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Abstract

In this paper, we study exponential stability for impulsive delay differential equation of the form

x(t):f(tsxt)’ t¢tk7
Ax(t) =L (t,x,~), t=1t, keN.

By employing the Razumikhin technique and Lyapunov functions, several exponential stability cri-
teria are established. Some examples are also discussed to illustrate our results.
00 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Impulsive differential equations have attracted many researchers’ attention due to their
wide applications in many fields such as control technology, drug administration and
threshold theory in biology and the like. Many classical results have been extended to
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impulsive systems [2,7,9-15]. By Lyapunov's direct method, various stability problems
have been discussed for impulsive delay differential equations [3,10,17].

On the other hand, there have been many papers and monographs recently on stability
analysis of delay differential equations, see [6,8,16] and references therein. The method
of Lyapunov functions and Razumikhin technique have been widely applied to stability
analysis of various delay differential equations, and they have also proved to be a powerful
tool in the investigation of asymptotical properties of impulsive delay differential equations
(see [18-20]).

Recently, Liu et al. [16] have investigated exponential stability for singularly perturbed
delay systems without impulses by using the method of inequalities. Anokhin et al. [1]
and Berezansky and ldels [4] have studied exponential stability, by using fundamental
function and inequalities, for linear impulsive delay differential equations. However, there
is little work done on exponential stability for impulsive delay differential equations by
the Lyapunov—Razumikhin method. In this paper, we shall extend Lyapunov—Razumikhin
method to general impulsive delay differential equations and establish some exponential
stability criteria.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and definitions. Then in Section 3, we obtain several Razumikhin-type criteria on exponen-
tial stability for impulsive delay differential equations by using Lyapunov functions, and
in the last section, we discuss some examples to illustrate our results.

2. Preliminaries

Let R denote the set of real number, the set of nonnegative real numbers &tid
then-dimensional real space equipped with the Euclidean rprin Let N denote the set
of positive integers, i.eN ={1,2,...}.

Denotey (t7) = lim,_, ,+ ¥ (s) andy (t7) = lim,_,,- ¥(s). Fora,b € R with a < b
and forS c R", we define the following classes of functions:

PC(la, b], S) ={¥ :la,b] = S| ¥ (1) = Y ("), Vi €la, b);
¥(t7) exists inS, Vr € (a, b], and
Y (™) =y () for all but at most
a finite number of points € (a, b1},
PC(la.b). S) ={¥ :la.b) > S|y (1) =y (™), Vi € [a, b);
¥ (t™) exists inS, Vt € (a, b), and
Y (™) =y () for all but at most
a finite number of points € (a, b)},

and
PC([a, 00), S) = {¥ :[a, 00) = S | Ve > a, ¥l € PC([a, c]. S)}.

Given a constant > 0, we equip the linear spad®C([—t, 0], R") with the norm|| - ||,
defined b)’||1ﬁ||r = SUP—rgsgo ||¢(S)||
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Consider the impulsive delay system of the form

)e(t):f(tﬂxt)7 te[tk—:btk)a
Ax(t) = Ie(t, x-), t=1t, keN, 2.2)
xl‘():d)v

wheref, Iy : Ry x PC([—7,0], R") > R"; p e PC([—7,0, R");0<fo<t1 <tr <--- <
tx <---, With #p — oo ask — oo} Ax(t) =x(tT) — x(¢+7); andx,, x,- € PC([—t, 0], R")
are defined by, (s) =x(z + ), x,-(s) =x (¢~ + ) for —7 <5 <0, respectively.

Definition 2.1. FunctionV : R, x R" — R, is said to belong to the class if

(i) V is continuous in each of the sdtg_1, 1) x R" and for eachx € R", t € [t;—1, k),
keN, Iim(t,y)ﬁ(,k-,x) V(t,y)=V(t, ,x) exists; and
(i) V(,x) islocally Lipschitzian in allk € R", and for allr > 7o, V (¢, 0) =0.

Definition 2.2. Given a functionV : Ry x R" — R, the upper right-hand derivative &f
with respect to system (2.1) is defined by

. 1
DYV (t,9(0) = IlmsupE[V(t +h, W ©) +hft,¥)) = V(t, ¥ (0)],

h—0t

for (¢, ¥) € Ry x PC([—7, 0], R").

Definition 2.3. The trivial solution of system (2.1) is said to be exponentially stable if, for
any initial datax,, = ¢, there exist constants> 0, M > 1 such that

|xt.t0,0)|| < Mpllce ", t>10. 2.2

We shall make the following assumptions.

(H1) f(, ) iscomposite-PCi.e., if for eachrg € Ry anda > 0, where[rg, ro+«] € Ry,
if x € PC([to — 7, t0 + ], R") andx is continuous at each:~ # in (fo, 1o + «], then
the composite functiog defined byg(¢) = f (¢, x;) is an element of the function
classPC([r, to + ], R™).

(H2) f(z,v)isquasi-bounded.e., if for eachyg € Ry anda > 0, where{zg, 10+ «] € R+,
and for each compact séte R" there exists som#f > 0 such that| f (¢, ¥)|| < M
forall (z, ¥) € [t0, 10 + @] x PC([—7, 0], F).

(H3) For each fixed € Ry, f (¢, ¥) is a continuous function af on PC([—z, 0], R").

(H4) f(@,0)=0,andl;(:,0)=0forallt € Ry, ke N.

Itis shown in [2] that under assumptions (H1)—(H3), the initial value problem (2.1) has a
solutionx (z, 19, ¢) = x(¢) existing in a maximal interval. If, in addition, £ (¢, ¥) is locally
Lipschitz in v, then the solution is unique. Assumption (H4) enables that system (2.1)
admits a trivial solutionx () = 0.
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3. Main results

In this section, we shall develop Lyapunov—Razumikhin methods and establish two the-
orems which provide sufficient conditions for exponential stability of the trivial solution of
system (2.1).

Theorem 3.1. Assume that hypothes@s1)—(H4) are satisfied and there exist a function
V € v, and constantp > 0,¢1 > 0,¢c2> 0,1 > 0,d; >0, k € N, such that the following
conditions hold

(i) cillxlI? < V(r,x) <ecallx||?;

(i) DTV, ¢0) < —m(@)V(t, ¢(0)), for all + # # in Ry wheneverV(z, ¢(0)) >
V(i + 5, 0(s))e” i m®ds for ¢ e [—7, 0], wherem(t) € PC([to — 7, 00), R..) and
infi>—cm(t) > A

(i) V(t, 90 + Ik(tx, 9)) < L+ d)V (1, 9(0)), with 372 dy < 00, and ¢(07) =
#(0).

Then the trivial solution of syste(@.1) is exponentially stable.

Proof. Letx(¢) = x(z, tg, ¢) be a solution of system (2.1) antlr) = V (¢, x(¢)). We shall
show
k=1 ,
V) <c2[JA+dpliglze 10", telnr ), ke N,
i=0
wheredp = 0. Let

t
o | VO —e2llio@+dlle Jom s -y e g 1), ke,

V(D) —callgl|le fo %, telto— 1. 10l.
We need to show thaD () < 0 for all 7 > #g. It is clear thatQ(z) < 0 for ¢ € [tg — 7, t0]
sinceQ(r) < v(r) — c2||¢]l¥ < 0 by condition (i).
Takek = 1, we shall showQ(¢) < 0 for r € [r9, 11). In order to do this we let > 0
be arbitrary and show tha®(r) < « for ¢ € [tg, t1). Suppose not, then there exists some
t € [tg, 11) SO thatQ (¢) > «. Lett* =inf{r € 19, 11): Q(¢) > a},sinceQ(t) <0< aforre
[to — T, t0], we knowr™ € (g, 1). Note thatQ(¢) is continuous otjrg, 11), thenQ (r*) = «
andQ@) <afort el —r1t,t*].
Notice V (1*) = Q(r*) + cz||¢||¥e_‘/’0 m)4s. and fors e [, 0], we have
t*+s . .
V(* +5) = Q" +5) +callpllLe o MOD
<a+eallplle o mON
< (@ +callpliPe™ o M) = [T mE) ds

_ V(t*)efft**—f m(s)ds.
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So by condition (i), we hav® ™V (t*) < —m (™) V (t*), then we have

* N

D Q") = DYV (1*) + m(tH)callp )| Pe o MO
f*

< —m@) (V) = caligllLe o "OD)

=-m(t"a <0,

which contradicts the definition of, so we getQ(¢) < « for all t € [1g, t1). Leta — 0T,
we haveQ(r) < 0forz € [1g, 11).

Now we assume tha® () <0 for ¢ € [r9, t,,), m > 1. We shall show thap(¢) < 0 for
t € [to, tm+1)-

By condition (iii), we have

u — [ m(s)ds
Q(tw) = V(i) — c2 [ [+ dp)lipl1e o ™)
i=0

<A+dn)V (1) =2 [ [+ dplglze o "
i=0
=A+dn)0(t,) <O0.
Let @ > 0 be arbitrary, we need to sho@(r) < « for ¢t € (¢, t,,+1). Suppose not, let
t* =inf{t € [tm, tw+1): Q(t) > a}. SinceQ(1,) < 0 < «, by the continuity ofQ (), we
get,r* > ty, Q(t*) = and Q(1) < o for ¢ € [1o, t*].
SinceV (1) = Q™) + e2 [TiLo(L + d) g [1Fe o "V
have

, then for anys € [—1, 0], we

" _ *4s
V(t* +S) g Q(t* +S) +021_[(1+dl)”¢”€e f’O m(s)ds
i=0
n ft*f‘[ ()d
- m(s)das
Satea[[A+d)liglre o
i=0

m * *_g

< (a +ez[Ja+doliglze o ’"(M)eff* m(s)ds
i=0

— V(I*)ef’t:*fm(s)ds.

Thus by condition (ii), we hav® ™V (t*) < —m(t*)V (+*), and then we have

Dt 0% = DTV (") +m(t*)czl_[(l_i_dl_)”(ﬁ”feffto m(s)ds
i=0

< —m(1) (V(t*) o] JA+ d)lglire o ’"“)dS)
i=0
=-m@)a <0.
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Again this contradicts the definition of, which impliesQ(¢) < « for all ¢ € [1,,, t;y+1)-
Leta — O™, we haveQ(r) <O for all t € [t,,, tius1). SO Q(t) <0 for all ¢ € [tg, tur1).
Thus by the method of induction, we get
k=1 ,
Vi) <ca [+ dDlglze o™ telnr. ), keN.
i=0
By condition (i)—(iii), we have

k=1

crllxl? < V() < ez [[A+dpliglte "% < comlgLe 0, 121,
i=0
which yields
1
llxll < (%) Ipllee™ 770t > 10,

whereM =T[12,(1+d;) < oo sinced ;2 ; dx < oo. Thus the proof is complete.0

Theorem 3.2. Assume that hypothes@$1)—(H4) are satisfied and there exist a function
V € g, and constantp > 0,¢g > 1,¢1>0,c2 > 0andn > Ian such that

() callxI” <V, x) <czllx||?;
(i) DYV, 90) < —nV(t, ¢(0),forall t # 1 in R, whenevey V (¢, 9(0)) > V(¢ +s,
@(s)) fors e [—,0];
(i) V(tk, 90) + Ik (t, @) < Y (V (1, 9(0))), wherep(07) = ¢(0), and ¥ (s) is con-
tinuous,0 < Yk (as) < ayy(s) andyg (s) > s hold for anya > 0 ands > 0, and there
existsH > 1 such that

wk(wk_l(. .. (1/f1(s)) .. .))/s <H, 5s>0keN.
Then the trivial solution of systef@.1) is exponentially stable.

Proof. Choosey = ¢** > 1 for somex > 0, we shall show

V() < Yk—1(Yi—2(... (V1 (vo(V (1)) ...))e >0 te[t_1, 1), keN,

whereyo(s) = s for anys € R. Let

V(1) = Yr—1(Wr—2(... (Yo(V (10))) .. Ne ™70t en_1, i), kEN,
0(10), t €to— 1, o).
Whenk = 1, we shall showQ(r) < 0 for all z € [7g, 71). In order to do this, we shall show
that Q(r) < « for any arbitrarily givere > 0. Suppose that there exists some[rg, 1) SO
that O(r) > a. Letr* =inf{r € [tg, 11): Q@) > a}, sinceQ(tp) < V() — V() =0 < «
and henc& () < « for r € [1g — 7, fo], we knowr* € (7o, 7). Note thatQ(¢) is continuous
onlt, 1), thenQ(t*) =a andQ(r) <« forr € [1g — 7, t*].

SinceV (t*) = Q(t*) + V (fo)e "0 then fors € [—t, 0], we have

Q(l)={
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V(I +5) = Q" +5) + V(io)e "0 Car V(e M0
< (o + V(e ) = V(i) <qV ().

So by condition (i), we hav® ™V (t*) < —nV (¢*), then we have

DY Q(*) = D*V (") + AV (10)e ™70 < —pV (1) + AV (1g)e MO
<=A(V(*) = V(tg)e ™) = —ra <0,

which contradicts the definition of, so we getQ(r) < o for all ¢ € [tg, t1). Leta — 0T,
we haveQ(r) <0 forz € [1g, 11).
Now we assume tha® (t) < 0 for s € [1o, 1), k > 1. Then we shall shov (r) < 0 for
t € [to, fr+1). Leta > 0 be arbitrary, we shall sho@(r) < « for r € (#, tx+1). Suppose
not, lett* = inf{r € [%, fr+1): Q@) > «}.
By condition (iii), we have
Q) =V () = Yi(Vr-a(... (o(V (1)) ..))e 1
<y (V(5) = ve(Wi-a(--- (o(V (1)) -...) Je 470
<Y (Yr-a(-- (Yo(V (10))) ...} e 1)
— Y (Yr-1( .- (Yo(V (1)) ...)Je 0
< ey (Yra(... (Yo(V(@0)) -.))
— Y (Vr-1(-.. (Vo (V (1)) ..))e k710
<0.

Since O(#;) < 0 < «, by the continuity ofQ(r), we haver* > 1, Q(t*) = « and
0@) <aforteln—r1,rt*].
SinceV (1) = Q(t*) + Y (Wr—1(. .. (ho(V (1)) .. .))e " ~); whens* + 5 > 1 for
all s € [-t, 0], we have, for any € [, 0],
V(e +5)= 0" +5) + Vi (Vi-a(. .. (Wo(V(10))) ...))e 70
<a+ Y (Vr—1(. .- (Yo(V(10)) .. .))e"\(’*—f—’o)
< (@ + (Wil (Yo(V(@)) ...))e 0 0)e?
SV ()T <qV ().

Whenz* + s < 1, for somes € [—t, 0], note that < ¥y (as) < ayi(s) andyy (s) > s hold
for anya > 0 ands > 0, then we have, for anye [—7,0] andm <k, m,k € N,
Y (Wm—1(-- (Vo(V (10))) ...) ) e+ +s710)
<V (Wi-1(-.. (Vo(V (1)) ..) e+,

So in this case, we can also geétr* + s) < ¢V (t*) hold for all s € [—t, 0]. Thus by
condition (ii), we haveDTV (*) < —nV (+*), and then we have
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DT Q") = DTV () + A (V-1 (... (o (V (1)) ...) Je "~
<=V @)+ M (-1 (- (Yo(V (1)) ) Je 7
<A (V™) = v (Yi—1(. .. (Yo(V(t0)) - .))e—/\(t*—to))
<—la <O.

Again this contradicts the definition of, which impliesQ () < « for all ¢ € [#, tx1+1).
Let « — O™, we haveQ(r) < 0 for all ¢ € [#, tr11). S0 Q(r) < 0O for all ¢ € [0, tx11)
which proves, by the method of inductioVi(r) < ¥ (Yr—1(... (Wo(V (19))) . ..))e 2~
fort € (-1, 1), k € N. By condition (iii), we have

Ve(Wi-a(- - (Vo(V (10))) .. .))e 70 =y (s (... (¥2(V (1)) ..)Je 7
<HV(1g)e M0 >
Thus by condition (i), we have
cillx||? S V(@) < caH|[p|Pe ™70 1> 10,

ie.,

coH

,—1, _ Mi—1g)
llxll < o1 lpllce 7, t>10,

which completes our proof. O

Corollary 3.1. Assume that hypothes@41)—(H4) are satisfied and conditio(i), (ii) of
Theoren®.2 hold, condition(iii) is replaced by

(i)* Ve, 90 + L, ) < Y (V1 ,9(0)), where 9(07) = ¢(0) and i (s) =
1+ ,@"?)s forall ke N,

then the trivial solution of syste@.1) is exponentially stable.
Proof. Notice

k 1
Yr(s) = <l+ k3—+s2>s < |S|<1+ ﬁ)’ keN,
then by Theorem 3.2, the result holds

4. Examples
To illustrate our results, we consider some examples.

Example 4.1. Consider the impulsive nonlinear delay differential equation

10s) — b(t)
X)) =—ax () + 775

x(t) = L+ cp)x(t,), fr =k, keN, (4.1)

Xig = o,

x(t—1), t=>1=0,
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where constants, ¢, > 0 with )2 ¢t < oo, functionsa € C(R, R;), b € C(R, R),
¢ € PC([—1,0], R"). If a(t) > |b(t)|e™*T + A, then the trivial solution of system (4.1)
is exponentially stable.

Proof. SetV(x) =V (t,x) = |x|, m(¢t) = X for all t > top — t, whereA > 0 is a constant,
then we have

. _ _b®O
DV (t,9(0)) <sgr(go(0))[ a()e(0) + 1+ 0200)

<—a®)|e©)| + [b®)] - [p(=1)|
<=aV(p©) + [b@)| - V(e(=0). (4.2)
For any solutionc (z) of Eq. (4.1) such that

w(—f)]

V(6,9 (0) = V(t+s, p(s))eli="04  forse[—z,0],
we haveV (¢(—1)) < e **V(¢(0)). Therefore,

DTV (t,9(0) < [—a() +b(1)e "]V (p(0)).
Sincea(t) > |b(t)|e T + A, it follows that

DTV (1,9(0)) < =2V (9(0) < —m()V (9(0),

whenever (1, p(0)) = V(1 +s, o(s))eli— "4 for s e [, 0], i.e., condition (ii) of The-
orem 3.1 holds.
Moreover,

V (i, 9(0) + I (t, ) = L+ c) V (17, 9(0)).

Thus by Theorem 3.1, the trivial solution of system (4.1) is exponentially stable. The nu-
merical simulation of this example with initial function

_ 07 re [_17 0)7
o= { 17, (=0,
andi =1 =1,b(t) =1 a(t) =2+12, cx = 5 is given in Fig. 1.
It should be noted that whenH.x? is not there, system (4.1) becomes the well-known
linear case which has been studied by several authors, see, for example, [520].

Example 4.2. Consider the impulsive nonlinear delay differential equations
x'(@) =—y@®sin(x( — 1) —4x(®) +y( —1), t#k,

y' () = x(t)sin(x(t — 1)) — 3y(1), t#k,

x(t) = (1+ 5)x (), 1=k, (4.3)
Y = (1= )y, t=k, keN,

Xig = ¢v o= Oa

where¢ € PC([—1, 0], R").
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1.8 T T T T T T

0.2 i

1 !
0 1 2 3 4 5 6 7 8 9 10

Fig. 1. Numerical simulation of Example 4.1.

ChooseV (x, y) = V(t,x, y) = x2 + y2, then
DV (1, 91, 92) = 91(0) (—92(0) sin(p1(—1)) — 4p1(0) + p2(—1))
+ ¢2(0) (—¢1(0) sin(p1(—1)) — 3¢2(0))
= —4¢7(0) + ¢1(0)p2(—1) — 3p5(0)
1
< —497(0) + 5(¢£(0) + ¢5(-1)) — 3p5(0)
< =6V (01(0), 92(0)) + V (p1(—1), 2(—1)),
letqg =2, n =4, wheneveg V (¢1(0), 92(0)) > V(¢1(0), 92(0)) for s € [—1, 0], we have
DV (t, 91, 92) < =6V (91(0), 92(0)) + V (p1(—1), p2(—1)
< =6V (¢1(0), 2(0)) + 2V (¢1(0), ¢2(0))
< —4V(91(0), 92(0)),

i.e., condition (ii) of Theorem 3.2 holds.
At last, to check condition (iii), let/(s) = (1 + k%)(s), k € N, s € R, then for any
keN,

2 3
V<<p1(0) + ﬁm(o), 2(0) — pwz(o))

1 2 2 2 3 2 5
= E<<1+ ﬁ) %1(0) + (1— ﬁ) <p2(0)) <Yk (V (92(0), 92(0))),
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3 T T T T T T T
= = X(1)
y(t)

\

\

\
2 M i

\
\
\
1L\ i
\
\
\
N )\
~ \
~__ I~

oF D T — — —
A+ -
2 i
_3 1 1 1 1 1 1 1 1 1

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Fig. 2. Numerical simulation of Example 4.2.

i.e., condition (iii) is satisfied. Thus by Theorem 3.2, the trivial solution of system (4.3) is
exponentially stable. The numerical simulation of this example with initial function

_ O, l‘€[—1, O), _ O, te[_]-»O)a
91() = { 27, =0, $2(0) = { -21, 1=0,
is given in Fig. 2.
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