂ Rn, we define the following classes of functions:

PC
([a, b], S) = {

ψ : [a, b] → S | ψ(t) = ψ(t+), ∀t ∈ [a, b);
ψ(t−) exists inS, ∀t ∈ (a, b], and

ψ(t−) = ψ(t) for all but at most

a finite number of pointst ∈ (a, b]},
PC

([a, b), S
) = {

ψ : [a, b) → S | ψ(t) = ψ(t+), ∀t ∈ [a, b);
ψ(t−) exists inS, ∀t ∈ (a, b), and

ψ(t−) = ψ(t) for all but at most

a finite number of pointst ∈ (a, b)
}
,

and

PC
([a,∞), S

) = {
ψ : [a,∞) → S | ∀c > a, ψ |[a,c] ∈ PC

([a, c], S)}
.

Given a constantτ > 0, we equip the linear spacePC([−τ,0],Rn) with the norm‖ · ‖τ
defined by‖ψ‖τ = sup−τ�s�0 ‖ψ(s)‖.
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(2.1)
Consider the impulsive delay system of the form


ẋ(t) = f (t, xt ), t ∈ [tk−1, tk),

∆x(t) = Ik(t, xt−), t = tk, k ∈ N,

xt0 = φ,

(2.1)

wheref, Ik :R+ × PC([−τ,0],Rn) → Rn; φ ∈ PC([−τ,0],Rn); 0 � t0 < t1 < t2 < · · · <
tk < · · ·, with tk → ∞ ask → ∞; ∆x(t) = x(t+) − x(t−); andxt , xt− ∈ PC([−τ,0],Rn)

are defined byxt (s) = x(t + s), xt−(s) = x(t− + s) for −τ � s � 0, respectively.

Definition 2.1. FunctionV :R+ × Rn → R+ is said to belong to the classν0 if

(i) V is continuous in each of the sets[tk−1, tk) × Rn and for eachx ∈ Rn, t ∈ [tk−1, tk),
k ∈ N , lim(t,y)→(t−k ,x) V (t, y) = V (t−k , x) exists; and

(ii) V (t, x) is locally Lipschitzian in allx ∈ Rn, and for allt � t0, V (t,0) ≡ 0.

Definition 2.2. Given a functionV :R+ × Rn → R+, the upper right-hand derivative ofV

with respect to system (2.1) is defined by

D+V
(
t,ψ(0)

) = lim sup
h→0+

1

h

[
V

(
t + h,ψ(0) + hf (t,ψ)

) − V
(
t,ψ(0)

)]
,

for (t,ψ) ∈ R+ × PC([−τ,0],Rn).

Definition 2.3. The trivial solution of system (2.1) is said to be exponentially stable if
any initial dataxt0 = φ, there exist constantsα > 0, M � 1 such that∥∥x(t, t0, φ)

∥∥ � M‖φ‖τ e
−α(t−t0), t � t0. (2.2)

We shall make the following assumptions.

(H1) f (t,ψ) is composite-PC, i.e., if for eacht0 ∈ R+ andα > 0, where[t0, t0 +α] ∈ R+,
if x ∈ PC([t0 − τ, t0 + α],Rn) andx is continuous at eacht �= tk in (t0, t0 + α], then
the composite functiong defined byg(t) = f (t, xt ) is an element of the functio
classPC([t0, t0 + α],Rn).

(H2) f (t,ψ) is quasi-bounded, i.e., if for eacht0 ∈ R+ andα > 0, where[t0, t0+α] ∈ R+,
and for each compact setF ∈ Rn there exists someM > 0 such that‖f (t,ψ)‖ � M

for all (t,ψ) ∈ [t0, t0 + α] × PC([−τ,0],F ).
(H3) For each fixedt ∈ R+, f (t,ψ) is a continuous function ofψ on PC([−τ,0],Rn).
(H4) f (t,0) = 0, andIk(t,0) = 0 for all t ∈ R+, k ∈ N .

It is shown in [2] that under assumptions (H1)–(H3), the initial value problem (2.1)
solutionx(t, t0, φ) � x(t) existing in a maximal intervalI . If, in addition,f (t,ψ) is locally
Lipschitz in ψ , then the solution is unique. Assumption (H4) enables that system

admits a trivial solutionx(t) ≡ 0.
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3. Main results

In this section, we shall develop Lyapunov–Razumikhin methods and establish tw
orems which provide sufficient conditions for exponential stability of the trivial solutio
system (2.1).

Theorem 3.1. Assume that hypotheses(H1)–(H4)are satisfied and there exist a functio
V ∈ ν0, and constantsp > 0, c1 > 0, c2 > 0, λ > 0, dk � 0, k ∈ N , such that the following
conditions hold:

(i) c1‖x‖p � V (t, x) � c2‖x‖p;
(ii) D+V (t, ϕ(0)) � −m(t)V (t, ϕ(0)), for all t �= tk in R+ wheneverV (t, ϕ(0)) �

V (t + s, ϕ(s))e− ∫ t
t−τ m(s) ds for s ∈ [−τ,0], wherem(t) ∈ PC([t0 − τ,∞),R+) and

inft�t0−τ m(t) � λ;
(iii) V (tk, ϕ(0) + Ik(tk, ϕ)) � (1 + dk)V (t−k , ϕ(0)), with

∑∞
k=1 dk < ∞, and ϕ(0−) =

ϕ(0).

Then the trivial solution of system(2.1) is exponentially stable.

Proof. Let x(t) = x(t, t0, φ) be a solution of system (2.1) andV (t) = V (t, x(t)). We shall
show

V (t) � c2

k−1∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t
t0

m(s)ds
, t ∈ [tk−1, tk), k ∈ N,

whered0 = 0. Let

Q(t) =

V (t) − c2

∏k−1
i=0(1+ di)‖φ‖p

τ e
− ∫ t

t0
m(s)ds

, t ∈ [tk−1, tk), k ∈ N,

V (t) − c2‖φ‖p
τ e

− ∫ t
t0

m(s)ds
, t ∈ [t0 − τ, t0].

We need to show thatQ(t) � 0 for all t � t0. It is clear thatQ(t) � 0 for t ∈ [t0 − τ, t0]
sinceQ(t) � v(t) − c2‖φ‖p

τ � 0 by condition (i).
Takek = 1, we shall showQ(t) � 0 for t ∈ [t0, t1). In order to do this we letα > 0

be arbitrary and show thatQ(t) � α for t ∈ [t0, t1). Suppose not, then there exists so
t ∈ [t0, t1) so thatQ(t) > α. Let t∗ = inf{t ∈ [t0, t1): Q(t) > α}, sinceQ(t) � 0< α for t ∈
[t0 − τ, t0], we knowt∗ ∈ (t0, t1). Note thatQ(t) is continuous on[t0, t1), thenQ(t∗) = α

andQ(t) � α for t ∈ [t0 − τ, t∗].
NoticeV (t∗) = Q(t∗) + c2‖φ‖p

τ e
− ∫ t∗

t0
m(s)ds

; and fors ∈ [−τ,0], we have

V (t∗ + s) = Q(t∗ + s) + c2‖φ‖p
τ e

− ∫ t∗+s
t0

m(s)ds

� α + c2‖φ‖p
τ e

− ∫ t∗−τ
t0

m(s)ds

�
(
α + c2‖φ‖p

τ e
− ∫ t∗

t0
m(s)ds)

e− ∫ t∗−τ
t∗ m(s)ds

∫ t∗
= V (t∗)e t∗−τ m(s) ds .
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So by condition (ii), we haveD+V (t∗) � −m(t∗)V (t∗), then we have

D+Q(t∗) = D+V (t∗) + m(t∗)c2‖φ‖p
τ e

− ∫ t∗
t0

m(s)ds

� −m(t∗)
(
V (t∗) − c2‖φ‖p

τ e
− ∫ t∗

t0
m(s)ds)

= −m(t∗)α < 0,

which contradicts the definition oft∗, so we getQ(t) � α for all t ∈ [t0, t1). Let α → 0+,
we haveQ(t) � 0 for t ∈ [t0, t1).

Now we assume thatQ(t) � 0 for t ∈ [t0, tm), m � 1. We shall show thatQ(t) � 0 for
t ∈ [t0, tm+1).

By condition (iii), we have

Q(tm) = V (tm) − c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ tm
t0

m(s)ds

� (1+ dm)V
(
t−m

) − c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ tm
t0

m(s)ds

= (1+ dm)Q
(
t−m

)
� 0.

Let α > 0 be arbitrary, we need to showQ(t) � α for t ∈ (tm, tm+1). Suppose not, le
t∗ = inf{t ∈ [tm, tm+1): Q(t) > α}. SinceQ(tm) � 0 < α, by the continuity ofQ(t), we
get,t∗ > tm, Q(t∗) = α andQ(t) � α for t ∈ [t0, t∗].

SinceV (t∗) = Q(t∗) + c2
∏m

i=0(1+ di)‖φ‖p
τ e

− ∫ t∗
t0

m(s)ds
, then for anys ∈ [−τ,0], we

have

V (t∗ + s) � Q(t∗ + s) + c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t∗+s
t0

m(s)ds

� α + c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t∗−τ
t0

m(s)ds

�
(

α + c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t∗
t0

m(s)ds

)
e− ∫ t∗−τ

t∗ m(s)ds

= V (t∗)e
∫ t∗
t∗−τ m(s) ds .

Thus by condition (ii), we haveD+V (t∗) � −m(t∗)V (t∗), and then we have

D+Q(t∗) = D+V (t∗) + m(t∗)c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t∗
t0

m(s)ds

� −m(t∗)
(

V (t∗) − c2

m∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t∗
t0

m(s)ds

)

= −m(t∗)α < 0.
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Again this contradicts the definition oft∗, which impliesQ(t) � α for all t ∈ [tm, tm+1).
Let α → 0+, we haveQ(t) � 0 for all t ∈ [tm, tm+1). SoQ(t) � 0 for all t ∈ [t0, tm+1).
Thus by the method of induction, we get

V (t) � c2

k−1∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t
t0

m(s)ds
, t ∈ [tk−1, tk), k ∈ N.

By condition (i)–(iii), we have

c1‖x‖p � V (t) � c2

k−1∏
i=0

(1+ di)‖φ‖p
τ e

− ∫ t
t0

m(s)ds � c2M‖φ‖p
τ e−λ(t−t0), t � t0,

which yields

‖x‖ �
(

c2M

c1

) 1
p ‖φ‖τ e

− λ
p

(t−t0), t � t0,

whereM = ∏∞
i=1(1+ di) < ∞ since

∑∞
k=1 dk < ∞. Thus the proof is complete.�

Theorem 3.2. Assume that hypotheses(H1)–(H4)are satisfied and there exist a functio
V ∈ ν0, and constantsp > 0, q > 1, c1 > 0, c2 > 0 andη � lnq

τ
such that:

(i) c1‖x‖p � V (t, x) � c2‖x‖p;
(ii) D+V (t, ϕ(0)) � −ηV (t, ϕ(0)), for all t �= tk in R+ wheneverqV (t, ϕ(0)) � V (t + s,

ϕ(s)) for s ∈ [−τ,0];
(iii) V (tk, ϕ(0) + Ik(tk, ϕ)) � ψk(V (t−k , ϕ(0))), whereϕ(0−) = ϕ(0), andψk(s) is con-

tinuous,0� ψk(as) � aψk(s) andψk(s) � s hold for anya � 0 ands � 0, and there
existsH � 1 such that

ψk

(
ψk−1

(
. . .

(
ψ1(s)

)
. . .

))
/s � H, s > 0, k ∈ N.

Then the trivial solution of system(2.1) is exponentially stable.

Proof. Chooseq = eλτ > 1 for someλ > 0, we shall show

V (t) � ψk−1
(
ψk−2

(
. . .

(
ψ1

(
ψ0

(
V (t0)

)))
. . .

))
e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N,

whereψ0(s) = s for anys ∈ R. Let

Q(t) =
{

V (t) − ψk−1(ψk−2(. . . (ψ0(V (t0))) . . .))e−λ(t−t0), t ∈ [tk−1, tk), k ∈ N,

Q(t0), t ∈ [t0 − τ, t0].
Whenk = 1, we shall showQ(t) � 0 for all t ∈ [t0, t1). In order to do this, we shall sho
thatQ(t) � α for any arbitrarily givenα > 0. Suppose that there exists somet ∈ [t0, t1) so
thatQ(t) > α. Let t∗ = inf{t ∈ [t0, t1): Q(t) > α}, sinceQ(t0) � V (t0) − V (t0) = 0 < α

and henceQ(t) � α for t ∈ [t0 − τ, t0], we knowt∗ ∈ (t0, t1). Note thatQ(t) is continuous
on [t0, t1), thenQ(t∗) = α andQ(t) � α for t ∈ [t0 − τ, t∗].

∗

SinceV (t∗) = Q(t∗) + V (t0)e

−λ(t −t0), then fors ∈ [−τ,0], we have
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V (t∗ + s) = Q(t∗ + s) + V (t0)e
−λ(t∗+s−t0) � α + V (t0)e

−λ(t∗−t0)eλτ

�
(
α + V (t0)e

−λ(t∗−t0)
)
eλτ = V (t∗)eλτ � qV (t∗).

So by condition (ii), we haveD+V (t∗) � −ηV (t∗), then we have

D+Q(t∗) = D+V (t∗) + λV (t0)e
−λ(t∗−t0) � −ηV (t∗) + λV (t0)e

−λ(t∗−t0)

� −λ
(
V (t∗) − V (t0)e

−λ(t∗−t0)
) = −λα < 0,

which contradicts the definition oft∗, so we getQ(t) � α for all t ∈ [t0, t1). Let α → 0+,
we haveQ(t) � 0 for t ∈ [t0, t1).

Now we assume thatQ(t) � 0 for t ∈ [t0, tk), k � 1. Then we shall showQ(t) � 0 for
t ∈ [t0, tk+1). Let α > 0 be arbitrary, we shall showQ(t) � α for t ∈ (tk, tk+1). Suppose
not, lett∗ = inf{t ∈ [tk, tk+1): Q(t) > α}.

By condition (iii), we have

Q(tk) = V (tk) − ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(tk−t0)

� ψk

(
V

(
t−k

)) − ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(tk−t0)

� ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

)
e−λ(tk−t0)

)
− ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(tk−t0)

� e−λ(tk−t0)ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
− ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(tk−t0)

� 0.

Since Q(tk) � 0 < α, by the continuity ofQ(t), we havet∗ > tk , Q(t∗) = α and
Q(t) � α for t ∈ [t0 − τ, t∗].

SinceV (t∗) = Q(t∗) + ψk(ψk−1(. . . (ψ0(V (t0))) . . .))e−λ(t∗−t0); when t∗ + s � tk for
all s ∈ [−τ,0], we have, for anys ∈ [−τ,0],

V (t∗ + s) = Q(t∗ + s) + ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗+s−t0)

� α + ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗−τ−t0)

�
(
α + ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗−t0)

)
eλτ

� V (t∗)eλτ � qV (t∗).

Whent∗ + s < tk for somes ∈ [−τ,0], note that 0� ψk(as) � aψk(s) andψk(s) � s hold
for anya � 0 ands � 0, then we have, for anys ∈ [−τ,0] andm < k, m,k ∈ N ,

ψm

(
ψm−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗+s−t0)

� ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗+s−t0).

So in this case, we can also getV (t∗ + s) � qV (t∗) hold for all s ∈ [−τ,0]. Thus by

condition (ii), we haveD+V (t∗) � −ηV (t∗), and then we have
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D+Q(t∗) = D+V (t∗) + λψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗−t0)

� −ηV (t∗) + λψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗−t0)

� −λ
(
V (t∗) − ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t∗−t0)

)
� −λα < 0.

Again this contradicts the definition oft∗, which impliesQ(t) � α for all t ∈ [tk, tk+1).
Let α → 0+, we haveQ(t) � 0 for all t ∈ [tk, tk+1). So Q(t) � 0 for all t ∈ [t0, tk+1)

which proves, by the method of induction,V (t) � ψk(ψk−1(. . . (ψ0(V (t0))) . . .))e−λ(t−t0)

for t ∈ [tk−1, tk), k ∈ N . By condition (iii), we have

ψk

(
ψk−1

(
. . .

(
ψ0

(
V (t0)

))
. . .

))
e−λ(t−t0) = ψk

(
ψk−1

(
. . .

(
ψ1

(
V (t0)

))
. . .

))
e−λ(t−t0)

� HV(t0)e
−λ(t−t0), t � t0.

Thus by condition (i), we have

c1‖x‖p � V (t) � c2H‖φ‖p
τ e−λ(t−t0), t � t0,

i.e.,

‖x‖ �
(

c2H

c1

) 1
p ‖φ‖τ e

− λ(t−t0)

p , t � t0,

which completes our proof.�
Corollary 3.1. Assume that hypotheses(H1)–(H4) are satisfied and condition(i), (ii) of
Theorem3.2 hold, condition(iii) is replaced by

(iii) ∗ V (tk, ϕ(0) + Ik(tk, ϕ)) � ψk(V (t−k , ϕ(0))), where ϕ(0−) = ϕ(0) and ψk(s) =
(1+ k

k3+s2 )s for all k ∈ N ,

then the trivial solution of system(2.1) is exponentially stable.

Proof. Notice

ψk(s) =
(

1+ k

k3 + s2

)
s � |s|

(
1+ 1

k2

)
, k ∈ N,

then by Theorem 3.2, the result holds.�

4. Examples

To illustrate our results, we consider some examples.

Example 4.1. Consider the impulsive nonlinear delay differential equation


x′(t) = −a(t)x(t) + b(t)

1+x2(t)
x(t − τ), t � t0 = 0,

x(tk) = (1+ ck)x(t−k ), tk = k, k ∈ N, (4.1)

xt0 = φ,
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)

,

e nu-

wn
where constantsτ, ck > 0 with
∑∞

k=1 ck < ∞, functionsa ∈ C(R,R+), b ∈ C(R,R),
φ ∈ PC([−τ,0],Rn). If a(t) � |b(t)|e−λτ + λ, then the trivial solution of system (4.1
is exponentially stable.

Proof. SetV (x) = V (t, x) = |x|, m(t) = λ for all t � t0 − τ , whereλ > 0 is a constant
then we have

D+V
(
t, ϕ(0)

)
� sgn

(
ϕ(0)

)[−a(t)ϕ(0) + b(t)

1+ ϕ2(0)
ϕ(−τ)

]
� −a(t)

∣∣ϕ(0)
∣∣ + ∣∣b(t)

∣∣ · ∣∣ϕ(−τ)
∣∣

� −a(t)V
(
ϕ(0)

) + ∣∣b(t)
∣∣ · V (

ϕ(−τ)
)
. (4.2)

For any solutionx(t) of Eq. (4.1) such that

V
(
t,ψ(0)

)
� V

(
t + s, ϕ(s)

)
e
∫ t
t−τ m(s) ds, for s ∈ [−τ,0],

we haveV (ϕ(−τ)) � e−λτV (ϕ(0)). Therefore,

D+V
(
t, ϕ(0)

)
�

[−a(t) + b(t)e−λτ
]
V

(
ϕ(0)

)
.

Sincea(t) � |b(t)|e−λτ + λ, it follows that

D+V
(
t, ϕ(0)

)
� −λV

(
ϕ(0)

)
� −m(t)V

(
ϕ(0)

)
,

wheneverV (t, ϕ(0)) � V (t +s, ϕ(s))e
∫ t
t−τ m(s) ds for s ∈ [−τ,0], i.e., condition (ii) of The-

orem 3.1 holds.
Moreover,

V
(
tk, ϕ(0) + Ik(tk, ϕ)

) = (1+ ck)V
(
t−k , ϕ(0)

)
.

Thus by Theorem 3.1, the trivial solution of system (4.1) is exponentially stable. Th
merical simulation of this example with initial function

φ(t) =
{

0, t ∈ [−1,0),

1.7, t = 0,

andλ = τ = 1, b(t) = t2, a(t) = 2+ t2, ck = 1
2k is given in Fig. 1.

It should be noted that when 1+ x2 is not there, system (4.1) becomes the well-kno
linear case which has been studied by several authors, see, for example, [5,20].�
Example 4.2. Consider the impulsive nonlinear delay differential equations



x′(t) = −y(t)sin(x(t − 1)) − 4x(t) + y(t − 1), t �= k,

y′(t) = x(t)sin(x(t − 1)) − 3y(t), t �= k,

x(tk) = (
1+ 2

k2

)
x(t−k ), t = k,

y(tk) = (
1− 3

k2

)
y(t−k ), t = k, k ∈ N,

xt0 = φ, t0 = 0,

(4.3)
whereφ ∈ PC([−τ,0],Rn).
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Fig. 1. Numerical simulation of Example 4.1.

ChooseV (x, y) = V (t, x, y) = x2 + y2, then

D+V (t, ϕ1, ϕ2) = ϕ1(0)
(−ϕ2(0)sin

(
ϕ1(−1)

) − 4ϕ1(0) + ϕ2(−1)
)

+ ϕ2(0)
(−ϕ1(0)sin

(
ϕ1(−1)

) − 3ϕ2(0)
)

= −4ϕ2
1(0) + ϕ1(0)ϕ2(−1) − 3ϕ2

2(0)

� −4ϕ2
1(0) + 1

2

(
ϕ2

1(0) + ϕ2
2(−1)

) − 3ϕ2
2(0)

� −6V
(
ϕ1(0), ϕ2(0)

) + V
(
ϕ1(−1), ϕ2(−1)

)
,

let q = 2, η = 4, wheneverqV (ϕ1(0), ϕ2(0)) � V (ϕ1(0), ϕ2(0)) for s ∈ [−1,0], we have

D+V (t, ϕ1, ϕ2) � −6V
(
ϕ1(0), ϕ2(0)

) + V
(
ϕ1(−1), ϕ2(−1)

)
� −6V

(
ϕ1(0), ϕ2(0)

) + 2V
(
ϕ1(0), ϕ2(0)

)
� −4V

(
ϕ1(0), ϕ2(0)

)
,

i.e., condition (ii) of Theorem 3.2 holds.
At last, to check condition (iii), letψk(s) = (1 + 5

k2 )(s), k ∈ N , s ∈ R, then for any
k ∈ N ,

V

(
ϕ1(0) + 2

k2
ϕ1(0), ϕ2(0) − 3

k2
ϕ2(0)

)

1
((

2
)2

2
(

3
)2

2
) ( ( ))
=

2
1+

k2
ϕ1(0) + 1−

k2
ϕ2(0) � ψk V ϕ1(0), ϕ2(0) ,
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3) is

qua-

ynam.

ntrol

omm.
Fig. 2. Numerical simulation of Example 4.2.

i.e., condition (iii) is satisfied. Thus by Theorem 3.2, the trivial solution of system (4.
exponentially stable. The numerical simulation of this example with initial function

φ1(t) =
{

0, t ∈ [−1,0),

2.7, t = 0,
φ2(t) =

{
0, t ∈ [−1,0),

−2.1, t = 0,

is given in Fig. 2.
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