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Abstract

In this paper we study dual coalgebras of algebras over arbitrary (Noetherian) commutative
rings. We present and study a generalized notion of coreflexive comodules and use the results
obtained for them to characterize the so called coreflexive coalgebras. Our approach in this note
is an algebraically topological one.
© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

The concept of coreflexive coalgebras was studied, in the case of commutative base
fields, by several authors. An algebraic approach was presented by Taft ([27,28]),
while a topological one was presented mainly by Radford [12,23] and studied by sev-
eral authors (e.g. [20,32]). In this paper we present and study a generalized concept of
coreflexive comodules and use it to characterize coreflexive coalgebras over commu-
tative (Noetherian) rings. In particular we generalize results in the papers mentioned
above from the case of base fields to the case of arbitrary (Noetherian) commutative
ground rings.

Throughout this paper R denotes a commutative ring with 1z # 0z. We con-
sider R as a left and a right linear topological ring with the discrete topology. The
category of R-(bi)modules will be denoted by .#%. The unadorned — ® — and Hom
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mean — ®i — and Homy respectively. For R-modules M, N and a submodule K of M,
the image of the canonical R-linear mapping 1x ® idy : K @g N — M ®x N is denoted
by Im(K ®z N). The R-submodule K is called N-pure, if 1x ® idy is injective (in this
case Im(K ®x N) =K ®r N). We call K C M pure (in the sense of Cohn), if it is
N-pure for every R-module N. For every R-module L, we denote with L* the algebraic
dual R-module of all R-linear maps from L to R. For two topologies ¥ and T', we
write € < ¥’ to mean that T is coarser than T'.

Let S be a ring. We consider every left (respectively right) S-module K as a right
(respectively a left) module over End(sK)° (respectively End(Ks)) and as a left (re-
spectively a right) module over Biend(sK) := End(Kgnd(sx)r) (respectively Biend(Ky)
:= End(gna(x)K)), the ring of biendomorphisms of K (e.g. [31, 6.4]).

Let A be an R-algebra and M be an A-module. An A-submodule N C M will
be called R-cofinite, if M/N is finitely generated in .#k. The class of all R-cofinite
A-submodules of M is denoted with #y,. We call M cofinitely R-cogenerated, if M/N
is R-cogenerated for every R-cofinite 4-submodule N of M. With 2, we denote the
class of all R-cofinite 4-ideals and define

A°:={f €4 f(I)=0 for some R-cofinite ideal /<1 A4}.

If A is a filter (e.g. R is a Noetherian ring) then 4° C 4* is an R-submodule with
equality if and only if zA4 is finitely generated projective.

We assume the reader is familiar with the theory of Hopf Algebras. For any needed
definitions or results the reader may refer to any of the classical books on the subject
(e.g. [1,25,31]). For an R-coalgebra (C,Ac,¢c) and an R-algebra (4, py,n4) We con-
sider Homg(C, 4) as an R-algebra with multiplication the convolution product ( fxg)(c)
i=>_ f(e1)g(e2) and unity ny o ec.

1. Preliminaries
In this section we present some definitions and lemmas.

Definition 1.1. Let (C, A¢,éc) be an R-coalgebra. We call an R-submodule K C C:
an R-subcoalgebra if and only if K C C is pure and A¢(K) C K ®z K
a C-coideal if and only if K C Ker(ec) and

Ac(K) CIm(ig ®@idc) + Im(idc @ 1 );

a right C-coideal (respectively a left C-coideal, a C-bicoideal), if K C C is C-pure
and A¢(K) € K®gC (respectively Ac(K) C CRrK, Ac(K) C (K@rC)N(CRrK)).

1.2. Subgenerators. Let 4 be an R-algebra and K be a left 4-module. We say a left
A-module N is K-subgenerated, if N is isomorphic to a submodule of a K-generated
left A-module (equivalently, if N is kernel of a morphism between K-generated left
A-modules). The full subcategory of 4.4, whose objects are the K-subgenerated left
A-modules is denoted by o[4K]. In fact a[4K] C 4.4 is the smallest Grothendieck full
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subcategory that contains K. If M is a left 4-module then
Sp(6[4K1,M) =" f(N): f €Hom, (N,M), N €a[K]

is the biggest 4-submodule of M that belongs to ¢[4K]. The reader is referred to
[30,31] for the well-developed theory of categories of this type.

The linear weak topology

1.3. R-pairings. An R-pairing P=(V, W) consists of R-modules V, W with an R-bilinear
form

oV x W =R, (v,w) — (v,w).

If the induced R-linear mapping kp:V — W* (respectively yp : W — V™) is injective
then we call P left non-degenerate (respectively right non-degenerate). If both kp and
«p are injective then we call P non-degenerate.

For R-pairings (V, W) and (V',W') a morphism

&O): (V. W) — (VW)
consists of R-linear mappings &:V — V' and 0: W’ — W, such that
(E(v),w") = (v,0(w")) forallveV and weWw'’

The R-pairings with the morphisms described above (and the usual composition of
pairings) build a category which we denote with 2. If P = (V,W) is an R-pairing,
V' C V is an R-submodule and W' C W is a (pure) R-submodule with (V',W’) =0
then Q := (V/V',W') is an R-pairing, (m,1) : (V/V',W') — (V, W) is a morphism in
2 and we call Q C P a (pure) R-subpairing.

Notation. Let P = (V, W) be an R-pairing. For X C V' and K C W set
X1t = {weW|(X,w) =0} respectively K+ := {ve V|(v,K) = 0}.

We say X C V (respectively K C W) is orthogonally closed with respect to P, if
X =X+ (respectively K = K++). In case V' = W*, we set for every subset X C W*
(respectively K C W) Ke(X) := {weW|f(w) =0 for every f€X} (respectively
An(K)=:{f e W*|f(w)=0 for every weK}).

14. Let P =(V, W) be an R-pairing. Then the class of R-submodules of V:
F(0p) :={K*|K C W is a finitely generated R-submodule}

is a filter basis consisting of R-submodule of V' and induces on ¥ a topology, the so
called linear weak topology V[%;s(W)], such that (V, V[Z;;(W)]) is a linear topological
R-module and #(0y) is a neighborhood basis of 0. In particular we call W*[Z ()]
the finite topology. The properties of this topology were studied by several authors in
the case of commutative base fields (e.g. [13,14,23]). We refer mainly to the recent
work of the author [2] for the case of arbitrary ground rings.
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1.1. The o-condition

In a joint work with Gomez-Torrecillas and Lobillo [4] on the category of comodules
of coalgebras over arbitrary commutative base rings, we presented the so called o-
condition. That condition has shown to be a natural assumption in the author’s study
of duality theorems for Hopf algebras [3]. We refer mainly to [2] for the properties
of such pairings over arbitrary ground rings.

1.5. o-pairings. We say an R-pairing P = (V, W) satisfies the a-condition (or P is an
a-pairing), if for every R-module M the following map is injective

oy M @ W — Homg(V, M), Zmi®w,~»—> {vHZm,(v,w,)}. (1)

With 2% C 2 we denote the full subcategory of R-pairings satisfying the o-condition.
We call an R-pairing P=(V, W) dense, if xp(V) C W* is dense (considering W* with
the finite topology). It’s easy to see that #* C 2 is closed under pure R-subpairings.

We say an R-module W satisfies the o-condition, if the R-pairing (W*, W) satisfies
the a-condition, i.e. for every R-module M the canonical R-linear morphism aX/,V ‘M ®p
W — Homg(W*,M) in injective (equivalently, if g is locally projective in the sense
of Zimmermann-Huisgen [33]).

Remark 1.6. [2, Remark 2.2] Let P=(V, W)€ #*. Then g W is R-cogenerated and flat.
If R is perfect then g/ turns to be projective.

Notation. Let W, W’ be R-modules and consider for any R-submodules X C W* and
X' C W' the canonical R-linear mapping

0: X Qp X' — (W @r WH*.
For f€X and ge X’ set fRg=04(f ®g), ie.
(f®9) (Z wi ® wf) = Zf(w[)g(wf) for every Z w, @w eW @ W'

2. Measuring R-pairings

2.1. For an R-coalgebra C and an R-algebra A we call an R-pairing P = (4,C) a
measuring R-pairing, if the induced mapping kp:4 — C* is an R-algebra morphism.
In this case C is an A-bimodule through the left and the right 4-actions

aAc::Zq(a,cz) and c;a::Z<a,cl>cz for all ac4,ceC. (2)

Let (4,C) and (B,D) be measuring R-pairings. We say a morphism of R-pairings
(£,0):(B,D) — (4,C) is a morphism of measuring R-pairings, if £:4 — B is an
R-algebra morphism and 0:D — C is an R-coalgebra morphism. The category of
measuring R-pairings and morphisms described above will be denoted by Z,,. With
2% C P, we denote the full subcategory of measuring R-pairings satisfying the o-
condition (we call these measuring o-pairings). If P=(A4,C) is a measuring R-pairing,
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D C C is an R-subcoalgebra and /<4 is an ideal with (I,D) =0 then Q := (4/I,C) is
a measuring R-pairing, (7;,1p) : (A/[,D) — (4,C) is a morphism in £, and we call
O C P a measuring R-subpairing. Since by convention an R-subcoalgebra is a pure
R-submodule, it is easy to see that 22 C 2, is closed under measuring R-subpairings.

Lemma 2.2. Let P=(4,C), 0=(B,D)€ %, and (&,0):(B,D) — (4, C) be a morphism
of R-pairings.

1. Assume that P @ P := (4 @ 4,C ®g C) is right non-degenerate (i.e. y := ypep :
C®rC— (A®Rr A)" is an embedding). If ¢ is an R-algebra morphism then 0 is
an R-coalgebra morphism. If A is commutative then C is cocommutative.

2. If QO is left non-degenerate (i.e. BAD* is an embedding) and 0 is an R-coalgebra
morphism then & is an R-algebra morphism. If C is cocommutative and P is left
non-degenerate (i.e. A C C*) then A is commutative.

Proof. 1. If ¢ is an R-algebra morphism then we have for arbitrary d € D, a,a € A:
7 (32 0@y @0y ) (@2 @) =Y (@ 0dn) @ 0(d))
— (ad, 0(d))
= (&(a@),d)
= ((a)&(@),d)
= (&a),d1)(&(@), da)
= "(a.0d1)) (@ 0(d>))

=7 (> 0t @ () (@ @ a.

By assumption y is injective and so Y. 0(d); ® 0(d), = > 0(dy) ® 0(dy) for every
d €D, ie. 0 is an R-coalgebra morphism.
If 4 is commutative then we have for all c€ C and a,a € 4:

1 (Z 1 ® cz) (a®a)= Z(a,cl)(a,cz)
= (aa,c)

= {(aa,c)
:Z<a,cz><5,cl>
=y (Zcz ®c1) (a®a).

By assumption y is injective and so >, c¢; ® ca = ¢ ®@ ¢ for every c€ C, i.e. C is
cocommutative.
2. The proof is analogous to that of (1). [I
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Notation. Let 4 be an R-algebra and N be a left 4-module (respectively a right
A-module). For subsets X, Y C N we set

(Y :X):={acd|aX C Y} (respectively (Y : X):={acd|Xa C Y}).

If Y ={0y} then we set also Anny(X) := (Oy : X). If N is an 4-bimodule then we
set for every X C N:

Ann/(X) := {a € AlaX =0y} and Ann;(X) := {a € A|Xa = Oy}.

2.3. The C-adic topology. Let (4,C) &P, and consider C as a left 4-module with the
left A-action “—” in (2). Then the class of left 4-ideals

Be_(04) := {Ann, (W) = (0¢c : W)|W = {ci,...,c;} € C a finite subset}

is a neighborhood basis of 04 and induces on 4 a topology, the so called left C-adic-
topology T¢_(A), so that (4, 7¢_(A)) is a left linear topological R-algebra (see [6,7]).
A left A-ideal I<;A4 is open with respect to T ¢_(A) if and only if A/l is C-subgenerated.
If T is a left linear topology on A4 then the category of discrete left (4,¥)-modules
is equal to the category of C-subgenerated left A-modules o[4C] if and only if ¥ =
Tc—(A). In particular we have for every left A-module N:

Sp(a[4CL,N) = {n€N|IF ={ci,...,c;} C C  with Ann/,(F) C (Oy : n)}.

By [3, Lemma 2.2.4] the C-adic topology Z¢_(A4) and the linear weak topology
A[%5(C)] coincide. Hence 4, with the linear weak topology A[%;,(C)], is a left linear
topological R-algebra.

Analogously C4 induces on A4 a topology, the so called right C-adic topology
I _c(A), such that (4,7 _c(A)) is a right linear topological R-algebra.

Rational Modules

2.4. Let P =(4,C) be a measuring o-pairing. Let M be a left 4-module, py : M —
Hompg(4, M) be the canonical A-linear mapping and Rat®(,M) := p;[l(M ®r C). In
case Rat®(4,M) =M, we call M a C-rational left A-module and define

oM = (ocjl\})_1 opy M — M R C.

Analogously one defines the C-rational right A-modules. With RatC(,.4) C 4.l
(respectively “Rat(.#,) C ./,) we denote the full subcategory of C-rational left (re-
spectively right) 4-modules.

Lemma 2.5 ([3, Lemma 2.2.7]). Let P =(4,C) be a measuring o-pairing. For every
left A-module M we have:

1. RatC(,M) C M is an A-submodule.

2. For every A-submodule N C M we have Rat®(,N)=N N Rat®(,M).

3. Rat(Rat®(4M)) = Rat‘(,M).

4. For every L€ 44 and f €Homy_(M,L) we have f(Rat®(,M)) C Rat®(4L).
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Theorem 2.6 ([3, Lemmas 2.2.8, 2.2.9, Satz 2.2.16]). Let P =(A4,C) be a measuring
R-pairing. Then M€ C 4 M and W C ., (not necessarily full subcategories).
Moreover the following are equivalent:

1. P satisfies the o-condition;

2. grC is locally projective and xkp(A) C C* is dense.
If these equivalent conditions are satisfied then M€ C 4.0 and 4 C ., are full
subcategories and we have category isomorphisms

ME ~ Rat“(M) = o[4C]
and
~ RatS(c-ll) = o[c-C]
S ~ CRat(My) = o[C4] ;
~ CRat(Me-) = o[Ce-]. )

Corollary 2.7. Let Q=(B,C)€ Py, & : A — B be an R-algebra morphism and consider
the induced measuring R-pairing P = (A4,C). Then the following statements are
equivalent:

(i) Pe 2z

(il)) 0e€2; and &(A) C B is dense (with respect to the left C-adic topology
Tc-(B));

(i) C satisfies the o-condition and kp(A) C C* is dense.

If these equivalent conditions are satisfied then we get category isomorphisms

ME ~ Rat“(u M) = o[4C]
~ Rat(c-M) = o[c-C] and
~ RatC(zg#) = o[zC]
S ~ CRat(My) = o[C4]
CRat(Mc) = o[Ce+] (4)
~ CRat(p) = a[Csl

2.8. Let (C,Ac,ec) be an R-coalgebra and denote with End“(C) (respectively
CEnd(C)) the ring of all right (respectively left) C-colinear morphisms from C to C
with the usual composition. For every right C-comodule M we have an isomorphism
of R-modules

¥ :M* — Hom“(M,C), h— {m — Zf(rn<o> )m<1>} %)

with inverse g —+ &c o g. Analogously N* ~ “Hom(N, C) as R-modules for every left
C-comodule N. In particular C* ~ EndC(C)"p and C* ~ “End(C) as R-algebras.
If (4,C) is a measuring o-pairing then we have R-algebra isomorphisms

Biend(4C) := End(Cena(,c ) = End(Cppge(cyn) = End(Ce+) = “End(C) ~ C*
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and

Biend(Cy) := End(gna(c,)C)”™ =~ End(cgpac)C)*® ~ End(c~C)P

= End“(C)® ~ C*.

In particular, if xC is locally projective then Biend(¢«C) ~ C* =~ Biend(Cc~) as
R-algebras (i.e. ¢« Ce« is faithfully balanced).

Corollary 2.9. Let P=(A,C) € 2% and consider A* as an A-bimodule with the regular
A-actions

(af)a)= f(aa) and (fa)(a)= f(aa). (6)
Then

1. For every unitary left (respectively right) A-submodule D C A* we have
Rat€(4D) = C N D (res pectivel y°Rat(D,) = C N D).
In particular Rat®(44*) = C = “Rat(4*).
2. If D C A* is an A-subbimodule then 4D is C-rational if and only if Dy is C-

rational.
3. Let R be Noetherian. If 4A° (equivalently A3) is C-rational then C = A°.

Proof.

1. Let D C A* be a left A-submodule. By Lemma 2.5 (2) C N D is a C-rational
left 4-module, i.e. C N D C Rat(4D). On the other hand, if f € Rat“(,D) with
op(f)=>f; ®c; € D @ C then we have for every a € 4:

f@) =)= fill)ac),

ie. f=3 fi(l4)c;€C. Hence Rat“(4D) = C N D. The corresponding result for
right 4-submodules D C A* follows by symmetry.

2. Let D C A* be an A-subbimodule. Then by (1) Rat“(,D)= C N D = “Rat(D,).

3. If R is Noetherian then A° C 4* is an A-subbimodule under the regular left and

right A-actions (6). Obviously C 54° and it follows by assumption and (1) that
A° =Rat‘(y4°)=Cn4°=C. O

An important role by the study of the category of rational representations of mea-
suring o-pairings is played by the

2.10. Finiteness Theorem.

1. Let P =(4,C) be a measuring «-pairing.
If M eRatC(,.#) then there exists for every finite set {my,...,m} C M some
N ERatC(A,/%), such that zN is finitely generated and {my,...,m;} C N.
If M €CRat(.#,) then there exists for every finite set {mj,...,my} C M some
N € CRat(.4y,), such that zxN is finitely generated and {mj,...,m;} C N.
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If M e CRatC(AQWA ), then there exists for every finite set {m,...,m;} C M some
N € “Rat®(4.4,), such that zxN is finitely generated and {m,...,m;} C N.

. Let C be a locally projective R-coalgebra. Then every finite subset of C is contained

in a right C-coideal (respectively a left C-coideal, a C-bicoideal), that is finitely
generated in .

Proof.

. Assume that P = (4,C)€ 2%. Let M cRat“(,.4) and {my,...,m;} C M. Then

Am; C M is an A-submodule, hence a C-subcomodule. Moreover m; € Am; and so
there exists a subset {(m;;,c;;)}/; C Am; x C, such that QM(m,-):Z:.":l m;j @ c;; for
i=1,...,k. Obviously N := Zle Am; = Zf;l Z;’:l Rm;; C M is a C-subcomodule
and contains {my,...,my}.

Using analogous arguments one can show the corresponding result for C-rational
right A-modules and C-birational 4-bimodules.

. If C is a locally projective R-coalgebra then (C*,C) € 27 and the result follows by

(1. O

The following result gives topological characterizations of the C-rational left A-

modules and generalizes the corresponding result obtained by Radford [23, 2.2] from
the case of base fields to the case of arbitrary (Artinian) commutative ground rings
(see also [15, Proposition 1.4.4]).

Proposition 2.11. Let P = (A,C) be a measuring a-pairing and consider A with the
left C-adic topology Tc—(A)=A[%1(C)]. If M is a unitary left A-module then for
every me M the following statements are equivalent:

SN —

PN

. there exists a finite subset W ={ci,...,cx} C C, such that Aan(W) C (0p7 : m).
. Am is C-subgenerated,

. meRatC(4M).

. there exists a finitely generated R-submodule K C C, such that K+ C (04 : m).

If R is Artinian then “1-4” are equivalent to:

(0pr : Am) contains an R-cofinite closed R-submodule of A;
(0p7 : Am) is an R-cofinite closed A-ideal,

(0p7 : m) contains an R-cofinite closed A-ideal,

(0pr : m) is an R-cofinite closed left A-ideal.

Proof. (1) = (2) By assumption and 2.3 we have me N := Sp(o[4C],M). Since
Am C N is an A-submodule, it is C-subgenerated.

(2) = (3) By assumption and Theorem 2.6 m € Am C Rat(,M).
3) = (4) Let o(m) = Zlemi ®c¢ and K := ZleRci C C. Then obviously

K+ - (OM : m)

(4) = (1) For every subset W C C we have Anng(W) cwt.
Let R be Artinian.
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(3) = (5). By Theorem 2.6 Rat(,M) is a C-rational left A4-module. Assume that
ou(m) =Y m; ® ¢; € Rat“(uM) @r C, ou(mi) = 37 my; ® ¢ for i=1,....k and
set K 1= Zf.‘:l Zj”zl Rc;;. Then we have for every a € K and arbitrary b € A:

k koon
a(bm)=a (Z"ﬁ(b, Ci>> = Z Z mjj{a, c;j) (b, c;) =0,

i=1 i=1 j=1

i.e. K+ C (0y : Am). The R-module K is finitely generated and it follows from the
embedding 4/K+ — K*, that K+ C 4 is an R-cofinite R-submodule. Moreover K= is
by [2, Lemma 1.7 (1)] closed.

Under the assumption that R is Artinian, the implications (5) = (6) = (7) = (8)
= (4) follow from [2, Lemma 1.7 (4)]. O

Lemma 2.12. Let C be an R-coalgebra and consider C* with the finite topology. For
every f €C* the R-linear mappings

&iCt = Chgmrgaf and i CT = Chge fxg

are continuous. If R is an injective cogenerator then 'y and éllf are linearly closed
(ie. {H(X) C C* and é’f(X) C C* are closed for every closed R-submodule X C C*).

Proof. Consider for every f € C* the R-linear mappings
0 :C—Ccr f—c and 0;:C—Ccrrc— f.
Then we have for every g€ C* and ce€ C:
Z1(g)e) = (gxf)Ne) =D gle1)f(e2) = g(f — €)= g(0}(e)) = (0} (9))(©).

So & = (0%)" and analogously &) = (07)*. The result follows then by [2,
Proposition 1.10]. [J ‘ '

If P=(4,C) € 2} then the Grothendieck category Rat€(4.4) ~ ¢[4C] is in general
not closed under extensions:

Example 2.13 ([23, p. 520]). Let R be a base field, V be an infinite dimensional vector
space over R and consider the R-coalgebra C :=R@® V (with 4(v)=1®@v+0v® 1 and
e(v)=1g). Let I C V* be a vector subspace that is not closed, and consider the exact
sequence of C*-modules

0—=V*)I—=C*/I - C*/V*—=0.
Then V*/I and C*/V* are C-rational, while C*/I is not.

Lemma 2.14 ([25, Lemma 6.1.1, Corollary 6.1.2]). Let 1< A4 be an ideal.

1. Let M be a finitely generated left (respectively right) A-module. If 41 (respectively
Ly) is finitely generated then also IM C M (respectively MI C M) is a finitely
generated A-submodule. If I C A is R-cofinite then IM C M (respectively MI C M)
is an R-cofinite A-submodule.
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2. If 4l (respectively 1) is finitely generated then 41" (respectively 1) is finitely
generated for every n = 1. If moreover I C A is R-cofinite then I" C A is R-cofinite.

The following result generalizes [23, 2.5] from the case of base fields to the case of
arbitrary commutative QF rings.

Proposition 2.15. Let R be a QF Ring, C be a projective R-coalgebra and consider
an exact sequence of left C*-modules

0 NSMSL — 0.

If N,LeRat(c-.4) and (0 : 1) is finitely generated for every €L then M is
C-rational.

Proof. Let me M and {f},..., fx} be a generating system of ¢-(0; : n(m)). By as-
sumption 7(m) is C-rational and so there exist by Proposition 2.11 R-cofinite closed
A-ideals J; C (Oy : fim) for i=1,...,k. So we have for the closed R-cofinite A-ideal
J =, JiaC*:

JOp :n(m)) = m=(Ixf1+ - +Ixf) = m=0,

ie. J(0p : n(m)) C (0p : m). By Lemmas 2.12, 2.14 and [2, Proposition 1.10
(3.d)] J(O, : w(m)) = ZLJ*fi is R-cofinite and closed. It follows then by [2,
Lemma 1.7 (4)] that (04 : m)<; C* is R-cofinite and closed, hence m € RatC(¢-M) by
Proposition 2.11. [

Definition 2.16. An R-algebra A4 is called nearly left Noetherian (respectively
nearly right Noetherian, nearly Noetherian), if every R-cofinite left (respectively right,
two-sided) A-ideal is finitely generated in 4.4 (respectively in .4, in 4.4y).

As a corollary of Theorem 2.6 and Proposition 2.15 we get

Corollary 2.17. Let R be a QF Ring and C be a projective R-coalgebra. If C* is
nearly left Noetherian (respectively nearly right Noetherian) then .#€ ~ Rat®(¢-C)=
o[+ C] (respectively 4 ~ “Rat(Mc-) = o[Cc-]) is closed under extensions.

Duality relations between substructures

As an application of our results in this section and our observations about the linear
weak topology [2] we generalize known results on the duality relations between sub-
structures of a coalgebra and substructures of its dual algebra from the case of base
fields (e.g. [25,1] and [10, 1.5.29]) to the case of measuring o-pairings over arbitrary
commutative rings.

As a consequence of Theorem 2.6 and [2, Theorem 1.8] we get

Proposition 2.18. Let P =(4,C) € Z,,.

1. Let K C C be an R-submodule.
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If K is a right (respectively a left) C-coideal then K+=Ann’y(K) (respectively
K+ = Aan(K)), hence a right (respectively a left) A-ideal.
If K is a C-bicoideal then K+=Anny(K )ﬂAnnﬁl(K ), hence a two-sided A-ideal.
2. Let P Z;.
(a) For every R-submodule I C A we have:
If I C A is a right (respectively a left) ideal then I+ C C is a right
(respectively a left) coideal,
If 11 A is a two-sided ideal (and I~ C C is pure) then I- C C is a
bicoideal (an R-subcoalgebra).
(b) Let R be an injective cogenerator. For a closed R-submodule I C A we have:
I is a right (respectively a left) ideal if and only if I+ C C is a right
(respectively a left) coideal.
I is a two-sided ideal (and 1 C C is pure) if and only if I- C C is a
bicoideal (an R-subcoalgebra).

Proposition 2.19.

1. If P=(A4,C) is a measuring R-pairing and K C C is a coideal then K+ C A is an
R-subalgebra with unity 1y4.

2. Let R be a QF Ring, C be a projective R-coalgebra and A C C* be an R-subalgebra
(with ec € A). If Ke(4) C C is pure then Ac(Ke(4)) C Ke(4d) @ C+ C @ Ke(4)
(Ke(4) C C is a C-coideal).

Proof.

1. Obvious.

2. Let A C C* be an R-subalgebra and consider the canonical R-linear mappings
K:ARrA = (CRxC)" and y:CRrC — (ARrA)".

If Ke(4) C C is pure then it follows form [2, Proposition 1.10 (3.c), Corollary 2.9]
that

Ke(4) =Ke(AL(k(4 ®r A)))
= Az (Ke(k(4 @z 4)))
= Az (Ke(4) @k C + C @r Ke(4)), (7)
ie. Ac(Ke(4)) C Ke(d)®xr C+C®grKe(A). If moreover &¢c € A then ec(Ke(4))=0,
i.e. Ke(4) C C is a C-coideal. [

As a consequence of Propositions 2.18, 2.19 and [2, Theorem 1.8] we get

Corollary 2.20. Let R be an injective cogenerator and C a locally projective R-
coalgebra. If we denote with € the class of all R-submodules of C and with A
the class of all R-submodules of C* then

An(=):% — # and Ke(—): H —C (8)
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induce bijections
{K C C a right C-coideal} < {I<, C* a closed right A-ideal},
{K C C a left C-coideal} < {I<; C* a closed left A-ideal},
{K C C a C-bicoideal} <  {I<C” a closed two-sided ideal},  (9)
—

{K C C an R-subcoalgebra} {I<C* a closed two-sided ideal,

Ke(l) C C pure}.
If R is moreover a QF ring then (8) induces a bijection
{K C C a pure C-coideal} +>{4 C C* a closed R-subalgebra,

ec €4,Ke(4) C C pure}.

3. Dual coalgebras

Every R-coalgebra (C, Ac,éc) has a dual R-algebra, namely C* with multiplication
the convolution product

v C* @p C*5(C @p C)25C,

where ¢ is the canonical R-linear mapping, and with unity element ec. If (A4, py,1,4) is
an R-algebra that is finitely generated projective as an R-module then 4* becomes an
R-coalgebra with comultiplication given by

0 ok *
1S AT (A @ ) A @p A7,

where 0:4* ®r A* — (4 @r A)* is the canonical isomorphism, and with counity
ni:A* — R. If A is not finitely generated projective then J in not surjective anymore
(and not even injective over arbitrary ground rings), hence p is not well defined
and uy includes on A* no R-coalgebra structure. However, if R is base field and we
consider the R-algebra 4 with the left (respectively the right) cofinite topology Cf ](A)
(respectively Cf"(4)), see (3.20), then the character module A° of all continuous
R-linear mappings from 4 to R is an R-coalgebra ([25, Proposition 6.0.2]). That result
was generalized in [9] to the case of Dedekind domains and in [5] to the case of
arbitrary Noetherian (hereditary) commutative rings.

In this section we consider coalgebra structures on the character module of an alge-
bra, considered with a linear topology induced from a filter basis consisting of cofinite
ideals over an arbitrary (Noetherian) ring.

3.1. Let 4 be an R-algebra and B be a filter basis consisting of R-cofinite two-sided
A-ideals. Then 9B induces on 4 a left linear topology T/(8), such that (4, T/(B)) is
a left linear topological R-algebra and ‘B is a neighborhood basis of 0,4. With

%= {/ €A [F B, such that f(I)=0} =lim_(4]I)’ (10)
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we denote the character module of all continuous R-linear mappings from 4 to R
(where R is considered as usual with the discrete topology). With the completion of
A with respect to B we mean

Ay = lim {A/I|I € B).
<

If A3 is an R-coalgebra then we call A3, the continuous dual R-coalgebra of A with
respect to ‘B.

Analogously B induces on A a right linear topology T"(*8), such that (4,%"(*8)) is
a right linear topological R-algebra and B is a neighborhood basis of 04.

Remark 3.2. Let R be Noetherian and 4 be an R-algebra. Let / be an R-cofinite left
A-ideal, say A/l = Zf,‘:l R(a; + 1), and consider the two-sided A-ideal
k
Jr=(U:a)=(U:A)CU:1)=1
i=1
Then
@r:A — Endg(4/I), aw[b+1+ ab+1]

is an R-algebra morphism with Ker(¢;)=J;, i.e. J; is an R-cofinite A-ideal.
Analogously one can show that every R-cofinite right 4-ideal contains an R-cofinite
two-sided A-ideal. [l

The following result extends [5, 1.11] and [4, Remark 2.14]:

Theorem 3.3. Let R be Noetherian and A an R-algebra. If C C A° is an A-subbimodule
under the regular A-actions in (6) and P := (A4, C) then the following statements are
equivalent:

rC is locally projective and kp(4A) C C* is dense;

rC satisfies the o-condition and kp(A) C C* is dense;
(4,C) is an o-pairing,;

C C R* is pure (in the sense of Cohn);

C is an R-coalgebra and (4,C) € P,

If R is a QF Ring then “1-4” are equivalent to

6. rC is projective.

AIEIR A

Proof. The equivalences (1) if and only if (2) and (3) if and only if (4) follow from
[2, Lemma 2.12, Proposition 2.5 (3)].

(2) = (3) follows from [2, Proposition 2.4 (2)].

(4) = (5) If C C R is pure then by [5, 1.11] C is an R-coalgebra. It follows
moreover for all /'€ C and arbitrary a,a € 4 that

kp(a@)(f) = f(a@) = Y fi(a)2(@) = (kp(@)2xp@)AS))
= (kp(a)xkp(a))(f)

and

kp(LO() = f(L) = ec(f) for all feC.
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So kp:A — C* is an R-algebra morphism, i.e. P € %,. By [2, Proposition 2.5] P
satisfies the a-condition, hence P € 2.

(5) = (2) follows from Theorem 2.6.

Let R be a QF ring.

(2) = (6) follows from Remark 1.6.

(6) = (2) If rC is projective then C satisfies the a-condition by [2,
Proposition 2.14 (5)]. Consider the R-submodule xp(4) C C*. By [2, Theorem 1.8
(1)] we have

1cp(4) := AnKe(p(4)) = An(41) = An(0¢) = C*,

ie. kp(4) C C* is dense. [

Definition 3.4. An R-algebra A4 is said to satisfy the a-condition or to be an o-algebra,
if the class 2 of all R-cofinite A-ideals is a filter and the induced R-pairing (4,A4°)
satisfies the a-condition (in case R is Noetherian this is equivalent to the purity of 4° C
R1). An R-coalgebra C is said to satisfy the a-condition or to be an a-coalgebra, if the
R-pairing (C*,C) satisfies the a-condition (equivalently, if xC is locally projective).
With Alg, we denote the category of R-algebras and with Alg; C Alg, the full subcat-
egory of o-algebras. Analogously, we denote with Cog, the category of R-coalgebras
and with Cogy C Cogj, the full subcategory of a-coalgebras.

Remark 3.5. Let R be Noetherian and 4 be an a-algebra. Then there is obviously a
1-1 correspondence

{P=(4,C)|Pe?,} < {C|C C A° is an R-subcoalgebra}.
Lemma 3.6.

1. If C, D are R-coalgebras and 0 : D — C is an R-coalgebra morphism then
0*:C* — D* is an R-algebra morphism and
(07,0):(D*,D) — (C*,C)

is a morphism in 2,,.
2. Let R be Noetherian, A, B be a-algebras and &:A — B be an R-algebra morphism.
Then we have a morphism in 2.

(€)1 (B,B°) — (4,4°).
Proof.

1. Trivial.

2. If f € B° then there exists an R-cofinite B-ideal /< B, such that f € (B/I)*. By as-
sumption R is Noetherian and so ¢~!(7) C 4 is an R-cofinite A-ideal, i.e. £°(f) € A°
and we get a morphism of R-pairings

(6.8°) 1 (B,B%) = (4.4°).
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By assumption & is an R-algebra morphism. Moreover the canonical R-linear
mapping A° @z A° — (4 ®gr A)* is by [2, Corollary 2.8 (1)] an embedding, hence
£°:B° — A° is an R-coalgebra morphism by Lemma 2.2 (1). [

Lemma 3.7. Let R be Noetherian, B an a-algebra and consider the o-pairing (B, B°).
If A C B is an a-subalgebra with 13 € A then A+ := An(4) N B° is a B°-coideal.

Proof. The embedding 24 : 4 — B is an R-algebra morphism and so 23 :B° — A4°
is by Lemma 2.2 (1) an R-coalgebra morphism. Hence 4+ := Ker(:3) C B° is a
B°-coideal. [

The following result follows directly from Propositions 2.18, 2.19 Lemma 3.6 and
[2, Theorem 1.8]:

Corollary 3.8. Let R be a QF Ring, A be an a-algebra, P := (4,A°) and consider A
with the linear weak topology A[%s(4°)]. Let I C A be a closed R-submodule and set
I+ = An(I)NA°. Then I is a right (respectively a left) A-ideal if and only if I+ is
a right (respectively a left) A°-coideal. Moreover I C A is a two-sided A-ideal (and
I+ C A4° is pure) if and only if I+ C A° is an A°-bicoideal (an R-subcoalgebra).

The convolution coalgebra

Dual to the convolution algebra, Radford presented in [23] the so called convolu-
tion coalgebra in the case of base fields. Over arbitrary Noetherian ground rings the
following version of his definition makes sense:

3.9. Let R be Noetherian. If C is an R-coalgebra and A is an «-algebra then we call
AxC := A° ®g C the convolution coalgebra of A and C. In the special case C =R we
have AxR ~ A°.

The following result generalizes results of Radford [23] on the convolution coalgebra
from the case of base fields to the case of arbitrary Noetherian ground rings:

3.10. Let R be Noetherian, C be a locally projective R-coalgebra and 4 be an o-
algebra. It is easy to see then that P := (4 ®z C*,4xC) is a measuring R-pairing,
which satisfies the o-condition by [2, Lemma 2.8]. By [28, p. 515] the following
mappings are R-algebra morphisms:

B: Homp(C,4) — (A° @x C)*, fr=[h®c— h(f(c))]
7: A®gr C* — Homg(C,4), a® g+ [c— g(c)al.

By Corollary 2.7 (Homg(C,A4),A%C) € 27, (A ®r C*) C Homg(C,A) is dense (with
respect to the left C-adic topology) and we get category isomorphisms

MA*C ~ RatA*C(A@)RC*%) = 0lugpcr (AxC)]
~ RatA*C((A*C)* %) = J[(A*C)* (A*C)]

~ Rat"™ (omp(c.t)# ) = 0lHomp(cay(A*C)].
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Proposition 3.11. If R is Noetherian then we have bifunctors
— %— : Algy x Cogp — Cogp, and — x— : Algy x Cogy — Cogy. (1)

Proof. Let 4 € Alg;. Then A4° is by Theorem 3.3 a locally projective R-coalgebra (i.e.
an a-coalgebra). If C is a (locally projective) R-coalgebra then AxC := A° ®z C is a
(locally projective) R-coalgebra by [2, Lemma 2.8]). One can see that (11) describes
bifunctors by arguments parallel to those of [22]. [J

Continuous dual coalgebras

Definition 3.12. Let 4 be an R-algebra, #; be the class of all R-cofinite A-ideals
and

&4 = {I<A|A/I is finitely generated projective}.
For every subclass § C 7 set

g =1/e€d*|f)=0 for some [ € F}.

1. We call a filter § = {I,} 1 consisting of R-cofinite A-ideals:

an o-filter, if the R-pairing (4,A43) satisfies the a-condition;

cofinitary, if FN &, is a filter basis of F;

cofinitely R-cogenerated, if A/I is R-cogenerated for every I € §.
2. We call 4:

an a-algebra, if Ay is an o-filter;

cofinitary, if Ay is a cofinitary filter;

cofinitely R-cogenerated, if A/l is R-cogenerated for every I € /.

Definition 3.13 ([26]). An R-coalgebra C is called infinitesimal flat, if C = limC, for
—
a directed system of finitely generated projective R-subcoalgebras {C;} ..

Proposition 3.14. Let A be an R-algebra, § be a filter consisting of R-cofinite A-
ideals, P := (4,A%) and consider A as a left (respectively a right) linear topological
R-algebra with the induced topology Z(F).

1. Assume § to be cofinitely R-cogenerated. Then () is Hausdorff if and only if
kp:A — A%o is an embedding.

2. Assume R to be Noetherian and § to be an o-filter. Then A3 is an a-coalgebra,
(4,43) € Z,, and kp(A) C A%. is dense with respect to the finite topology.

3. If A/l is R-reflexive for every I €F, e.g. R is an injective cogenerator then A~ A%,
as left (respectively as right) linear topological R-modules.
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Proof.

1. By assumption 4/I is R-cogenerated for every / € §, hence

04=)1=()KeAn(/) =Ke <Z An([)) =Ke(43) = Ke(xp).

1€3 1€¥ VASK

2. Every I € § is a two-sided A4-ideal and so A% C A° is an A-subbimodule. The result
follows then from Theorem 3.3.

3. If A/I is R-reflexive for every [ € F then we have isomorphisms of topological
R-modules

A=1lim A/l ~ lim (A/I)"™* ~ (lim (A/I)")"=: (43)".
-3 -3 -3

If R is an injective cogenerator then all finitely generated R-modules are R-reflexive
(e.g. [31, 48.13]) and we are done. []

The following result extends observations in [16] (respectively [4]) on cofinitary al-
gebras over Dedekind domains (respectively Noetherian rings) to the case of cofinitary
filters for algebras over arbitrary commutative base rings:

Proposition 3.15. Let A be an R-algebra, § be a filter consisting of R-cofinite A-
ideals, P := (4,A3) and consider A as a left (respectively as a right) linear topological
R-algebra with the induced left (respectively right) linear topology %(§). If § is
cofinitary then

1. () is Hausdorff if and only if kp:A — A%. is an embedding.
2. A3 is an infinitesimal flat o-coalgebra, P € Z; and xp(A) C Ay, is dense.
3. A~ A%o as left (respectively as right) linear topological R-algebras.

Proof.

1. For every I € &4 the R-module A/l is in particular R-cogenerated and the result
follows from Proposition 3.14 (1).

2. For I,J € §N&y set I < J if I O J and consider the canonical R-algebra epimorphism
nyy : AJJ — A/I. Then

A/ g DIl eFNEqmy, (A1) — (AT)"}
is a directed system of finitely generated projective R-coalgebras with R-coalgebra
morphisms 77, : (4/I)* — (4/J)". Then A3 = A3, =~ lim (4/I)* is an in-
E} U - — ‘A

3né
finitesimal flat R-coalgebra.
Let M be an arbitrary R-module. If ZL m; ®¢; € Ker(od,) then there exists / € §N
&4, such that {gi1,...,9,} C An(1). If {(a; + L f1)}%_, is a dual basis for (4/I)*
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then

n n k
S mea—S me (z e +I)f1>
i=1 i=1

=1

n k
=Zﬁ@<2@mm>

i=1 =1
= Z (Z gi(a/)mi> ® f1=0.

I=1 i=1

Obviously the canonical R-linear mapping kp:A4 — A%. is an R-algebra morphism,
i.e. P is a measuring o-pairing. The density of xp(4) C A%, follows then by
Theorem 3.3.

3. For every I € §N &, the R-module A/ is finitely generated projective, hence (A/I)*
is an R-coalgebra and (A/1)** ~ A/I as R-algebras. So we have an isomorphisms
of topological R-algebras

A=1lim A/l ~ lim
< &'ﬂéA <

(A = (lim (A1) = (lim(A[1)" )" = (43)".
— FNé&y —

FNé.
! 5

[l
As a consequence of Propositions 3.14, 3.15 and Theorem 2.6 we get
Corollary 3.16. Let A be an R-algebra and § be a filter consisting of R-cofinite

A-ideals. If R is Noetherian and § is an a-filter, or if § is cofinitary, then we have
isomorphisms of categories

M5~ Rat's(u) = o[443] g
~ RatS(p,.l) = ol A3] v
B~ BRat(y) = olA34]
~ “SRat(My,) = o[, ]

3.17. Let A,B be R-algebras, §,4, §p be filter bases consisting of R-cofinite 4-ideals,
B-ideals respectively and

T4 x8p = {IIII(Z] X ldB) —+ Im(sz X ’LJ)|I€SA,J GSB}- (12)
Obviously §4 x §p is a filter basis consisting of R-cofinite 4 ®z B-ideals and induces

so a linear topology %($4 X ) on 4 ®g B, such that (4 ®z B, %(F4 X §5)) is a linear
topological R-algebra and §4 x §p is a neighborhood basis of 04g,5.
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One can generalize [4, Proposition 4.9, Theorem 4.10] to obtain

Theorem 3.18. Let A, B be R-algebras, §4, §p be filters consisting of R-cofinite A-deals,
B-ideals respectively and consider the canonical R-linear mapping 6:A4* Qg B* —
(4 ®g B)*.

1. If §4 and §p are cofinitary then the filter of A @ B-ideals generated by §4 X §p is
cofinitary and (A @r B)3 5, is an R-coalgebra. If R is Noetherian then 6 induces
an R-coalgebra isomorphism

A%A @r B%E >~ (4 ®r B)%A X8p*
2. Let R be Noetherian. If §4 is an o-filter and §p is cofinitary then the filter

generated by §4 x §p is an a-filter, (AQrB)3 5, is an R-coalgebra and o induces
an R-coalgebra isomorphism

A%A Or B%B =~ (4 g B)%A X8p*
Theorem 3.19. Let R be hereditary and Noetherian.

1. All R-algebras satisfy the o-condition, i.e. Algy = Algp.
2. There is a duality between Alg, and Cogy through the right-adjoint contravariant
Sfunctors

(=) : Cogg — Algg, (—)° : Algy — Cogy.
Proof.

1. Let 4 be an arbitrary R-algebra. By [5, Proposition 2.11] 4° C R* is pure and so
(4,A4°) is an wa-pairing by [2, Proposition 2.5].

2. For every R-algebra A the canonical mapping A4 :4 — A°™ is an R-algebra morphism
and for every R-coalgebra C the canonical mapping @¢ : C — C*° is an R-coalgebra
morphism (compare Lemma 3.6). Moreover for every 4 € Alg, and every C € Cog,

Yyc: Algp(4,C*) — Cogp(C,A4°), & E°%0 D¢
is an isomorphism with inverse
Yyc: Cogp(C,A°) — Algg(4,C*), O 0% oAy

It is easy to see that 7y ¢ and ¥, ¢ are functorial in 4 and C. [
Locally finite modules

3.20. The cofinite topology. Let R be Noetherian. For every R-algebra 4, the class
Al (resp. A7) of all R-cofinite left (respectively right) A-ideals is a filter basis. By
Remark 3.2 every /€ #] (resp. I € #]) contains a two-sided A-ideal J;, such that
Jr C1I. So ,%/A/ (resp. ) induces on A a symmetric left (respectively right) linear
topology, the so called left cofinite topology Cf'(4) (respectively right cofinite topol-
ogy Cf"(A4)), such that #; (resp. #7) is neighborhood basis of 04. If 4° := Ai{;’ :A}A-,
is an R-coalgebra then we call it the continuous dual R-coalgebra of A.
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Consider 4 with the left cofinite topology Cf'(4). Let M be a left A-module and
consider the filter 43, of all R-cofinite A-submodules of M. Let L C M be an R-cofinite
A-submodule and consider the R-linear mapping

¢r:A — Endr(M/L),a — [m + L — am + L].
Then A/Ker(¢p;) < Endg(M/L) and so
I, :=Ker(p,)={aecdlaM C L}

is an R-cofinite two-sided A4-ideal. If m € M is arbitrary then I, := (L : M) C (L : m),
hence (L : m) is open with respect to the left cofinite topology Cf !(4). So M becomes
a topology, the so called cofinite topology Cf(M), such that (M,Cf(M)) is a linear
topological left (4, Cf'(4))-module and 7, is a neighborhood basis of 0.

Considering A with the right cofinite topology Cf"(4) it turns out that for every
right 4-module M, the filter of R-cofinite right 4-submodules of M induces on M a
topology, the cofinite topology Cf(M), such that (M,Cf(M)) is a linear topological
right (4, Cf"(4))-module.

3.21. Let R be Noectherian and A4 be an R-algebra. A left 4-module M is called
locally finite, if Am is finitely generated for every m € M. For every left 4-module
M it follows that Loc(M) C M is an A-submodule (since the ground ring R is Noethe-
rian) and we get a preradical

Loc(—): g4ll — 4 M, M — {meEM|Am is finitely generated in .4}

with pretorsion class Loc(y4.#) C 4.4, the full subcategory of locally finite left
A-modules.

Analogously one defines the preradical Loc(—) : .#4 — #4 with pretorsion class
Loc(4y) C My, the full subcategory of locally finite right 4-modules.

Lemma 3.22. Let R be Noetherian and A be an R-algebra. For every right A-module
M we have

M°:={feM*| f(MI)=0 for some R-cofinite (right) A-ideal I C A}
={feM"|Af is finitely generated in M} (=Loc(4M™))
={feM”| f(L)=0 for some R-co finite right A-submodule
LC M} (13)
Proof. Let /€ M* with f(MI)=0 for an R-cofinite right A-ideal I. If {a;+1,...,a;+1}
is a generating system for 4/I over R then {a;f,...,a;f} is a generating system for
Af over R, ie. f €Loc(4M™).
Let f €Loc(4M*) and assume that 4f = ZleRf,- with {f1,..., fx} € M*. Then

L = Ke(4f) = ﬂf;l Ker(f;) € M is a right A-submodule and moreover
M/L — EBf.‘:]M/Ker(ﬁ), i.e. L C M is an R-cofinite A-submodule.
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Let fe(M/L)* ~ An(L) for some R-cofinite 4-submodule L C M. Then [, :

(L : M) is an R-cofinite two-sided A-ideal (compare 3.20) and moreover f(Mi;) C
f(L)=0,1e femM°. O

It is well known that for an R-algebra A4 over a base field R, the category of

right (respectively left) 4°-comodules and the category of locally finite left (respec-
tively right) A-modules coincide, e.g. [1,28]. Over arbitrary commutative rings
we have

Proposition 3.23. Let R be Noetherian and A be an R-algebra.

1.

Every A°-subgenerated left (respectively right) A-module is locally finite.

2. If 4 is cofinitely R-cogenerated then o[4A°] = Loc(4.#) and o[A5] = Loc(.4y).
3. If A is an a-algebra then we have category isomorphisms

M~ Rat () =c[44°]
) and
~ RatA (Ao*gﬂ) :O_[AO*AO]
Y~ Rat(y)  =o[A]

. (14)
P Rat(Myo-) =06[A%].

R

If A is moreover cofinitely R-cogenerated then

MY~ Loc(y M) and "M ~ Loc(My).

Proof.

1.

Let M € g[4A4°]. Then there exists for every m € M a finite subset W={f1,..., fi} C
A°, such that Annﬁl(W) C (03 : m). Choose for every i = 1,...,k an R-cofinite
A-ideal J; C Ke(f;) and consider the R-cofinite A-ideal J := ﬂf;l Ji. If ae€J then
for every acA4 and i = 1,...,k we have (¢ — f;)(a) = fi(aa) = 0. Consequently
J C Ann!, (W) C (04 : m) and so Am ~ A/(0y : m) is finitely generated in ./.
Hence 4M is locally finite.

. By (1) 0[44°] € Loc(4.#). Assume now that 4 is cofinitely R-cogenerated. Let N

be a locally finite left A-module. For every n€ N the R-module 4/(Oy : n) ~ An
is finitely generated and so there exists by Remark 3.2 an R-cofinite 4-ideal I C
(Oy : n). By assumption 4/ is R-cogenerated and so / =KeAn(/) (e.g. [31, 28.1]).
If An(l) ~ (4/1)* = Zf.‘legi and W := {gi,...,9x} then it follows for every
a € Ann! (W) that g;(a)=(a — ¢;)(14)=0. So Ann/, (W) C KeAn(I)=1 C (Oy : n),
i.e. 4N is A°-subgenerated.

. The category isomorphisms (14) follow from Theorem 2.6. The last statement

follows then from (2). [
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4. Dual comodules

In this section we discuss for every (4,C) € 2% the duality between the category
of right (respectively left) 4-modules and the category of right (respectively left)
C-comodules.

4.1. Let P =(4,C)€ Z,. By Theorem 2.6 .#€ C 4.4 is a subcategory and so we
have a contravariant functor

(_)>’< :ﬂC%%A, (NaQN)H(N*apN*)a (15)
where

py+ : N* — Homg(4,N*), [+ {a — {n — Zf(n<0>)<a,n<1>>ﬂ . (16)

If moreover P satisfies the a-condition then we get by Theorem 2.6 the contravariant
functor
(=Y : oty — MM — M" = RatC(,M*).

If M, M are right A-modules and f € Homy,_ (M, M) then f* € Hom_ A(M* M*) and
we denote with f” € HomC(M ",M") the restriction of f* to M" C M* (see Lemma 2.5
(4) and Theorem 2.6). For every right A-module M we call M" the dual C-comodule
of M with respect to P.

4.2. ([8]) Let gC be a flat R-coalgebra, N be a left C-comodule and consider the
R-linear mapping

7:N* = Homg(N,C), f s [n 3 S |- (17)

If gN is finitely presented then N* @ C ~ Homg(N,C) (e.g. [30, 15.7]) and N*
becomes a structure of a right C-comodule through

om+ : N*Homg(N, C) ~ N* @z C. (18)
If N€.#€ and Ny is finitely presented then N* is analogously a left C-comodule.

Theorem 4.3. For every (4,C) € 2} there is a duality between the category of right
C-comodules and the category of right A-modules through the right adjoint
contravariant functors

(=) MC — My and (=) My — ME.

Proof. For every right C-comodule N the canonical mapping @y : N — N** is A-linear,
hence @y(N) C N* by Lemma 2.5 (4) and it follows by Theorem 2.6 that @y : N —
N*" is C-colinear. On the other hand, for every right 4-module M the canonical
mapping Ay : M — M’™ is A-linear. It is easy to see then that we have functorial
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homomorphisms (in M € .4, and N € ./°)
Twar: Hom_4(M,N*) — Hom (N,M"), f+s f" o dy,

Y Hom®(N,M") — Hom_4,(M,N*), g+ g* o ly.

Moreover Ty is bijective with inverse Yy . [

Notation. For every R-algebra 4 denote with .# /‘( (respectively 4.4 ) the category of
finitely generated right (respectively left) A-modules.

Lemma 4.4. Let R be Noetherian. For every (A,C) € 2P} there is a duality between
Rat€ (.47 and CRat(:/%/{ ) through the right-adjoint contravariant functors

(—)* : “Rat(.#]) — Rat“ (") and (—)* :Rat®(.a') — “Rat(u]).

Proof. Let M € Rat(.#]) (respectively M € Rat®(4.4/)). By [3, Folgerung 2.2.24]
every finitely generated C-rational left (respectively right) 4-module is finitely gener-
ated over R, hence My is finitely generated and so 4M™ (respectively M) is finitely
generated. By assumption R is Noetherian and so zM is finitely presented. Conse-
quently M* is by 4.2 a C-rational left (respectively right) 4-module. The claimed
duality follows then from Theorem 4.3. [J

4.5. If C is a locally projective R-coalgebra then we get by Theorem 4.3 right-adjoint
contravariant functors

(=) M€ — Mc-, N~ N*,
(N e — €, M~ M- = RatC(c-M™).
Lemma 4.6. Let R be an injective cogenerator and C be a locally projective R-

coalgebra. If M a right C*-module, L C M is a C*-submodule and MY C M* is
dense then - C L* is dense.

Proof. By Lemma 2.5 (4) - ZZ(MD) - M and it follows from [2, Proposition 1.10
(3.b)] that of (M) = (M) = (M) =L*. O

Takeuchi [29] studied the category of locally finite modules of a commutative algebra
over a base field. In what follows we transfer some results obtained by him to the
category Rat®(,.#) corresponding to a measuring «-pairing P = (4,C) € Pr with 4 a
commutative algebra over an arbitrary commutative ground ring.

Proposition 4.7. Let P=(A4,C) e 2} with A commutative and denote with ./ Af C Ay
the full subcategory of finitely generated A-(bi)modules. Then we have an isomorphism
of functors

Homy(—,C) ~(—)": %Af — WC.
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Proof. Step 1: HomA(f,C):z/%Af — € is well-defined.

Let M EQW/{ be arbitrary and consider Homy(M, C) with the canonical A-module
structure induced by My. For arbitrary f € Hom,(M,C) the A-subbimodule N :=
f(M) C C is by Theorem 2.6 a C-bicoideal. Moreover N is finitely generated and so
finitely generated in .4y (see [3, Folgerung 2.2.24]). Assume that N = Zle Rc; with

Ae)) =" e, @@ for every i=1,...,k and set K := S| Z]l.":chij. Then K+ C

j=1
(0: f) and so f is by Proposition 2.11 C-rational. By our choice f € Homy(M,C) is

arbitrary, i.e. Homy(M, C) € RatC(,.4).

Step 2: (=) ~ Homy(—,C).

Let N € #4€, M € .4, and consider the C-comodule Hom,(M, C ). The result follows
then from the functorial isomorphisms:

Hom® (N, Hom (M, C)) = Hom,(N, Hom,(M, C)) (Theorem 2.6)
~ Homy(M, Hom4(N, C))
~ Hom (M, Hom (N, C)) (Theorem 2.6)
~Homy(M,N*) (5)
~Hom(N,M") (Theorem 4.3). [

As a consequence of Proposition 4.7 we get

Corollary 4.8.
1. Let R be Noetherian, A be an o-algebra and consider the functor
(=) =Rat’ (=)o (=) :dly — M*, M+ M°:=Rat" (;M*)
If A is commutative then we have a functorial isomorphism
Hom(—,4°) ~ (=) : ] — ™.

2. If C is a cocommutative locally projective R-coalgebra then we have a functorial
isomorphism

Home (=, C) ~ (=) k. — 4C.

Corollary 4.9. Let P=(A,C) € 2}, where A is commutative and Noetherian. If (—)":
,/%Af — a[4C] is exact then C is an injective A-module.

Proof. By Baer’s criteria (e.g. [31, 16.4]) it is enough to show that C is A-injective.
Let / be an A-ideal. Then I, is finitely generated and by assumption the following set
mapping is surjective

ey )
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By Proposition 4.7 Homy(—,C) ~ (—)" and so
Hom(4, C)"“S'Hom (1, C) — 0

is a surjective set mapping, i.e. C is A-injective and we are done. [

Continuous dual comodules

In what follows we consider the dual comodules of modules of an a-algebra over
an arbitrary Noetherian base ring. These were considered in the case of base fields by
several authors (e.g. [11,18,19,29]) and in the case of Dedekind domains by R. Larson
[16].

4.10. Let R be Noetherian, 4 be an R-algebra, § be a filter consisting of R-cofinite
A-ideals and consider 4 with the induced right linear topology <(§).

1. If § is an a-filter then by Proposition 3.14 (2) 43 is an R-coalgebra and (4,43) € Z;.
By Theorem 4.3 we get right-adjoint contravarlant functors

(=) M = My, M M,

()i g — M5, M s MY = Rat's (;M*).

For every M € ./, we call M§ the dual comodule of M with respect to §. If 4 is

a o-algebra then we call M0 = RatAO(AM *) the dual comodule of M.
2. For every right 4-module M we call

Mg :={feM"|f(MI)=0 for some / € §} = lijn(M/M[)*
3
the continuous dual module of M with respect to §. If A3 is an R-coalgebra and
Mg is a right A3-comodule then we call it the continuous dual comodule of M with
respect to §. If A° is a R-coalgebra and M° is a right 4°-comodule, then we call
it the continuous dual comodule of M.

Notation. Let R be Noectherian, 4 be an («)-algebra and M, N be right 4-modules. For
every A-linear mapping 7: M — N we denote with 7°:N° — M° (77 : NO — M) the
restriction of 7* on N° (on N?).

The following result generalizes the corresponding one [10, Corollary 2.2.16] stated
for the canonical pairing (C*,C) over a base field to an arbitrary measuring o-pairing
(4,C) over an arbitrary Noetherian ground ring:

Proposition 4.11. Let P=(4,C) e 2
the R-linear mapping

0p:N—C 0pn)=> ni1yf(no

N € “Rat(#,) and consider for every f €N*

m>
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If R is Noetherian then:
Rat“(4N*) = Sp(c[4CL.uN") := Y Im(g): g € Hom, (U,N*), U € o[4C]
={f EN*|ASf is finitely generated} (=Loc(4N™*))
={f €N*|3 an R-cofinite (right) ideal 1 C A with f(NI)=0}
={f €N*|3 an R-cofinite A-submodule L C N with f(L)=0}
={f €N*|3 an R-cofinite C-subcomodule L C N with f(L)=0}

={feN*|0s(N) C C is a finitely generated R-submodule}.
Proof. The equality Rat®(,N*)=Sp(a[4C], +N*) follows from 2.3 and Theorem 2.6.
Obviously Rat®(,N*) C Loc(4N*).

By Theorem 2.6 and Lemma 3.22 f € Loc(4N*) if and only if f(NI)=0 for an
R-cofinite (right) ideal /<4 if and only if f(L)=0 for an R-cofinite right 4-submodule
L C N if and only if f(L)=0 for an R-cofinite left C-subcomodule L C N.

Let f € N* with f(L)=0 for an R-cofinite left C-subcomodule L C N. Analogous
to 5.2 in the next section, 0,:N — C is C-colinear. Notice that 0,(L) =0 and so
there exists a C-colinear morphism 0 : N/L — C, such that 0, on; =0,. Consequently
0p(N)= W(N/L) is finitely generated in .#x.

To every f €N there corresponds the left C-coideal 0,(N) C C. If 0,(N) is
finitely generated in .4z then (6,(N))* is a right C-comodule by 4.2 and we have for
every n€ N:

sc(0rm) =zc (3 fopny) = £ (D et ) = ),
ie. f€(07(N))* CRat“(4N*). O
As a special case of Proposition 4.11 we get

Corollary 4.12. Let R be Noetherian. For every locally projective R-coalgebra C we
have

Rat®(c«C*)
=Sp(0lc-Cl.c-C*) := Y _Im(g) : g € Homc-_(U,C*), U € o[c-C]
={f e C*|C*xf is finitely generated in My}
={f € C*|3 an R-cofinite (right) ideal 1< C* with f(CI)=0}
={f € C*|3 an R-cofinite right C*-submodule K C C with f(K)=0}
={f€C*|3 an R-cofinite left C-coideal K C C with f(K)=0}
={feC*|f — CCC is a finitely generated R-submodule}.
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4.13. Cofree comodules. A right C-comodule (M, gy,) is called cofree, if there exists
an R-module K, such that (M, gy/) ~ (K Qg C,idgx ® A¢) as right C-comodules. Notice
that if K = R, a free R-module then M ~ R/ @, C ~ C“) as right C-comodules
(in fact, this is one reason for the terminology cofree).

Lemma 4.14. Let R be Noetherian and A be a cofinitary R-algebra. Let M be an
R-module and consider the right A-module N := M Qi A. Then N° ~ M™* @z A° as
A°-comodules (i.e. N° is a cofree right A°-comodule).

Proof. If N ~ M ®z A as right A-modules then there are isomorphisms in 4.#:
N®:= lZn[((M QrA)/(M @p A1 €A,

= lim[((M ®r A)/(M @ A1 1€& (A is cofinitary)

= lim[(M @g A)/(M @r1))'] : 1€ 6,

= lim[(M @p A/ 1€é,

~ lim{[M" @ (A1)} :1€&4 (A/] is f.g. projective in .#g);
~ M* ®p 1@[(/1/7)*] 1eé,

~ M* ®g A° (A4 is cofinitary). [J

In contrast with [32, Corollary 2] the following example shows that for an arbitrary
R-algebra A the preradical Loc(—) : 4.4 — Loc(4.#) is in general not a torsion radical:

Counter Example 4.15 (Compare [21, p. 155]). Let R be a field and consider the Hopf
R-algebra H := R[xy,X2,...,X,,...], with the usual multiplication in polynomial rings,
the usual unity and comultiplication, counity and antipode defined on the generators
through
Ax)=1@xi+x®1, &x)=0, S&'):=(—1)x"

If we consider H with the left cofinite topology then (H,Cf'(H)) is a left linear
topological R-algebra with preradical Loc(—) : y.# — py.# and pretorsion class
Loc(y.#) (see 3.20 and Proposition 3.23). If we consider the H-ideal w := Ke(gy ) then
Hjw ~ R while dim(H/w?) = oo, i.e. @* & Aj. So Cf'(H) is not a Gabriel-topology
and consequently Loc(y.#) is not closed under extensions (see [24, Chapter VI,
Theorem 5.1, Lemma 5.3]).

5. Coreflexive comodules

In [27,28] Taft developed an algebraic aspect to the study of coreflexive coalgebras
over base fields (i.e. coalgebras C with C ~ C*°). Independently, Heyneman and
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Radford [23,12] studied coreflexive coalgebras with the help of the finite topology
on C*. In this section we present and study for every (4,C)€ 2% over an arbitrary
Noectherian ring the notions of reflexive A-modules and coreflexive C-comodules. We
get algebraic as well as topological characterizations for (co)reflexive (co)modules.
Our results will be applied then to the study of (co)reflexive (co)algebras, where we
generalize also results from the papers mentioned above and from [32].

(4, C)-Pairings

In the case of base fields, Radford [23] presented for every measuring R-pairing
P = (4,C) the so called right (respectively left) P-pairings. In what follows we
consider duality relations for such pairings.

51. Let P = (4,C)e #,. A pairing of R-modules Q = (M,N) is called a right
(respectively a left) P-pairing, if M is a right (respectively a left) 4-module, N is
a right (respectively a left) C-comodule and the induced mapping xp:M — N* is
right A-linear. By 2, C 2 (respectively 2} C #) we denote the subcategory of right
(respectively left) P-pairings with morphisms described as follows: for right (respec-
tively left) P-pairings (M,N), (M’,N’), a morphism of R-pairings

(&0):(M',N")y = (M,N)

is a morphism in 25 (respectively in 25) if ¢:M — M’ is A-Linear and 0:N' — N
is C-colinear.

A P-bi-pairing is an R-pairing (M,N), where M is an A-bimodule, N is a C-
bicomodule and kp:M — N* is A-bilinear. With Zp we denote the category of
P-bi-pairings with morphisms described as follows: for P-bi-pairings (M,N), (M',N"),
a morphism of R-pairings

(&0):(M',N") = (M,N)

is a morphism in 2p if £:M — M’ is A-bilinear and 6: N’ — N is C-bicolinear. In
particular every measuring R-pairing P is itself a P-bi-pairing.

52. Let P=(4,C)e Py, Q= (M,N)€ 2, and define for every m e M:

i A= M, a— ma for all a€ 4,

O0p: N—C, n— Z(m,n<0>>n<1> for all n€N.
Then we have for all a€ 4 and n€ N:

(&n(a),n) = (ma,n) = (m,an) = Z(m,n<0>>(a,n<1>> = (a, 0,,(n)).
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Obviously &,,:4 — M is A-linear. Moreover, it follows for all n€ N and a € A that
i (32 0001 @ 0,12 ) (@)=Y Oum)1{a, O()2)
=a— 0,,,(71)

= {mn))(a—ng)
= Z(m,n<0>>n<1>1<a,n<1>2)
= {mngy o) moyy (angy)

= o (Z Om(ngo)) ® n<1>> ().
If o : N ®@r C — Homg(4,N) is injective then
Z 0n(n) @ 0,(n)y = Z On(nggy) @ ngy  for every n€N,
ie. 0, : N — C is C-colinear and
(&> 0):(M,N) — (4,C)

is a morphism in 2.

Notation. Let P=(4,C)c€ Z#,, and Q=(M,N) € 2;. For R-submodules L C M, K C N
we set

K+ :={meM|(mK)=0}, Anny(K):={meM|0,(k)=0VkecK},
LY = {neN|(Ln)y=0},  Anny(L):= {n€N|0,,(n)=0 VmeL}.

As a consequence of Theorem 2.6 one can easily derive the following result:
Lemma 5.3. Let P=(4,C)e P, and Q=(M,N) € 2}, (respectively Q € ,@}’,, Q€ 9p).

1. Every right C-subcomodule (respectively left C-subcomodule, C-subbicomodule)
K C N is a left A-submodule (respectively a right A-submodule, an A-subbimodule)
and K+ C M is a right A-submodule (respectively a left A-submodule, an A-
subbimodule).

2. Let (4,C)e 2. If L C M a right A-submodule (respectively a left A-submodule,
an A-subbimodule) then L+ C N is a right C-subcomodule (respectively a left
C-subcomodule, a C-subbicomodule).

The topology <7 (M)

Let P = (A4,C) be a measuring R-pairing and consider 4 as a right linear topo-
logical R-algebra with the right C-adic topology J_c(4). For every Q = (M,N)€ 2,
we present on M a topology T)(M), such that (M, (M)) is a linear topological
(4, 7_c(A4))-module.
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54. Let P=(4,C)e Py, Q= (M, N)c 2, and consider C with the canonical right
A-module structure and A as a right linear topological R-algebra with the right C-adic
topology 7_¢(A4) (compare 2.3). If K C N is an R-submodule and m € Anny,(K) then
we have for arbitrary n € K and a € 4:

Ona(n) :=Y_ (ma, niy)ny)
=S tmangyngy
= > {mngy0)) @m0y ) )ngy
= > (mng) (@ nay)ngy
= [(fx’c’ o AZP) (Z <M»n<o>>”<1>)} (@)

= [(a¢ 0 AZPY(On(n)))(a) =0,

i.e. Anny(K) C M is an A-submodule. Let K = 25:1 Rn; C N be an arbitrary finitely

generated R-submodule with oy(n;) = Zjlf':l nij @ cy for i=1,...,1 and set W :=

Zle Zjl.’zl Rcij. Let me M be arbitrary. If a € Ann/y(W) then for i=1,...,[:

ol

M-~

Hma(ni) =

(ma,nij)ci;

1 1

I§
~.
I

(m,anj;)c;;

I
—~
&
3
<
O
S~
—~
kS
3
<
=
0
<

i=1 j=1 ¢

(m,n;j)(cij — a) =0,

ie. (Anny(K) : m) O Ann, (W) and so it is open with respect to the right C-adic
topology 7 _c(4). So

$(0yr) := {Anny(K)|K C N is a finitely generated R-submodule}

is neighborhood basis of 0), consisting of A-submodules of M and M becomes a
topology 3 (M), such that (M, %), (M)) is a linear topological right (4,7 _c(4))-
module.
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Remark 5.5. Let P =(4,C) be a measuring R-pairing. Considering P itself as a right
P-pairing, it turns out that the right linear topology %7-(4) and the right C-adic
topology J¢_(A) coincide. In fact our definition of T (M) was motivated by that
of T¢_(A).

5.6. Let P=(4,C)€ P, and Q = (M,N )€ 2;. Then
F(0y) :={K*|K C N is a finitely generated R-submodule}

is a filter basis consisting of R-submodules of M and induces on M the linear weak
topology M[%;((N)], such that (M, M[T;s(N)]) is a linear topological R-module and
Z(0)r) is a neighborhood basis of 0.

5.7. Let R be Noetherian, P = (4,C) € #,, and consider C* with the right cofinite
topology Cf'(C*) (see 3.20). The R-algebra morphism kp:4 — C* induces on 4 a
right linear topology rp-Cf"(4) with neighborhood basis of 04:

B, (04) := {xp " (J)|J< C* is an R-cofinite right ideal}.

By definition xp-Cf"(4) the finest linear topology T on A4, such that (4,%) is a right
linear topological R-algebra and kp : (4,%) — (C*,Cf"(C*)) is continuous.

Let O =(M,N)€ 2; and consider N with the cofinite topology Cf"(N*). The 4-
linear mapping xp: M — N* induces on M a topology xo-Cf(M) with neighborhood
basis of 0y,

By (O ) := {Kél(L)|L C N* is an R-cofinite 4-submodule}.

Clearly ko-Cf(M) is a linear topological right Cf"(4)-module and is the finest topology
T on M, such that (M,%) is a linear topological right (4,Cf"(4))-module and & :
(M, %) — (N*,Cf(N*)) is continuous.

Lemma 5.8. Let P=(A4,C)e P, and Q =(M,N) € 2.

1. The linear weak topology M[Z;s(N)] and the topology ¥\ (M) coincide. So M,
considered with the linear weak topology, is a linear topological right (4,7 _c(A4))-
module.

2. If R is Noetherian and P satisfies the a-condition then

M[Z(N)] 2 ko-CE(M) =< CE(M). (19)
Proof.
1. Let U C M be a neighborhood of 0y, with respect to M[T;s(N)]. Then there exists

a finitely generated R-submodule K C N, such that K+ C U. If m € Anny(K) then
we have for arbitrary n € K:

(m,n) = <mz n<o>£c(n<1>)> =g (Z <m,n<o>>n<1>) = ¢ec(0m(n)) =0.
So Anny(K) C K+ C U, i.e. U is a neighborhood of 0, with respect to T} (M).
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On the other hand, let U C M be a neighborhood of 0, with respect to T4 (M).
Then there exists a finitely generated R-submodule K = Zle Rn; € N, such that
Anny (K) C U. Assume now that gy(n;)= Zjl.’zl ni; @ c¢;; and set W = Zle Zjl/:l
Rn;;. Then WL C Anny(K) C U, i.e. U is a neighborhood of 0, with respect to
M[%;(N)]. Consequently M[Z;(N)] =T\ (M).

. Let R be Noetherian and P € Z7%. Let U C M be a neighborhood of 03, with respect

to M[%;(N)], i.e. there exists a finitely generated R-submodule K C N such that
K+ C U. By assumption P € 2* and so there exists by the Finiteness Theorem
2.10 a left A-submodule Z( C N, such that K C K and Ky is finitely generated.
Moreover N*/An(K) < K*, i.e. An(K) C N* is an R-cofinite right 4-submodule.
It follows then that rcél(An(K)) =K+ C Kt C U, ie. U is a neighborhood of
0y with respect to xp-Cf(M).

On the otherhand, let U C M be a neighborhood of 0, with respect to xo-Cf(M),
Le. there exists an R-cofinite 4-submodule L C N* such that x, (L) C U. Then
Mk, "(L) < N*/L, and so Ko (L) € M is an R-cofinite A-submodule. Consequently
U is a neighborhood of 0, with respect to Cf(M). [J

Definition 5.9. Let P =(4,C)€ Z,, and Q =(M,N) € ;.

1.

If Pe 2 then we call Q weakly coreflexive, if N =M".

2. If R is Noetherian then we call Q coreflexive, if M[T;(N)] = Cf(M).

. We call O proper (respectively weakly reflexive, reflexive), if ko:M — N* is

injective (respectively surjective, bijective).

Definition 5.10.

1.

Let C be an R-coalgebra and N be a right C-comodule.

(a) If gC is locally projective then we call N weakly coreflexive, if N =N L,
(b) If R is Noetherian then we call N coreflexive, if N*[Z;5(N)] = Cf"(N*).

2. Let R be Noetherian and A4 be an R-algebra. We call a right 4-module M

proper (respectively weakly reflexive, reflexive), if the canonical A4-linear mapping
Ay M — M°™ is injective (respectively surjective, bijective).

Remark 5.11.

. Consider the ground ring R as a trivial R-bialgebra. Then R* ~ R, .y ~ MR

and for every R-(co-)module N we have N** = Rat®(N**) = Loc(z-N**). So N is
(co)reflexive if and only if N is reflexive in the usual sense, i.e. if the canonical
R-linear mapping @y : N — N** is bijective.

. For every P=(4,C)c Z} we have C=4" (by Corollary 2.9 (1)) and so P € 2} is

weakly coreflexive.

Proposition 5.12. Let R be Noetherian, A be an R-algebra and denote with Cf(A) the
left (or the right) cofinite topology.
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1. If A is proper, ie. the canonical mapping J.4:A — A°" is injective, then Cf(A4) is
Hausdorff.

2. Let A be cofinitely R-cogenerated. Then A is proper if and only if Cf(A) is Haus-
dorff.

3. Assume R to be a QF ring. Then A is proper if and only if Cf(A) is Hausdorff if
and only if A° C A* is dense.

Proof.

1. Obviously 0y := ﬂ/4 I C Ker(/4) and the result follows.

2. Assume Cf(A4) to be Hausdorff. If 4 is not proper then there exists some 0 # a € 4,
such that f(a) =0 for every f€A4°. If <A is an arbitrary R-cofinite two-sided
A-ideal then a € KeAn(/)=I (compare [31, 28.1]) and so ﬂj/‘ 1 # 0 (contradiction).

3. By [2, Theorem 1.8 (1)] we have

A4° = AnKe(4°) = An (Ke (Z An(l)) )

Ie;

:An<ﬂ KeAn(I)) :An(ﬂ >

1€, 1€,

So 4° C A* is dense if and only if (), /=0. [

Lemma 5.13 (Krull’s Theorem). Let A be a commutative Noetherian ring. For every
finitely generated A-module M and every A-ideal 1< A we have

ﬂ MI**" = {meM|3bel, such that m(1, —b)=0}.
k=0

The following result was obtained in [25, 6.1.3] for commutative affine algebras
over base fields:

Lemma 5.14. Let R be a QF ring and A be a commutative Noetherian R-algebra. If
every maximal A-ideal is R-cofinite then A° C A* is dense.

Proof. Let 0 # a <€ A be arbitrary and consider the A-ideal J := (0 : a). Let m < 4
be a maximal A4-ideal, such that J C m. Sine 4 is Noetherian, m, is finitely gen-
erated. If a € (2, m"™! then there exists by Krull’s Theorem some b € m, such that
a(ly — b) =0 and so 14€m (contradiction). So there exists k > 0, such that a ¢
mhtl, By assumption m C 4 is R-cofinite and it follows then from Lemma 2.14 that
mf+! C 4 is R-cofinite, ie. a ¢ ;. Since 0 # a€4 is arbitrary by our choice,
it follows that #wuyl =0, ie. 4 is proper and consequently 4° C 4" is dense by
Proposition 5.12. [

Analogous to the proof of Proposition 5.12 we get



J. Y. Abuhlail| Journal of Pure and Applied Algebra 194 (2004) 1-38 35

Proposition 5.15. Let R be Noetherian, A be an R-algebra and M be a right
A-module.

1. If M is proper then Cf(M) is Hausdorff.

2. Let M be cofinitely R-cogenerated. Then Cf(M) is Hausdorff if and only if M is
proper.

3. Assume R to be a QF ring. Then M is proper if and only if Cf(M) is Hausdorff
if and only if M° C M* is dense.

Theorem 5.16. Let R be Noetherian, P = (A,C)e 2} and Q = (M,N) € ;.

1. If Q is coreflexive then M"™ = M°.
2. Let M be cofinitely R-cogenerated.

(a) IfNé%Mo then Q is coreflexive.
(b) Let Q be weakly coreflexive. Then Q is coreflexive if and only if NEMe.

Proof.

1. Assume Q to be coreflexive and consider 4 and M with the linear weak
topology A[T;(C)], M[%;[N]) respectively. Let f € M* with f(L) =0 for an
R-cofinite A-submodule L C M, say M/L = ZleR(ml- + L). By assumption
M[%s(N)]=Cf(M) and so L is open with respect to M[%;(N)]. By [2, Corollary
1.9] &, 14 — M is continuous and so there exist finitely generated R-submodules
Z,...,Zx € C, such that Z- C &, 1(L). Consequently (Z;‘:l Z)*t = ﬂf;l Z+ C
(Opr+ : f), 1.e. f€M” (by Proposition 2.11). Obviously M" C M° and the result
follows.

2. Let M be cofinitely R-cogenerated.

(a) Assume that NEMe. Let L C M be an R-cofinite A4-submodule with { f1,..., fx }
a generating system of An(L) =~ (M/L)*. Then there exists by assumption
{ni,...,nx} C N, such that yo(n;) = fi. By [31, 28.1] we have then

k S k
(Z Rni> = () Ker(f;) =Ke (Z R ﬁ) =KeAn(L) =L,
i=1 i=1 i=1
i.e. L is open with respect to M[%;;(N)]. Consequently Cf(M) <X M[T;5(N)].
By Lemma 5.8 (2) M[%;5(N)] X Cf(M) and so M[T;(N)]=Cf(M), i.e. O
is coreflexive.
(b) The result follows from (1) and (a). [

Corollary 5.17. Let R be Noetherian and C be a locally projective R-coalgebra.

1. If N is coreflexive then N = N,
2. Let N* be cofinitely R-cogenerated.
(a) If N >~ N*° then N is coreflexive.
(b) Let N be weakly coreflexive. Then N is coreflexive if and only if N ~ N*°.
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Theorem 5.18. Let R be Noetherian and P = (A4,C) € 2.

1.
2.

If P is coreflexive then C = A°.

Assume R to be Artinian. Then P is coreflexive if and only if all R-cofinite A-ideals
are closed with respect to A[T;(C)] =T _c(A).

If A is cofinitely R-cogenerated then the following statements are equivalent:

(i) P is coreflexive;

(i) C=4°.

(ii1) every locally finite left A-module is C-rational, i.e. Loc(4.4) = c[4C].

Proof.

1.

By Corollary 2.9 (1) C = A" and so the result follows from Theorem 5.16 (1).

2. Let R be Artinian. By [2, Lemma 1.7 (4)] every R-cofinite closed A-ideal is open

and the result follows.

. (1) if and only if (ii) follows from Theorem 5.16 (3).

(i1) = (iii) By assumption and Proposition 3.23 (2) Loc(4.#) = o[4A4°] = o[4C].
(iii) = (ii) Assume all locally finite left 4-modules to be C-rational. Then in
particular 4A4° is C-rational and it follows from Corollary 2.9 (2) that C =4°. [

Corollary 5.19. Let R be Noetherian and C be a locally projective R-coalgebra.

1.

If C is coreflexive then the canonical R-linear mapping ¢c:C — C** induces an

isomorphism cXcro.
Let R be Artinian. Then C is coreflexive if and only if all R-cofinite C*-ideals are
closed with respect to the finite topology.

. If C* is cofinitely R-cogenerated then the following statements are equivalent:

(1) C is coreflexive,
(i) C ~ C*;
(iii) every locally finite left C*-module is C-rational.

As a consequence of Lemma 3.22 and Theorem 5.18 (3) get we

Proposition 5.20. Let R be Noetherian. If A is a cofinitely R-cogenerated o-algebra
and M is a right A-module with structure map ¢y M Qr A — M then for every
f €M™ the following statements are equivalent:

JeMme,

- Py (f)EM® Qp A°,

Py (f)eEM® ®p A%,

- () EM™ @p A7,

. Af is finitely generated in My,

. f(MI)=0 for an R-cofinite (right) A-ideal,

. f(L)=0 for an R-cofinite right A-submodule L C M.
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Analogous to [28] we get

Corollary 5.21. Let R be a QF ring.

1. A projective R-coalgebra C is coreflexive if and only if C* is a reflexive R-algebra.
2. Let A be an a-algebra. If A is weakly reflexive then A° is a coreflexive R-coalgebra.

Example 5.22 ([17, Example 5]). Let R be a field and consider the Hopf R-algebra
(H, u,m, 4,¢,S) with countable basis {hq, A1, h,...} and

n+k
plhy @ ) == vk Ahy) =Y hi@hj,  S(hy) := (—=1)'hy.
n

i+j=n

n(1g) :==ho,  e(hy) 1= 0o,

1. H* ~ R[[x]] is a principal ideal domain and
MM~ Rat" (g M) = {M € y- M | M is a torsion module}.

So Rat’(—) is a radical and Rat’(y-.#) is closed under extensions.
2. HY .= Rat” (yH*) = 0.
. There exists no finite dimensional nonzero projective right H-comodules.
4. H ~ H*°, i.e. H is a coreflexive R-coalgebra.
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