
Journal of Pure and Applied Algebra 194 (2004) 1–38

www.elsevier.com/locate/jpaa

On core%exive coalgebras and comodules over
commutative rings

Jawad Y. Abuhlail1
Mathematics Department, Birzeit University, P.O. Box 14, Birzeit, Palestine

Received 25 June 2003; received in revised form 16 February 2004
Communicated by C.A. Weibel

Abstract

In this paper we study dual coalgebras of algebras over arbitrary (Noetherian) commutative
rings. We present and study a generalized notion of core%exive comodules and use the results
obtained for them to characterize the so called core%exive coalgebras. Our approach in this note
is an algebraically topological one.
c© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

The concept of core�exive coalgebras was studied, in the case of commutative base
:elds, by several authors. An algebraic approach was presented by Taft ([27,28]),
while a topological one was presented mainly by Radford [12,23] and studied by sev-
eral authors (e.g. [20,32]). In this paper we present and study a generalized concept of
core�exive comodules and use it to characterize core%exive coalgebras over commu-
tative (Noetherian) rings. In particular we generalize results in the papers mentioned
above from the case of base :elds to the case of arbitrary (Noetherian) commutative
ground rings.
Throughout this paper R denotes a commutative ring with 1R �= 0R. We con-

sider R as a left and a right linear topological ring with the discrete topology. The
category of R-(bi)modules will be denoted by MR. The unadorned − ⊗ − and Hom
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mean −⊗R− and HomR respectively. For R-modules M;N and a submodule K of M ,
the image of the canonical R-linear mapping –K ⊗ idN :K ⊗R N → M ⊗R N is denoted
by Im(K ⊗R N ). The R-submodule K is called N -pure, if –K ⊗ idN is injective (in this
case Im(K ⊗R N ) = K ⊗R N ). We call K ⊂ M pure (in the sense of Cohn), if it is
N -pure for every R-module N . For every R-module L, we denote with L∗ the algebraic
dual R-module of all R-linear maps from L to R. For two topologies T and T′, we
write T � T′ to mean that T is coarser than T′.
Let S be a ring. We consider every left (respectively right) S-module K as a right

(respectively a left) module over End(SK)op (respectively End(KS)) and as a left (re-
spectively a right) module over Biend(SK) := End(KEnd(SK)op) (respectively Biend(KS)
:= End(End(KS )K)

op), the ring of biendomorphisms of K (e.g. [31, 6.4]).
Let A be an R-algebra and M be an A-module. An A-submodule N ⊆ M will

be called R-co3nite, if M=N is :nitely generated in MR. The class of all R-co:nite
A-submodules of M is denoted with KM . We call M co3nitely R-cogenerated, if M=N
is R-cogenerated for every R-co:nite A-submodule N of M . With KA we denote the
class of all R-co:nite A-ideals and de:ne

A◦ := {f∈A∗|f(I) = 0 for some R-co:nite ideal I / A}:
If KA is a :lter (e.g. R is a Noetherian ring) then A◦ ⊆ A∗ is an R-submodule with
equality if and only if RA is :nitely generated projective.
We assume the reader is familiar with the theory of Hopf Algebras. For any needed

de:nitions or results the reader may refer to any of the classical books on the subject
(e.g. [1,25,31]). For an R-coalgebra (C;LC; �C) and an R-algebra (A; �A; �A) we con-
sider HomR(C; A) as an R-algebra with multiplication the convolution product (f?g)(c)
:=
∑

f(c1)g(c2) and unity �A ◦ �C .

1. Preliminaries

In this section we present some de:nitions and lemmas.

De�nition 1.1. Let (C;LC; �C) be an R-coalgebra. We call an R-submodule K ⊆ C:
an R-subcoalgebra if and only if K ⊆ C is pure and LC(K) ⊆ K ⊗R K ;
a C-coideal if and only if K ⊆ Ker(�C) and
LC(K) ⊆ Im(–K ⊗ idC) + Im(idC ⊗ –K);

a right C-coideal (respectively a left C-coideal, a C-bicoideal), if K ⊆ C is C-pure
and LC(K) ⊆ K⊗RC (respectively LC(K) ⊆ C⊗RK , LC(K) ⊆ (K⊗RC)∩(C⊗RK)).

1.2. Subgenerators. Let A be an R-algebra and K be a left A-module. We say a left
A-module N is K-subgenerated, if N is isomorphic to a submodule of a K-generated
left A-module (equivalently, if N is kernel of a morphism between K-generated left
A-modules). The full subcategory of AM, whose objects are the K-subgenerated left
A-modules is denoted by �[AK]. In fact �[AK] ⊆ AM is the smallest Grothendieck full
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subcategory that contains K . If M is a left A-module then

Sp(�[AK]; M) :=
∑

f(N ) : f∈HomA−(N;M); N ∈ �[AK]
is the biggest A-submodule of M that belongs to �[AK]. The reader is referred to
[30,31] for the well-developed theory of categories of this type.

The linear weak topology

1.3. R-pairings. An R-pairing P=(V;W ) consists of R-modules V;W with an R-bilinear
form

� :V ×W → R; (v; w) �→ 〈v; w〉:
If the induced R-linear mapping �P :V → W ∗ (respectively  P : W → V ∗) is injective
then we call P left non-degenerate (respectively right non-degenerate). If both �P and
 P are injective then we call P non-degenerate.
For R-pairings (V;W ) and (V ′; W ′) a morphism

(!; ") : (V ′; W ′)→ (V;W )

consists of R-linear mappings ! :V → V ′ and " :W ′ → W , such that

〈!(v); w′〉= 〈v; "(w′)〉 for all v∈V and w′ ∈W ′:
The R-pairings with the morphisms described above (and the usual composition of
pairings) build a category which we denote with P. If P = (V;W ) is an R-pairing,
V ′ ⊆ V is an R-submodule and W ′ ⊆ W is a (pure) R-submodule with 〈V ′; W ′〉 = 0
then Q := (V=V ′; W ′) is an R-pairing, ($; –K) : (V=V ′; W ′)→ (V;W ) is a morphism in
P and we call Q ⊆ P a (pure) R-subpairing.

Notation. Let P = (V;W ) be an R-pairing. For X ⊆ V and K ⊆ W set

X⊥ := {w∈W |〈X; w〉= 0} respectively K⊥ := {v∈V |〈v; K〉= 0}:
We say X ⊆ V (respectively K ⊆ W ) is orthogonally closed with respect to P, if
X = X⊥⊥ (respectively K =K⊥⊥). In case V =W ∗, we set for every subset X ⊆ W ∗

(respectively K ⊆ W ) Ke(X ) := {w∈W |f(w) = 0 for every f∈X } (respectively
An(K)= : {f∈W ∗|f(w) = 0 for every w∈K}).

1.4. Let P = (V;W ) be an R-pairing. Then the class of R-submodules of V :

F(0V ) := {K⊥|K ⊆ W is a :nitely generated R-submodule}
is a :lter basis consisting of R-submodule of V and induces on V a topology, the so
called linear weak topology V [Tls(W )], such that (V; V [Tls(W )]) is a linear topological
R-module and F(0V ) is a neighborhood basis of 0V . In particular we call W ∗[Tls(W )]
the :nite topology. The properties of this topology were studied by several authors in
the case of commutative base :elds (e.g. [13,14,23]). We refer mainly to the recent
work of the author [2] for the case of arbitrary ground rings.



4 J.Y. Abuhlail / Journal of Pure and Applied Algebra 194 (2004) 1–38

1.1. The �-condition

In a joint work with GOomez-Torrecillas and Lobillo [4] on the category of comodules
of coalgebras over arbitrary commutative base rings, we presented the so called �-
condition. That condition has shown to be a natural assumption in the author’s study
of duality theorems for Hopf algebras [3]. We refer mainly to [2] for the properties
of such pairings over arbitrary ground rings.

1.5. �-pairings. We say an R-pairing P = (V;W ) satis:es the �-condition (or P is an
�-pairing), if for every R-module M the following map is injective

�PM :M ⊗R W → HomR(V;M);
∑

mi ⊗ wi �→
[
v �→

∑
mi〈v; wi〉

]
: (1)

With P� ⊆ P we denote the full subcategory of R-pairings satisfying the �-condition.
We call an R-pairing P=(V;W ) dense, if �P(V ) ⊆ W ∗ is dense (considering W ∗ with
the :nite topology). It’s easy to see that P� ⊆ P is closed under pure R-subpairings.
We say an R-module W satis3es the �-condition, if the R-pairing (W ∗; W ) satis:es

the �-condition, i.e. for every R-module M the canonical R-linear morphism �WM :M ⊗R

W → HomR(W ∗; M) in injective (equivalently, if RW is locally projective in the sense
of Zimmermann-Huisgen [33]).

Remark 1.6. [2, Remark 2.2] Let P=(V;W )∈P�. Then RW is R-cogenerated and %at.
If R is perfect then RW turns to be projective.

Notation. Let W;W ′ be R-modules and consider for any R-submodules X ⊆ W ∗ and
X ′ ⊆ W ′∗ the canonical R-linear mapping

) :X ⊗R X ′ → (W ⊗R W ′)∗:

For f∈X and g∈X ′ set f⊗g= )(f ⊗ g), i.e.

(f⊗g)
(∑

wi ⊗ w′i
)
:=
∑

f(wi)g(w′i) for every
∑

wi ⊗ w′i ∈W ⊗R W ′:

2. Measuring R-pairings

2.1. For an R-coalgebra C and an R-algebra A we call an R-pairing P = (A; C) a
measuring R-pairing, if the induced mapping �P :A → C∗ is an R-algebra morphism.
In this case C is an A-bimodule through the left and the right A-actions

a * c :=
∑

c1〈a; c2〉 and c ( a :=
∑
〈a; c1〉c2 for all a∈A; c∈C: (2)

Let (A; C) and (B;D) be measuring R-pairings. We say a morphism of R-pairings
(!; ") : (B;D) → (A; C) is a morphism of measuring R-pairings, if ! :A → B is an
R-algebra morphism and " :D → C is an R-coalgebra morphism. The category of
measuring R-pairings and morphisms described above will be denoted by Pm. With
P�

m ⊆ Pm we denote the full subcategory of measuring R-pairings satisfying the �-
condition (we call these measuring �-pairings). If P=(A; C) is a measuring R-pairing,
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D ⊆ C is an R-subcoalgebra and I / A is an ideal with 〈I; D〉=0 then Q := (A=I; C) is
a measuring R-pairing, ($I ; –D) : (A=I; D) → (A; C) is a morphism in Pm and we call
Q ⊆ P a measuring R-subpairing. Since by convention an R-subcoalgebra is a pure
R-submodule, it is easy to see that P�

m ⊆ Pm is closed under measuring R-subpairings.

Lemma 2.2. Let P=(A; C), Q=(B;D)∈Pm and (!; ") : (B;D)→ (A; C) be a morphism
of R-pairings.

1. Assume that P ⊗ P := (A ⊗R A; C ⊗R C) is right non-degenerate (i.e.  :=  P⊗P :
C ⊗R C ,→ (A ⊗R A)∗ is an embedding). If ! is an R-algebra morphism then " is
an R-coalgebra morphism. If A is commutative then C is cocommutative.

2. If Q is left non-degenerate (i.e. B
�Q
,→D∗ is an embedding) and " is an R-coalgebra

morphism then ! is an R-algebra morphism. If C is cocommutative and P is left
non-degenerate (i.e. A ⊆ C∗) then A is commutative.

Proof. 1. If ! is an R-algebra morphism then we have for arbitrary d∈D, a; ã∈A:
 
(∑

"(d)1 ⊗ "(d)2
)
(a⊗ ã) =

∑
〈a; "(d)1〉〈ã; "(d)2〉

= 〈aã; "(d)〉
= 〈!(aã); d〉
= 〈!(a)!(ã); d〉

=
∑
〈!(a); d1〉〈!(ã); d2〉

=
∑
〈a; "(d1)〉〈ã; "(d2)〉

=  
(∑

"(d1)⊗ "(d2)
)
(a⊗ ã):

By assumption  is injective and so
∑

"(d)1 ⊗ "(d)2 =
∑

"(d1) ⊗ "(d2) for every
d∈D, i.e. " is an R-coalgebra morphism.
If A is commutative then we have for all c∈C and a; ã∈A:

 
(∑

c1 ⊗ c2
)
(a⊗ ã) =

∑
〈a; c1〉〈ã; c2〉

= 〈aã; c〉
= 〈ãa; c〉

=
∑
〈a; c2〉〈ã; c1〉

=  
(∑

c2 ⊗ c1
)
(a⊗ ã):

By assumption  is injective and so
∑

c1 ⊗ c2 =
∑

c2 ⊗ c1 for every c∈C, i.e. C is
cocommutative.
2. The proof is analogous to that of (1).
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Notation. Let A be an R-algebra and N be a left A-module (respectively a right
A-module). For subsets X; Y ⊆ N we set

(Y : X ) := {a∈A|aX ⊆ Y} (respectively (Y : X ) := {a∈A|Xa ⊆ Y}):
If Y = {0N} then we set also AnnA(X ) := (0N : X ). If N is an A-bimodule then we
set for every X ⊆ N :

AnnlA(X ) := {a∈A|aX = 0N} and AnnrA(X ) := {a∈A|Xa= 0N}:

2.3. The C-adic topology. Let (A; C)∈Pm and consider C as a left A-module with the
left A-action “*” in (2). Then the class of left A-ideals

BC−(0A) := {AnnlA(W ) = (0C : W )|W = {c1; : : : ; ck} ⊂ C a :nite subset}
is a neighborhood basis of 0A and induces on A a topology, the so called left C-adic-
topology TC−(A), so that (A;TC−(A)) is a left linear topological R-algebra (see [6,7]).
A left A-ideal I/lA is open with respect toTC−(A) if and only if A=I is C-subgenerated.
If T is a left linear topology on A then the category of discrete left (A;T)-modules
is equal to the category of C-subgenerated left A-modules �[AC] if and only if T =
TC−(A). In particular we have for every left A-module N :

Sp(�[AC]; N ) = {n∈N |∃F = {c1; : : : ; ck} ⊂ C with AnnlA(F) ⊆ (0N : n)}:
By [3, Lemma 2.2.4] the C-adic topology TC−(A) and the linear weak topology
A[Tls(C)] coincide. Hence A, with the linear weak topology A[Tls(C)], is a left linear
topological R-algebra.
Analogously CA induces on A a topology, the so called right C-adic topology

T−C(A), such that (A;T−C(A)) is a right linear topological R-algebra.

Rational Modules

2.4. Let P = (A; C) be a measuring �-pairing. Let M be a left A-module, 5M :M →
HomR(A;M) be the canonical A-linear mapping and RatC(AM) := 5−1M (M ⊗R C). In
case RatC(AM) =M , we call M a C-rational left A-module and de:ne

%M := (�PM )
−1 ◦ 5M : M → M ⊗R C:

Analogously one de:nes the C-rational right A-modules. With RatC(AM) ⊆ AM
(respectively CRat(MA) ⊆MA) we denote the full subcategory of C-rational left (re-
spectively right) A-modules.

Lemma 2.5 ([3, Lemma 2.2.7]). Let P = (A; C) be a measuring �-pairing. For every
left A-module M we have:

1. RatC(AM) ⊆ M is an A-submodule.
2. For every A-submodule N ⊆ M we have RatC(AN ) = N ∩ RatC(AM).
3. RatC(RatC(AM)) = RatC(AM).
4. For every L∈ AM and f∈HomA−(M; L) we have f(RatC(AM)) ⊆ RatC(AL).
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Theorem 2.6 ([3, Lemmas 2.2.8, 2.2.9, Satz 2.2.16]). Let P = (A; C) be a measuring
R-pairing. Then MC ⊆ AM and CM ⊆ MA (not necessarily full subcategories).
Moreover the following are equivalent:

1. P satis3es the �-condition;
2. RC is locally projective and �P(A) ⊆ C∗ is dense.

If these equivalent conditions are satis3ed then MC ⊆ AM and CM ⊆MA are full
subcategories and we have category isomorphisms

MC � RatC(AM) = �[AC]

� RatC(C∗M) = �[C∗C]
and

CM � CRat(MA) = �[CA]

� CRat(MC∗) = �[CC∗ ]:
(3)

Corollary 2.7. Let Q=(B; C)∈Pm, ! : A→ B be an R-algebra morphism and consider
the induced measuring R-pairing P := (A; C). Then the following statements are
equivalent:
(i) P ∈P�

m;
(ii) Q∈P�

m and !(A) ⊆ B is dense (with respect to the left C-adic topology
TC−(B));
(iii) C satis3es the �-condition and �P(A) ⊆ C∗ is dense.
If these equivalent conditions are satis3ed then we get category isomorphisms

MC � RatC(AM) = �[AC]

� RatC(C∗M) = �[C∗C]

� RatC(BM) = �[BC]

and

CM � CRat(MA) = �[CA]

� CRat(MC∗) = �[CC∗ ]

� CRat(MB) = �[CB]:

(4)

2.8. Let (C;LC; �C) be an R-coalgebra and denote with EndC(C) (respectively
CEnd(C)) the ring of all right (respectively left) C-colinear morphisms from C to C
with the usual composition. For every right C-comodule M we have an isomorphism
of R-modules

7 :M∗ → HomC(M;C); h �→
[
m �→

∑
f(m〈0〉)m〈1〉

]
(5)

with inverse g �→ �C ◦ g. Analogously N ∗ � CHom(N; C) as R-modules for every left
C-comodule N . In particular C∗ � EndC(C)op and C∗ � CEnd(C) as R-algebras.
If (A; C) is a measuring �-pairing then we have R-algebra isomorphisms

Biend(AC) := End(CEnd(AC)op) � End(CEndC (C)op) � End(CC∗) = CEnd(C) � C∗
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and

Biend(CA) := End(End(CA)C)
op � End(CEnd(C)C)op � End(C∗C)op

= EndC(C)op � C∗:

In particular, if RC is locally projective then Biend(C∗C) � C∗ � Biend(CC∗) as
R-algebras (i.e. C∗CC∗ is faithfully balanced).

Corollary 2.9. Let P=(A; C)∈P�
m and consider A∗ as an A-bimodule with the regular

A-actions

(af)(ã) = f(ãa) and (fa)(ã) = f(aã): (6)

Then

1. For every unitary left (respectively right) A-submodule D ⊆ A∗ we have

RatC(AD) = C ∩ D (respectivelyCRat(DA) = C ∩ D):

In particular RatC(AA∗) = C = CRat(A∗A).
2. If D ⊆ A∗ is an A-subbimodule then AD is C-rational if and only if DA is C-

rational.
3. Let R be Noetherian. If AA◦ (equivalently A◦A) is C-rational then C = A◦.

Proof.

1. Let D ⊆ A∗ be a left A-submodule. By Lemma 2.5 (2) C ∩ D is a C-rational
left A-module, i.e. C ∩ D ⊆ RatC(AD). On the other hand, if f∈RatC(AD) with
%D(f) =

∑
fi ⊗ ci ∈D ⊗R C then we have for every a∈A:

f(a) = (af)(1A) =
∑

fi(1A)〈a; ci〉;
i.e. f =

∑
fi(1A)ci ∈C. Hence RatC(AD) = C ∩ D. The corresponding result for

right A-submodules D ⊆ A∗ follows by symmetry.
2. Let D ⊆ A∗ be an A-subbimodule. Then by (1) RatC(AD) = C ∩ D = CRat(DA).
3. If R is Noetherian then A◦ ⊆ A∗ is an A-subbimodule under the regular left and

right A-actions (6). Obviously C
 P
,→A◦ and it follows by assumption and (1) that

A◦ = RatC(AA◦) = C ∩ A◦ = C.

An important role by the study of the category of rational representations of mea-
suring �-pairings is played by the

2.10. Finiteness Theorem.

1. Let P = (A; C) be a measuring �-pairing.
If M ∈RatC(AM) then there exists for every :nite set {m1; : : : ; mk} ⊂ M some
N ∈RatC(AM), such that RN is :nitely generated and {m1; : : : ; mk} ⊂ N .
If M ∈ CRat(MA) then there exists for every :nite set {m1; : : : ; mk} ⊂ M some
N ∈ CRat(MA), such that RN is :nitely generated and {m1; : : : ; mk} ⊂ N .



J.Y. Abuhlail / Journal of Pure and Applied Algebra 194 (2004) 1–38 9

If M ∈ CRatC(AMA), then there exists for every :nite set {m1; : : : ; mk} ⊂ M some
N ∈ CRatC(AMA), such that RN is :nitely generated and {m1; : : : ; mk} ⊂ N .

2. Let C be a locally projective R-coalgebra. Then every :nite subset of C is contained
in a right C-coideal (respectively a left C-coideal, a C-bicoideal), that is :nitely
generated in MR.

Proof.

1. Assume that P = (A; C)∈P�
m. Let M ∈RatC(AM) and {m1; : : : ; mk} ⊂ M . Then

Ami ⊆ M is an A-submodule, hence a C-subcomodule. Moreover mi ∈Ami and so
there exists a subset {(mij; cij)}nij=1 ⊂ Ami×C, such that %M (mi)=

∑ni
j=1 mij⊗cij for

i= 1; : : : ; k. Obviously N :=
∑k

i=1 Ami =
∑k

i=1

∑ni
j=1 Rmij ⊆ M is a C-subcomodule

and contains {m1; : : : ; mk}.
Using analogous arguments one can show the corresponding result for C-rational
right A-modules and C-birational A-bimodules.

2. If C is a locally projective R-coalgebra then (C∗; C)∈P�
m and the result follows by

(1).

The following result gives topological characterizations of the C-rational left A-
modules and generalizes the corresponding result obtained by Radford [23, 2.2] from
the case of base :elds to the case of arbitrary (Artinian) commutative ground rings
(see also [15, Proposition 1.4.4]).

Proposition 2.11. Let P = (A; C) be a measuring �-pairing and consider A with the
left C-adic topology TC−(A) = A[Tls(C)]. If M is a unitary left A-module then for
every m∈M the following statements are equivalent:

1. there exists a 3nite subset W = {c1; : : : ; ck} ⊂ C, such that AnnlA(W ) ⊆ (0M : m).
2. Am is C-subgenerated;
3. m∈RatC(AM).
4. there exists a 3nitely generated R-submodule K ⊆ C, such that K⊥ ⊆ (0M : m).

If R is Artinian then “1–4” are equivalent to:
5. (0M : Am) contains an R-co3nite closed R-submodule of A;
6. (0M : Am) is an R-co3nite closed A-ideal;
7. (0M : m) contains an R-co3nite closed A-ideal;
8. (0M : m) is an R-co3nite closed left A-ideal.

Proof. (1) ⇒ (2) By assumption and 2.3 we have m∈N := Sp(�[AC]; M). Since
Am ⊆ N is an A-submodule, it is C-subgenerated.
(2) ⇒ (3) By assumption and Theorem 2.6 m∈Am ⊆ RatC(AM).
(3) ⇒ (4) Let %(m) =

∑k
i=1 mi ⊗ ci and K :=

∑k
i=1 Rci ⊆ C. Then obviously

K⊥ ⊆ (0M : m).
(4) ⇒ (1) For every subset W ⊆ C we have AnnlA(W ) ⊆ W⊥.
Let R be Artinian.
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(3) ⇒ (5). By Theorem 2.6 RatC(AM) is a C-rational left A-module. Assume that
%M (m) =

∑k
i=1 mi ⊗ ci ∈RatC(AM)⊗R C, %M (mi) =

∑ni
j=1 mij ⊗ cij for i = 1; : : : ; k and

set K :=
∑k

i=1

∑ni
j=1 Rcij. Then we have for every a∈K⊥ and arbitrary b∈A:

a(bm) = a

(
k∑

i=1

mi〈b; ci〉
)
=

k∑
i=1

ni∑
j=1

mij〈a; cij〉〈b; ci〉= 0;

i.e. K⊥ ⊆ (0M : Am). The R-module K is :nitely generated and it follows from the
embedding A=K⊥ ,→ K∗, that K⊥ ⊆ A is an R-co:nite R-submodule. Moreover K⊥ is
by [2, Lemma 1.7 (1)] closed.
Under the assumption that R is Artinian, the implications (5) ⇒ (6) ⇒ (7) ⇒ (8)

⇒ (4) follow from [2, Lemma 1.7 (4)].

Lemma 2.12. Let C be an R-coalgebra and consider C∗ with the 3nite topology. For
every f∈C∗ the R-linear mappings

!rf : C
∗ → C∗; g �→ g?f and !lf : C

∗ → C∗; g �→ f?g

are continuous. If R is an injective cogenerator then !rf and !lf are linearly closed
(i.e. !rf(X ) ⊆ C∗ and !lf(X ) ⊆ C∗ are closed for every closed R-submodule X ⊆ C∗).

Proof. Consider for every f∈C∗ the R-linear mappings

"lf : C → C; c �→ f * c and "rf :C → C; c �→ c ( f:

Then we have for every g∈C∗ and c∈C:
!rf(g)(c) = (g?f)(c) =

∑
g(c1)f(c2) = g(f * c) = g("lf(c)) = (("

l
f)
∗(g))(c):

So !rf = ("lf)
∗ and analogously !lf = ("rf)

∗. The result follows then by [2,
Proposition 1.10].

If P= (A; C)∈P�
m then the Grothendieck category Rat

C(AM) � �[AC] is in general
not closed under extensions:

Example 2.13 ([23, p. 520]). Let R be a base 3eld, V be an in:nite dimensional vector
space over R and consider the R-coalgebra C := R⊕V (with ?(v)= 1⊗ v+ v⊗ 1 and
�(v) = 1R). Let I ⊆ V ∗ be a vector subspace that is not closed, and consider the exact
sequence of C∗-modules

0→ V ∗=I → C∗=I → C∗=V ∗ → 0:

Then V ∗=I and C∗=V ∗ are C-rational, while C∗=I is not.

Lemma 2.14 ([25, Lemma 6.1.1, Corollary 6.1.2]). Let I / A be an ideal.

1. Let M be a 3nitely generated left (respectively right) A-module. If AI (respectively
IA) is 3nitely generated then also IM ⊆ M (respectively MI ⊆ M) is a 3nitely
generated A-submodule. If I ⊆ A is R-co3nite then IM ⊆ M (respectively MI ⊆ M)
is an R-co3nite A-submodule.
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2. If AI (respectively IA) is 3nitely generated then AIn (respectively I nA) is 3nitely
generated for every n¿ 1. If moreover I ⊆ A is R-co3nite then I n ⊆ A is R-co3nite.

The following result generalizes [23, 2.5] from the case of base :elds to the case of
arbitrary commutative QF rings.

Proposition 2.15. Let R be a QF Ring, C be a projective R-coalgebra and consider
an exact sequence of left C∗-modules

0→ N –→M $→L→ 0:

If N; L∈RatC(C∗M) and C∗(0 : l) is 3nitely generated for every l∈L then M is
C-rational.

Proof. Let m∈M and {f1; : : : ; fk} be a generating system of C∗(0L : $(m)). By as-
sumption $(m) is C-rational and so there exist by Proposition 2.11 R-co:nite closed
A-ideals Ji ⊆ (0N : fim) for i = 1; : : : ; k. So we have for the closed R-co:nite A-ideal
J :=

⋂k
i=1 Ji / C

∗:

J (0L : $(m))* m= (J?f1 + · · ·+ J?fk)* m= 0;

i.e. J (0L : $(m)) ⊆ (0M : m). By Lemmas 2.12, 2.14 and [2, Proposition 1.10
(3.d)] J (0L : $(m)) =

∑k
i=1 J?fi is R-co:nite and closed. It follows then by [2,

Lemma 1.7 (4)] that (0M : m) /l C∗ is R-co:nite and closed, hence m∈RatC(C∗M) by
Proposition 2.11.

De�nition 2.16. An R-algebra A is called nearly left Noetherian (respectively
nearly right Noetherian, nearly Noetherian), if every R-co:nite left (respectively right,
two-sided) A-ideal is :nitely generated in AM (respectively in MA, in AMA).

As a corollary of Theorem 2.6 and Proposition 2.15 we get

Corollary 2.17. Let R be a QF Ring and C be a projective R-coalgebra. If C∗ is
nearly left Noetherian (respectively nearly right Noetherian) then MC � RatC(C∗C)=
�[C∗C] (respectively CM � CRat(MC∗) = �[CC∗ ]) is closed under extensions.

Duality relations between substructures
As an application of our results in this section and our observations about the linear

weak topology [2] we generalize known results on the duality relations between sub-
structures of a coalgebra and substructures of its dual algebra from the case of base
:elds (e.g. [25,1] and [10, 1.5.29]) to the case of measuring �-pairings over arbitrary
commutative rings.
As a consequence of Theorem 2.6 and [2, Theorem 1.8] we get

Proposition 2.18. Let P = (A; C)∈Pm.

1. Let K ⊆ C be an R-submodule.
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If K is a right (respectively a left) C-coideal then K⊥=AnnrA(K) (respectively
K⊥ =AnnlA(K)), hence a right (respectively a left) A-ideal.
If K is a C-bicoideal then K⊥=AnnrA(K)∩AnnlA(K), hence a two-sided A-ideal.

2. Let P ∈P�
m.

(a) For every R-submodule I ⊆ A we have:
If I ⊆ A is a right (respectively a left) ideal then I⊥ ⊆ C is a right

(respectively a left) coideal;
If I / A is a two-sided ideal (and I⊥ ⊆ C is pure) then I⊥ ⊆ C is a

bicoideal (an R-subcoalgebra).
(b) Let R be an injective cogenerator. For a closed R-submodule I ⊆ A we have:

I is a right (respectively a left) ideal if and only if I⊥ ⊆ C is a right
(respectively a left) coideal.
I is a two-sided ideal (and I⊥ ⊆ C is pure) if and only if I⊥ ⊆ C is a

bicoideal (an R-subcoalgebra).

Proposition 2.19.

1. If P= (A; C) is a measuring R-pairing and K ⊆ C is a coideal then K⊥ ⊆ A is an
R-subalgebra with unity 1A.

2. Let R be a QF Ring, C be a projective R-coalgebra and A ⊆ C∗ be an R-subalgebra
(with �C ∈A). If Ke(A) ⊆ C is pure then LC(Ke(A)) ⊆ Ke(A)⊗R C +C ⊗R Ke(A)
(Ke(A) ⊆ C is a C-coideal).

Proof.

1. Obvious.
2. Let A ⊆ C∗ be an R-subalgebra and consider the canonical R-linear mappings

� : A⊗R A→ (C ⊗R C)∗ and  :C ⊗R C → (A⊗R A)∗:

If Ke(A) ⊆ C is pure then it follows form [2, Proposition 1.10 (3.c), Corollary 2.9]
that

Ke(A) = Ke(L∗C(�(A⊗R A)))

=L−1C (Ke(�(A⊗R A)))

=L−1C (Ke(A)⊗R C + C ⊗R Ke(A)); (7)

i.e. LC(Ke(A)) ⊆ Ke(A)⊗RC+C⊗RKe(A). If moreover �C ∈A then �C(Ke(A))=0,
i.e. Ke(A) ⊆ C is a C-coideal.

As a consequence of Propositions 2.18, 2.19 and [2, Theorem 1.8] we get

Corollary 2.20. Let R be an injective cogenerator and C a locally projective R-
coalgebra. If we denote with C the class of all R-submodules of C and with H
the class of all R-submodules of C∗ then

An(−) : C→H and Ke(−) :H→ C (8)
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induce bijections

{K ⊆ C a right C-coideal} ↔ {I /r C∗ a closed right A-ideal};
{K ⊆ C a left C-coideal} ↔ {I /l C∗ a closed left A-ideal};
{K ⊆ C a C-bicoideal} ↔ {I / C∗ a closed two-sided ideal};
{K ⊆ C an R-subcoalgebra} ↔ {I / C∗ a closed two-sided ideal;

Ke(I) ⊆ C pure}:

(9)

If R is moreover a QF ring then (8) induces a bijection

{K ⊆ C a pure C-coideal}↔ {A ⊆ C∗ a closed R-subalgebra;

�C ∈A;Ke(A) ⊆ C pure}:

3. Dual coalgebras

Every R-coalgebra (C;LC; �C) has a dual R-algebra, namely C∗ with multiplication
the convolution product

? : C∗ ⊗R C∗
)→(C ⊗R C)∗

L∗
C→C∗;

where ) is the canonical R-linear mapping, and with unity element �C . If (A; �A; �A) is
an R-algebra that is :nitely generated projective as an R-module then A∗ becomes an
R-coalgebra with comultiplication given by

�◦A : A
∗ �∗

A→(A⊗R A)∗
)−1

→A∗ ⊗R A∗;

where ) :A∗ ⊗R A∗ → (A ⊗R A)∗ is the canonical isomorphism, and with counity
�∗A :A

∗ → R. If A is not :nitely generated projective then ) in not surjective anymore
(and not even injective over arbitrary ground rings), hence �◦A is not well de:ned
and �A includes on A∗ no R-coalgebra structure. However, if R is base :eld and we
consider the R-algebra A with the left (respectively the right) co:nite topology Cf l(A)
(respectively Cf r(A)), see (3.20), then the character module A◦ of all continuous
R-linear mappings from A to R is an R-coalgebra ([25, Proposition 6.0.2]). That result
was generalized in [9] to the case of Dedekind domains and in [5] to the case of
arbitrary Noetherian (hereditary) commutative rings.
In this section we consider coalgebra structures on the character module of an alge-

bra, considered with a linear topology induced from a :lter basis consisting of co:nite
ideals over an arbitrary (Noetherian) ring.

3.1. Let A be an R-algebra and B be a :lter basis consisting of R-co:nite two-sided
A-ideals. Then B induces on A a left linear topology Tl(B), such that (A;Tl(B)) is
a left linear topological R-algebra and B is a neighborhood basis of 0A. With

A◦B := {f∈A∗|∃I ∈B; such that f(I) = 0}= lim
→ B

(A=I)∗ (10)
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we denote the character module of all continuous R-linear mappings from A to R
(where R is considered as usual with the discrete topology). With the completion of
A with respect to B we mean

ÂB := lim
←
{A=I |I ∈B}:

If A◦B is an R-coalgebra then we call A◦B the continuous dual R-coalgebra of A with
respect to B.
Analogously B induces on A a right linear topology Tr(B), such that (A;Tr(B)) is

a right linear topological R-algebra and B is a neighborhood basis of 0A.

Remark 3.2. Let R be Noetherian and A be an R-algebra. Let I be an R-co:nite left
A-ideal, say A=I =

∑k
i=1 R(ai + I), and consider the two-sided A-ideal

JI :=
k⋂

i=1

(I : ai) = (I : A) ⊆ (I : 1A) = I:

Then
’I :A→ EndR(A=I); a �→ [b+ I �→ ab+ I ]

is an R-algebra morphism with Ker(’I ) = JI , i.e. JI is an R-co:nite A-ideal.
Analogously one can show that every R-co:nite right A-ideal contains an R-co:nite

two-sided A-ideal.

The following result extends [5, 1.11] and [4, Remark 2.14]:

Theorem 3.3. Let R be Noetherian and A an R-algebra. If C ⊆ A◦ is an A-subbimodule
under the regular A-actions in (6) and P := (A; C) then the following statements are
equivalent:

1. RC is locally projective and �P(A) ⊆ C∗ is dense;
2. RC satis3es the �-condition and �P(A) ⊆ C∗ is dense;
3. (A; C) is an �-pairing;
4. C ⊂ RA is pure (in the sense of Cohn);
5. C is an R-coalgebra and (A; C)∈Pm

� ;
If R is a QF Ring then “1-4” are equivalent to

6. RC is projective.

Proof. The equivalences (1) if and only if (2) and (3) if and only if (4) follow from
[2, Lemma 2.12, Proposition 2.5 (3)].
(2) ⇒ (3) follows from [2, Proposition 2.4 (2)].
(4) ⇒ (5) If C ⊂ RA is pure then by [5, 1.11] C is an R-coalgebra. It follows

moreover for all f∈C and arbitrary a; ã∈A that
�P(aã)(f) =f(aã) =

∑
f1(a)f2(ã) = (�P(a)⊗�P(ã))(?(f))

= (�P(a)?�P(ã))(f)

and

�P(1A)(f) = f(1A) = �C(f) for all f∈C:
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So �P :A → C∗ is an R-algebra morphism, i.e. P ∈Pm. By [2, Proposition 2.5] P
satis:es the �-condition, hence P ∈Pm

� .
(5) ⇒ (2) follows from Theorem 2.6.
Let R be a QF ring.
(2) ⇒ (6) follows from Remark 1.6.
(6) ⇒ (2) If RC is projective then C satis:es the �-condition by [2,

Proposition 2.14 (5)]. Consider the R-submodule �P(A) ⊆ C∗. By [2, Theorem 1.8
(1)] we have

�P(A) := AnKe(�P(A)) = An(A⊥) = An(0C) = C∗;

i.e. �P(A) ⊆ C∗ is dense.

De�nition 3.4. An R-algebra A is said to satisfy the �-condition or to be an �-algebra,
if the class KA of all R-co:nite A-ideals is a :lter and the induced R-pairing (A; A◦)
satis:es the �-condition (in case R is Noetherian this is equivalent to the purity of A◦ ⊂
RA). An R-coalgebra C is said to satisfy the �-condition or to be an �-coalgebra, if the
R-pairing (C∗; C) satis:es the �-condition (equivalently, if RC is locally projective).
With AlgR we denote the category of R-algebras and with Alg�R ⊆ AlgR the full subcat-
egory of �-algebras. Analogously, we denote with CogR the category of R-coalgebras
and with Cog�R ⊆ CogR the full subcategory of �-coalgebras.

Remark 3.5. Let R be Noetherian and A be an �-algebra. Then there is obviously a
1-1 correspondence

{P = (A; C)|P ∈P�
m} ←→ {C|C ⊆ A◦ is an R-subcoalgebra}:

Lemma 3.6.

1. If C; D are R-coalgebras and " : D → C is an R-coalgebra morphism then
" ∗ :C∗ → D∗ is an R-algebra morphism and

(" ∗; ") : (D∗; D)→ (C∗; C)

is a morphism in Pm.
2. Let R be Noetherian, A; B be �-algebras and ! :A→ B be an R-algebra morphism.

Then we have a morphism in P�
m

(!; !◦) : (B; B◦)→ (A; A◦):

Proof.

1. Trivial.
2. If f∈B◦ then there exists an R-co:nite B-ideal I / B, such that f∈ (B=I)∗. By as-
sumption R is Noetherian and so !−1(I) ⊆ A is an R-co:nite A-ideal, i.e. !◦(f)∈A◦
and we get a morphism of R-pairings

(!; !◦) : (B; B◦)→ (A; A◦):
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By assumption ! is an R-algebra morphism. Moreover the canonical R-linear
mapping A◦ ⊗R A◦ → (A ⊗R A)∗ is by [2, Corollary 2.8 (1)] an embedding, hence
!◦ :B◦ → A◦ is an R-coalgebra morphism by Lemma 2.2 (1).

Lemma 3.7. Let R be Noetherian, B an �-algebra and consider the �-pairing (B; B◦).
If A ⊆ B is an �-subalgebra with 1B ∈A then A⊥ := An(A) ∩ B◦ is a B◦-coideal.

Proof. The embedding –A : A ,→ B is an R-algebra morphism and so –◦A :B
◦ → A◦

is by Lemma 2.2 (1) an R-coalgebra morphism. Hence A⊥ := Ker(–◦A) ⊆ B◦ is a
B◦-coideal.

The following result follows directly from Propositions 2.18, 2.19 Lemma 3.6 and
[2, Theorem 1.8]:

Corollary 3.8. Let R be a QF Ring, A be an �-algebra, P := (A; A◦) and consider A
with the linear weak topology A[Tls(A◦)]. Let I ⊆ A be a closed R-submodule and set
I⊥ := An(I) ∩ A◦. Then I is a right (respectively a left) A-ideal if and only if I⊥ is
a right (respectively a left) A◦-coideal. Moreover I ⊆ A is a two-sided A-ideal (and
I⊥ ⊆ A◦ is pure) if and only if I⊥ ⊆ A◦ is an A◦-bicoideal (an R-subcoalgebra).

The convolution coalgebra
Dual to the convolution algebra, Radford presented in [23] the so called convolu-

tion coalgebra in the case of base :elds. Over arbitrary Noetherian ground rings the
following version of his de:nition makes sense:

3.9. Let R be Noetherian. If C is an R-coalgebra and A is an �-algebra then we call
A?C := A◦ ⊗R C the convolution coalgebra of A and C. In the special case C = R we
have A?R � A◦.

The following result generalizes results of Radford [23] on the convolution coalgebra
from the case of base :elds to the case of arbitrary Noetherian ground rings:

3.10. Let R be Noetherian, C be a locally projective R-coalgebra and A be an �-
algebra. It is easy to see then that P := (A ⊗R C∗; A?C) is a measuring R-pairing,
which satis:es the �-condition by [2, Lemma 2.8]. By [28, p. 515] the following
mappings are R-algebra morphisms:

D: HomR(C; A)→ (A◦ ⊗R C)∗; f �→ [h⊗ c �→ h(f(c))]:

E: A⊗R C∗ → HomR(C; A); a⊗ g �→ [c �→ g(c)a]:

By Corollary 2.7 (HomR(C; A); A?C)∈P�
m, E(A ⊗R C∗) ⊆ HomR(C; A) is dense (with

respect to the left C-adic topology) and we get category isomorphisms

MA?C �RatA?C(A⊗RC∗M) = �[A⊗RC∗(A?C)]

�RatA?C((A?C)∗M) = �[(A?C)∗(A?C)]

�RatA?C(HomR(C;A)M) = �[HomR(C;A)(A?C)]:
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Proposition 3.11. If R is Noetherian then we have bifunctors

− ?− : Alg�R × CogR → CogR and − ?− : Alg�R × Cog�R → Cog�R: (11)

Proof. Let A∈Alg�R. Then A◦ is by Theorem 3.3 a locally projective R-coalgebra (i.e.
an �-coalgebra). If C is a (locally projective) R-coalgebra then A?C := A◦ ⊗R C is a
(locally projective) R-coalgebra by [2, Lemma 2.8]). One can see that (11) describes
bifunctors by arguments parallel to those of [22].

Continuous dual coalgebras

De�nition 3.12. Let A be an R-algebra, KA be the class of all R-co:nite A-ideals
and

EA := {I / A|A=I is :nitely generated projective}:

For every subclass F ⊆KA set

A◦F := {f∈A∗|f(I) = 0 for some I ∈F}:

1. We call a :lter F= {IF}G consisting of R-co:nite A-ideals:
an �-3lter, if the R-pairing (A; A◦F) satis:es the �-condition;
co3nitary, if F ∩ EA is a :lter basis of F;
co3nitely R-cogenerated, if A=I is R-cogenerated for every I ∈F.

2. We call A:
an �-algebra, if KA is an �-:lter;
co3nitary, if KA is a co:nitary :lter;
co3nitely R-cogenerated, if A=I is R-cogenerated for every I ∈KA.

De�nition 3.13 ([26]). An R-coalgebra C is called in3nitesimal �at, if C = lim
→

CF for

a directed system of 3nitely generated projective R-subcoalgebras {CF}G.

Proposition 3.14. Let A be an R-algebra, F be a 3lter consisting of R-co3nite A-
ideals, P := (A; A◦F) and consider A as a left (respectively a right) linear topological
R-algebra with the induced topology T(F).

1. Assume F to be co3nitely R-cogenerated. Then T(F) is Hausdor@ if and only if
�P :A→ A∗F◦ is an embedding.

2. Assume R to be Noetherian and F to be an �-3lter. Then A◦F is an �-coalgebra,
(A; A◦F)∈P�

m and �P(A) ⊆ A∗F◦ is dense with respect to the 3nite topology.
3. If A=I is R-re�exive for every I ∈F, e.g. R is an injective cogenerator then Â � A∗F◦

as left (respectively as right) linear topological R-modules.
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Proof.

1. By assumption A=I is R-cogenerated for every I ∈F, hence

0A =
⋂
I∈F

I =
⋂
I∈F

KeAn(I) = Ke

(∑
I∈F

An(I)

)
=Ke(A◦F) = Ke(�P):

2. Every I ∈F is a two-sided A-ideal and so A◦F ⊆ A◦ is an A-subbimodule. The result
follows then from Theorem 3.3.

3. If A=I is R-re%exive for every I ∈F then we have isomorphisms of topological
R-modules

Â= lim
→ F

A=I � lim
→ F

(A=I)∗∗ � (lim
→ F

(A=I)∗)∗= : (A◦F)
∗:

If R is an injective cogenerator then all :nitely generated R-modules are R-re%exive
(e.g. [31, 48.13]) and we are done.

The following result extends observations in [16] (respectively [4]) on co3nitary al-
gebras over Dedekind domains (respectively Noetherian rings) to the case of co3nitary
3lters for algebras over arbitrary commutative base rings:

Proposition 3.15. Let A be an R-algebra, F be a 3lter consisting of R-co3nite A-
ideals, P := (A; A◦F) and consider A as a left (respectively as a right) linear topological
R-algebra with the induced left (respectively right) linear topology T(F). If F is
co3nitary then

1. T(F) is Hausdor@ if and only if �P :A→ A∗F◦ is an embedding.
2. A◦F is an in3nitesimal �at �-coalgebra, P ∈P�

m and �P(A) ⊆ A∗F◦ is dense.
3. Â � A∗F◦ as left (respectively as right) linear topological R-algebras.

Proof.

1. For every I ∈EA the R-module A=I is in particular R-cogenerated and the result
follows from Proposition 3.14 (1).

2. For I; J ∈F∩EA set I6 J if I ⊇ J and consider the canonical R-algebra epimorphism
$I;J : A=J → A=I . Then

{((A=I)∗; $∗I; J )|I ∈F ∩ EA; $∗I; J : (A=I)
∗ ,→ (A=J )∗}

is a directed system of :nitely generated projective R-coalgebras with R-coalgebra
morphisms $∗I; J : (A=I)

∗ → (A=J )∗. Then A◦F = A◦F∩EA � lim
→ F∩EA

(A=I)∗ is an in-

:nitesimal %at R-coalgebra.
Let M be an arbitrary R-module. If

∑k
i=1 mi⊗gi ∈Ker(�PM ) then there exists I ∈F∩

EA, such that {g1; : : : ; gn} ⊂ An(I). If {(al + I; fl)}kl=1 is a dual basis for (A=I)∗
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then

n∑
i=1

mi ⊗ gi =
n∑

i=1

mi ⊗
(

k∑
l=1

gi(al + I)fl

)

=
n∑

i=1

mi ⊗
(

k∑
l=1

gi(al)fl

)

=
k∑

l=1

(
n∑

i=1

gi(al)mi

)
⊗ fl = 0:

Obviously the canonical R-linear mapping �P :A→ A∗F◦ is an R-algebra morphism,
i.e. P is a measuring �-pairing. The density of �P(A) ⊆ A∗F◦ follows then by
Theorem 3.3.

3. For every I ∈F∩EA the R-module A=I is :nitely generated projective, hence (A=I)∗

is an R-coalgebra and (A=I)∗∗ � A=I as R-algebras. So we have an isomorphisms
of topological R-algebras

Â= lim
← F∩EA

A=I � lim
← F∩EA

(A=I)∗∗ � (lim
→ F∩EA

(A=I)∗)∗ = (lim
→
F

(A=I)∗)∗ = (A◦F)
∗:

As a consequence of Propositions 3.14, 3.15 and Theorem 2.6 we get

Corollary 3.16. Let A be an R-algebra and F be a 3lter consisting of R-co3nite
A-ideals. If R is Noetherian and F is an �-3lter, or if F is co3nitary, then we have
isomorphisms of categories

MA◦
F � RatA

◦
F(AM) = �[AA◦F]

� RatA
◦
F(A∗

F◦M) = �[A∗
F◦A
◦
F]

and

A◦
FM � A◦

FRat(MA) = �[A◦FA]

� A◦
FRat(MA∗

F◦ ) = �[A◦FA∗
F◦ ]:

3.17. Let A; B be R-algebras, FA, FB be :lter bases consisting of R-co:nite A-ideals,
B-ideals respectively and

FA × FB := {Im(–I ⊗ idB) + Im(idA ⊗ –J )|I ∈FA; J ∈FB}: (12)

Obviously FA × FB is a :lter basis consisting of R-co:nite A⊗R B-ideals and induces
so a linear topology T(FA×FB) on A⊗R B, such that (A⊗R B;T(FA×FB)) is a linear
topological R-algebra and FA × FB is a neighborhood basis of 0A⊗RB.
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One can generalize [4, Proposition 4.9, Theorem 4.10] to obtain

Theorem 3.18. Let A; B be R-algebras, FA, FB be 3lters consisting of R-co3nite A-deals,
B-ideals respectively and consider the canonical R-linear mapping ) :A∗ ⊗R B∗ →
(A⊗R B)∗.

1. If FA and FB are co3nitary then the 3lter of A⊗R B-ideals generated by FA×FB is
co3nitary and (A⊗R B)◦FA×FB

is an R-coalgebra. If R is Noetherian then ) induces
an R-coalgebra isomorphism

A◦FA
⊗R B◦FB

� (A⊗R B)◦FA×FB
:

2. Let R be Noetherian. If FA is an �-3lter and FB is co3nitary then the 3lter
generated by FA×FB is an �-3lter, (A⊗R B)◦FA×FB

is an R-coalgebra and ) induces
an R-coalgebra isomorphism

A◦FA
⊗R B◦FB

� (A⊗R B)◦FA×FB
:

Theorem 3.19. Let R be hereditary and Noetherian.

1. All R-algebras satisfy the �-condition, i.e. Alg�R = AlgR.
2. There is a duality between AlgR and CogR through the right-adjoint contravariant

functors

(−)∗ : CogR → AlgR; (−)◦ :AlgR → CogR:

Proof.

1. Let A be an arbitrary R-algebra. By [5, Proposition 2.11] A◦ ⊂ RA is pure and so
(A; A◦) is an �-pairing by [2, Proposition 2.5].

2. For every R-algebra A the canonical mapping FA :A→ A◦∗ is an R-algebra morphism
and for every R-coalgebra C the canonical mapping HC :C → C∗◦ is an R-coalgebra
morphism (compare Lemma 3.6). Moreover for every A∈AlgR and every C ∈CogR

IA;C : AlgR(A; C
∗)→ CogR(C; A

◦); ! �→ !◦ ◦ HC

is an isomorphism with inverse

7A;C : CogR(C; A
◦)→ AlgR(A; C

∗); " �→ " ∗ ◦ FA:
It is easy to see that IA;C and 7A;C are functorial in A and C.

Locally �nite modules

3.20. The co�nite topology. Let R be Noetherian. For every R-algebra A, the class
Kl

A (resp. K
r
A ) of all R-co:nite left (respectively right) A-ideals is a :lter basis. By

Remark 3.2 every I ∈Kl
A (resp. I ∈Kr

A ) contains a two-sided A-ideal JI , such that
JI ⊆ I . So Kl

A (resp. Kr
A ) induces on A a symmetric left (respectively right) linear

topology, the so called left co3nite topology Cf l(A) (respectively right co3nite topol-
ogy Cf r(A)), such thatKl

A (resp.K
r
A ) is neighborhood basis of 0A. If A

◦ := A◦
Kl
A
=A◦Kr

A

is an R-coalgebra then we call it the continuous dual R-coalgebra of A.
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Consider A with the left co:nite topology Cf l(A). Let M be a left A-module and
consider the :lterKM of all R-co:nite A-submodules of M . Let L ⊆ M be an R-co:nite
A-submodule and consider the R-linear mapping

’L :A→ EndR(M=L); a �→ [m+ L �→ am+ L]:

Then A=Ker(’L) ,→ EndR(M=L) and so

IL := Ker(’L) = {a∈A|aM ⊆ L}
is an R-co:nite two-sided A-ideal. If m∈M is arbitrary then IL := (L : M) ⊆ (L : m),
hence (L : m) is open with respect to the left co:nite topology Cf l(A). So M becomes
a topology, the so called co3nite topology Cf(M), such that (M;Cf(M)) is a linear
topological left (A;Cf l(A))-module and KM is a neighborhood basis of 0M .
Considering A with the right co:nite topology Cf r(A) it turns out that for every

right A-module M , the :lter of R-co:nite right A-submodules of M induces on M a
topology, the co:nite topology Cf (M), such that (M;Cf(M)) is a linear topological
right (A;Cf r(A))-module.

3.21. Let R be Noetherian and A be an R-algebra. A left A-module M is called
locally 3nite, if Am is :nitely generated for every m∈M . For every left A-module
M it follows that Loc(M) ⊆ M is an A-submodule (since the ground ring R is Noethe-
rian) and we get a preradical

Loc(−): AM→ AM; M �→ {m∈M |Am is :nitely generated in MR}
with pretorsion class Loc(AM) ⊆ AM, the full subcategory of locally :nite left
A-modules.
Analogously one de:nes the preradical Loc(−) : MA → MA with pretorsion class

Loc(MA) ⊆MA, the full subcategory of locally :nite right A-modules.

Lemma 3.22. Let R be Noetherian and A be an R-algebra. For every right A-module
M we have

M◦ := {f∈M∗ |f(MI) = 0 for some R-cofinite (right) A-ideal I ⊆ A}
= {f∈M∗ |Af is finitely generated in MR} (=Loc(AM∗))
= {f∈M∗ |f(L) = 0 for some R-cofinite right A-submodule

L ⊆ M}: (13)

Proof. Let f∈M∗ with f(MI)=0 for an R-co:nite right A-ideal I . If {a1+I; : : : ; ak+I}
is a generating system for A=I over R then {a1f; : : : ; akf} is a generating system for
Af over R, i.e. f∈Loc(AM∗).
Let f∈Loc(AM∗) and assume that Af =

∑k
i=1 Rfi with {f1; : : : ; fk} ⊂ M∗. Then

L := Ke(Af) =
⋂k

i=1 Ker(fi) ⊆ M is a right A-submodule and moreover
M=L ,→ ⊕k

i=1M=Ker(fi), i.e. L ⊆ M is an R-co:nite A-submodule.



22 J.Y. Abuhlail / Journal of Pure and Applied Algebra 194 (2004) 1–38

Let f∈ (M=L)∗ � An(L) for some R-co:nite A-submodule L ⊆ M . Then IL :=
(L : M) is an R-co:nite two-sided A-ideal (compare 3.20) and moreover f(MIL) ⊆
f(L) = 0, i.e. f∈M◦.

It is well known that for an R-algebra A over a base :eld R, the category of
right (respectively left) A◦-comodules and the category of locally :nite left (respec-
tively right) A-modules coincide, e.g. [1,28]. Over arbitrary commutative rings
we have

Proposition 3.23. Let R be Noetherian and A be an R-algebra.

1. Every A◦-subgenerated left (respectively right) A-module is locally 3nite.
2. If A is co3nitely R-cogenerated then �[AA◦] = Loc(AM) and �[A◦A] = Loc(MA).
3. If A is an �-algebra then we have category isomorphisms

MA◦ � RatA
◦
(AM) =�[AA◦]

� RatA
◦
(A◦∗M) =�[A◦∗A◦]

and

A◦
M � A◦

Rat(MA) =�[A◦A]

� A◦
Rat(MA◦∗) =�[A◦A◦∗ ]:

(14)

If A is moreover co3nitely R-cogenerated then

MA◦ � Loc(AM) and A◦
M � Loc(MA):

Proof.

1. Let M ∈ �[AA◦]. Then there exists for every m∈M a :nite subset W={f1; : : : ; fk} ⊂
A◦, such that AnnlA(W ) ⊆ (0M : m). Choose for every i = 1; : : : ; k an R-co:nite
A-ideal Ji ⊆ Ke(fi) and consider the R-co:nite A-ideal J :=

⋂k
i=1 Ji. If a∈ J then

for every ã∈A and i = 1; : : : ; k we have (a * fi)(ã) = fi(ãa) = 0. Consequently
J ⊆ AnnlA(W ) ⊆ (0M : m) and so Am � A=(0M : m) is :nitely generated in MR.
Hence AM is locally :nite.

2. By (1) �[AA◦] ⊆ Loc(AM). Assume now that A is co:nitely R-cogenerated. Let N
be a locally :nite left A-module. For every n∈N the R-module A=(0N : n) � An
is :nitely generated and so there exists by Remark 3.2 an R-co:nite A-ideal I ⊆
(0N : n). By assumption A=I is R-cogenerated and so I =KeAn(I) (e.g. [31, 28.1]).
If An(I) � (A=I)∗ =

∑k
i=1 Rgi and W := {g1; : : : ; gk} then it follows for every

a∈AnnlA(W ) that gi(a)=(a * gi)(1A)=0. So AnnlA(W ) ⊆ KeAn(I)= I ⊆ (0N : n),
i.e. AN is A◦-subgenerated.

3. The category isomorphisms (14) follow from Theorem 2.6. The last statement
follows then from (2).
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4. Dual comodules

In this section we discuss for every (A; C)∈P�
m the duality between the category

of right (respectively left) A-modules and the category of right (respectively left)
C-comodules.

4.1. Let P = (A; C)∈Pm. By Theorem 2.6 MC ⊆ AM is a subcategory and so we
have a contravariant functor

(−)∗ :MC →MA; (N; %N ) �→ (N ∗; 5N∗); (15)

where

5N∗ : N ∗ → HomR(A; N ∗); f �→
[
a �→

[
n �→

∑
f(n〈0〉)〈a; n〈1〉〉

]]
: (16)

If moreover P satis:es the �-condition then we get by Theorem 2.6 the contravariant
functor

(−)r :MA →MC;M �→ Mr := RatC(AM∗):

If M , M̃ are right A-modules and f∈HomA−(M; M̃) then f∗ ∈Hom−A(M̃∗; M∗) and
we denote with fr ∈HomC(M̃ r;Mr) the restriction of f∗ to M̃ r ⊆ M̃∗ (see Lemma 2.5
(4) and Theorem 2.6). For every right A-module M we call Mr the dual C-comodule
of M with respect to P.

4.2. ([8]) Let RC be a %at R-coalgebra, N be a left C-comodule and consider the
R-linear mapping

E :N ∗ → HomR(N; C); f �→
[
n �→

∑
f(n〈−1〉)n〈0〉

]
: (17)

If RN is :nitely presented then N ∗ ⊗R C � HomR(N; C) (e.g. [30, 15.7]) and N ∗

becomes a structure of a right C-comodule through

%M∗ : N ∗
E→HomR(N; C) � N ∗ ⊗R C: (18)

If N ∈MC and NR is :nitely presented then N ∗ is analogously a left C-comodule.

Theorem 4.3. For every (A; C)∈P�
m there is a duality between the category of right

C-comodules and the category of right A-modules through the right adjoint
contravariant functors

(−)∗ :MC →MA and (−)r :MA →MC:

Proof. For every right C-comodule N the canonical mapping HN :N → N ∗∗ is A-linear,
hence HN (N ) ⊆ N ∗r by Lemma 2.5 (4) and it follows by Theorem 2.6 that HN :N →
N ∗r is C-colinear. On the other hand, for every right A-module M the canonical
mapping FM :M → Mr∗ is A-linear. It is easy to see then that we have functorial
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homomorphisms (in M ∈MA and N ∈MC)

IN;M : Hom−A(M;N ∗)→ HomC(N;Mr); f �→ fr ◦ HN ;

7N;M : HomC(N;Mr)→ Hom−A(M;N ∗); g �→ g∗ ◦ FM :

Moreover IN;M is bijective with inverse 7N;M .

Notation. For every R-algebra A denote with M
f
A (respectively AM

f) the category of
3nitely generated right (respectively left) A-modules.

Lemma 4.4. Let R be Noetherian. For every (A; C)∈P�
m there is a duality between

RatC(AMf) and CRat(Mf
A ) through the right-adjoint contravariant functors

(−)∗ : CRat(Mf
A )→ RatC(AMf) and (−)∗ : RatC(AMf)→ CRat(Mf

A ):

Proof. Let M ∈ CRat(Mf
A ) (respectively M ∈RatC(AMf)). By [3, Folgerung 2.2.24]

every :nitely generated C-rational left (respectively right) A-module is :nitely gener-
ated over R, hence MR is :nitely generated and so AM∗ (respectively M∗A ) is :nitely
generated. By assumption R is Noetherian and so RM is :nitely presented. Conse-
quently M∗ is by 4.2 a C-rational left (respectively right) A-module. The claimed
duality follows then from Theorem 4.3.

4.5. If C is a locally projective R-coalgebra then we get by Theorem 4.3 right-adjoint
contravariant functors

(−)∗: MC →MC∗ ; N �→ N ∗;

(−) :MC∗ →MC; M �→ M := RatC(C∗M∗):

Lemma 4.6. Let R be an injective cogenerator and C be a locally projective R-
coalgebra. If M a right C∗-module, L ⊆ M is a C∗-submodule and M ⊆ M∗ is
dense then L ⊆ L∗ is dense.

Proof. By Lemma 2.5 (4) –∗L(M ) ⊆ L and it follows from [2, Proposition 1.10

(3.b)] that –∗L(M ) = –∗L(M ) = –∗L(M
∗) = L∗.

Takeuchi [29] studied the category of locally :nite modules of a commutative algebra
over a base :eld. In what follows we transfer some results obtained by him to the
category RatC(AM) corresponding to a measuring �-pairing P = (A; C)∈P�

m with A a
commutative algebra over an arbitrary commutative ground ring.

Proposition 4.7. Let P=(A; C)∈P�
m with A commutative and denote with M

f
A ⊆MA

the full subcategory of :nitely generated A-(bi)modules. Then we have an isomorphism
of functors

HomA(−; C) � (−)r :Mf
A →MC:
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Proof. Step 1: HomA(−; C) :Mf
A →MC is well-de:ned.

Let M ∈Mf
A be arbitrary and consider HomA(M;C) with the canonical A-module

structure induced by MA. For arbitrary f∈HomA(M;C) the A-subbimodule N :=
f(M) ⊆ C is by Theorem 2.6 a C-bicoideal. Moreover NA is :nitely generated and so
:nitely generated in MR (see [3, Folgerung 2.2.24]). Assume that N =

∑l
i=1 Rci with

?(ci) =
∑li

j=1 cij ⊗ c̃ij for every i= 1; : : : ; k and set K :=
∑l

i=1

∑li
j=1 Rcij. Then K⊥ ⊆

(0 : f) and so f is by Proposition 2.11 C-rational. By our choice f∈HomA(M;C) is
arbitrary, i.e. HomA(M;C)∈RatC(AM).
Step 2: (−)r � HomA(−; C).
Let N ∈MC , M ∈MA and consider the C-comodule HomA(M;C). The result follows

then from the functorial isomorphisms:

HomC(N;HomA(M;C)) = HomA(N;HomA(M;C)) (Theorem 2:6)

�HomA(M;HomA(N; C))

�HomA(M;HomC(N; C)) (Theorem 2:6)

�HomA(M;N ∗) (5)

�HomC(N;Mr) (Theorem 4:3):

As a consequence of Proposition 4.7 we get

Corollary 4.8.

1. Let R be Noetherian, A be an �-algebra and consider the functor

(−)0 = RatA◦
(−) ◦ (−)∗ :MA →MA◦

; M �→ M 0 := RatA
◦
(AM∗)

If A is commutative then we have a functorial isomorphism

HomA(−; A◦) � (−)0 :Mf
A →MA◦

:

2. If C is a cocommutative locally projective R-coalgebra then we have a functorial
isomorphism

HomC∗(−; C) � (−) :Mf
C∗ →MC:

Corollary 4.9. Let P=(A; C)∈P�
m, where A is commutative and Noetherian. If (−)r :

M
f
A → �[AC] is exact then C is an injective A-module.

Proof. By Baer’s criteria (e.g. [31, 16.4]) it is enough to show that C is A-injective.
Let I be an A-ideal. Then IA is :nitely generated and by assumption the following set
mapping is surjective

Ar –r→I r → 0:
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By Proposition 4.7 HomA(−; C) � (−)r and so
HomA(A; C)

(–;C)→ HomA(I; C)→ 0

is a surjective set mapping, i.e. C is A-injective and we are done.

Continuous dual comodules

In what follows we consider the dual comodules of modules of an �-algebra over
an arbitrary Noetherian base ring. These were considered in the case of base :elds by
several authors (e.g. [11,18,19,29]) and in the case of Dedekind domains by R. Larson
[16].

4.10. Let R be Noetherian, A be an R-algebra, F be a :lter consisting of R-co:nite
A-ideals and consider A with the induced right linear topology T(F).

1. If F is an �-:lter then by Proposition 3.14 (2) A◦F is an R-coalgebra and (A; A
◦
F)∈P�

m.
By Theorem 4.3 we get right-adjoint contravariant functors

(−)∗: MA◦
F →MA; M �→ M∗;

(−)0F: MA →MA◦
F ; M �→ M 0

F := Rat
A◦

F(AM∗):

For every M ∈MA we call M 0
F the dual comodule of M with respect to F. If A is

a �-algebra then we call M 0 := RatA
◦
(AM∗) the dual comodule of M .

2. For every right A-module M we call

M◦F := {f∈M∗|f(MI) = 0 for some I ∈F}= lim
→
F

(M=MI)∗

the continuous dual module of M with respect to F. If A◦F is an R-coalgebra and
M◦F is a right A

◦
F-comodule then we call it the continuous dual comodule of M with

respect to F. If A◦ is a R-coalgebra and M◦ is a right A◦-comodule, then we call
it the continuous dual comodule of M .

Notation. Let R be Noetherian, A be an (�)-algebra and M;N be right A-modules. For
every A-linear mapping E :M → N we denote with E◦ :N ◦ → M◦ (E0 : N 0 → M 0) the
restriction of E∗ on N ◦ (on N 0).

The following result generalizes the corresponding one [10, Corollary 2.2.16] stated
for the canonical pairing (C∗; C) over a base :eld to an arbitrary measuring �-pairing
(A; C) over an arbitrary Noetherian ground ring:

Proposition 4.11. Let P = (A; C)∈P�
m, N ∈ CRat(MA) and consider for every f∈N ∗

the R-linear mapping

"f :N → C; "f(n) =
∑

n〈−1〉f(n〈0〉):
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If R is Noetherian then:

RatC(AN ∗) = Sp(�[AC]; AN ∗) :=
∑

Im(g): g∈HomA−(U;N ∗); U ∈ �[AC]

= {f∈N ∗|Af is 3nitely generated} (=Loc(AN ∗))
= {f∈N ∗|∃ an R-co3nite (right) ideal I ⊆ A with f(NI) = 0}
= {f∈N ∗|∃ an R-co3nite A-submodule L ⊆ N with f(L) = 0}
= {f∈N ∗|∃ an R-co3nite C-subcomodule L ⊆ N with f(L) = 0}
= {f∈N ∗|"f(N ) ⊆ C is a 3nitely generated R-submodule}:

Proof. The equality RatC(AN ∗) = Sp(�[AC], AN ∗) follows from 2.3 and Theorem 2.6.
Obviously RatC(AN ∗) ⊆ Loc(AN ∗).
By Theorem 2.6 and Lemma 3.22 f∈Loc(AN ∗) if and only if f(NI) = 0 for an

R-co:nite (right) ideal I/A if and only if f(L)=0 for an R-co:nite right A-submodule
L ⊆ N if and only if f(L) = 0 for an R-co:nite left C-subcomodule L ⊆ N .
Let f∈N ∗ with f(L) = 0 for an R-co:nite left C-subcomodule L ⊆ N . Analogous

to 5.2 in the next section, "f :N → C is C-colinear. Notice that "f(L) = 0 and so
there exists a C-colinear morphism "f :N=L→ C, such that "f ◦$L="f. Consequently
"f(N ) = "f(N=L) is :nitely generated in MR.
To every f∈N ∗ there corresponds the left C-coideal "f(N ) ⊆ C. If "f(N ) is

:nitely generated in MR then ("f(N ))∗ is a right C-comodule by 4.2 and we have for
every n∈N :

�C("f(n)) = �C
(∑

f(n〈0〉)n〈−1〉
)
= f

(∑
�C(n〈−1〉)n〈0〉

)
= f(n);

i.e. f∈ ("f(N ))∗ ⊆ RatC(AN ∗).

As a special case of Proposition 4.11 we get

Corollary 4.12. Let R be Noetherian. For every locally projective R-coalgebra C we
have

RatC(C∗C∗)

=Sp(�[C∗C]; C∗C∗) :=
∑

Im(g) : g∈HomC∗−(U;C∗); U ∈ �[C∗C]

= {f∈C∗|C∗?f is 3nitely generated in MR}
= {f∈C∗|∃ an R-co3nite (right) ideal I / C∗ with f(CI) = 0}
= {f∈C∗|∃ an R-co3nite right C∗-submodule K ⊆ C with f(K) = 0}
= {f∈C∗|∃ an R-co3nite left C-coideal K ⊆ C with f(K) = 0}
= {f∈C∗|f * C ⊆ C is a 3nitely generated R-submodule}:
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4.13. Cofree comodules. A right C-comodule (M; %M ) is called cofree, if there exists
an R-module K , such that (M; %M ) � (K⊗R C; idK ⊗LC) as right C-comodules. Notice
that if K = R(G), a free R-module then M � R(G) ⊗R C � C(G) as right C-comodules
(in fact, this is one reason for the terminology cofree).

Lemma 4.14. Let R be Noetherian and A be a co3nitary R-algebra. Let M be an
R-module and consider the right A-module N := M ⊗R A. Then N ◦ � M∗ ⊗R A◦ as
A◦-comodules (i.e. N ◦ is a cofree right A◦-comodule).

Proof. If N � M ⊗R A as right A-modules then there are isomorphisms in AM:

N ◦ := lim
→
[((M ⊗R A)=(M ⊗R A)I)∗] : I ∈KA

= lim
→
[((M ⊗R A)=(M ⊗R A)Ĩ)∗] : Ĩ ∈EA (A is co:nitary)

= lim
→
[((M ⊗R A)=(M ⊗R Ĩ))∗] : Ĩ ∈EA

� lim
→
[(M ⊗R A=Ĩ)∗] : Ĩ ∈EA

� lim
→
{[M∗ ⊗R (A=Ĩ)∗]} : Ĩ ∈EA (A=Ĩ is f :g: projective in MR);

� M∗ ⊗R lim→
[(A=Ĩ)∗] : Ĩ ∈EA

� M∗ ⊗R A◦ (A is co:nitary):

In contrast with [32, Corollary 2] the following example shows that for an arbitrary
R-algebra A the preradical Loc(−) : AM→ Loc(AM) is in general not a torsion radical:

Counter Example 4.15 (Compare [21, p. 155]). Let R be a :eld and consider the Hopf
R-algebra H := R[x1; x2; : : : ; xn; : : : ], with the usual multiplication in polynomial rings,
the usual unity and comultiplication, counity and antipode de:ned on the generators
through

?(xi) = 1⊗ xi + xi ⊗ 1; �(xi) = 0; S(xi) := (−1)ixi:
If we consider H with the left co:nite topology then (H;Cf l(H)) is a left linear
topological R-algebra with preradical Loc(−) : HM → HM and pretorsion class
Loc(HM) (see 3.20 and Proposition 3.23). If we consider the H -ideal ! := Ke(�H ) then
H=! � R while dim(H=!2) =∞, i.e. !2 �∈KH . So Cf

l(H) is not a Gabriel-topology
and consequently Loc(HM) is not closed under extensions (see [24, Chapter VI,
Theorem 5.1, Lemma 5.3]).

5. Core2exive comodules

In [27,28] Taft developed an algebraic aspect to the study of core�exive coalgebras
over base :elds (i.e. coalgebras C with C � C∗◦). Independently, Heyneman and
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Radford [23,12] studied core%exive coalgebras with the help of the 3nite topology
on C∗. In this section we present and study for every (A; C)∈P�

m over an arbitrary
Noetherian ring the notions of re�exive A-modules and core�exive C-comodules. We
get algebraic as well as topological characterizations for (co)re%exive (co)modules.
Our results will be applied then to the study of (co)re%exive (co)algebras, where we
generalize also results from the papers mentioned above and from [32].
(A; C)-Pairings
In the case of base :elds, Radford [23] presented for every measuring R-pairing

P = (A; C) the so called right (respectively left) P-pairings. In what follows we
consider duality relations for such pairings.

5.1. Let P = (A; C)∈Pm. A pairing of R-modules Q = (M;N ) is called a right
(respectively a left) P-pairing, if M is a right (respectively a left) A-module, N is
a right (respectively a left) C-comodule and the induced mapping �Q :M → N ∗ is
right A-linear. By Qr

P ⊆ P (respectively Ql
P ⊆ P) we denote the subcategory of right

(respectively left) P-pairings with morphisms described as follows: for right (respec-
tively left) P-pairings (M;N ), (M ′; N ′), a morphism of R-pairings

(!; ") : (M ′; N ′)→ (M;N )

is a morphism in Qr
P (respectively in Ql

P) if ! :M → M ′ is A-Linear and " :N ′ → N
is C-colinear.
A P-bi-pairing is an R-pairing (M;N ), where M is an A-bimodule, N is a C-

bicomodule and �Q :M → N ∗ is A-bilinear. With QP we denote the category of
P-bi-pairings with morphisms described as follows: for P-bi-pairings (M;N ); (M ′; N ′),
a morphism of R-pairings

(!; ") : (M ′; N ′)→ (M;N )

is a morphism in QP if ! :M → M ′ is A-bilinear and " :N ′ → N is C-bicolinear. In
particular every measuring R-pairing P is itself a P-bi-pairing.

5.2. Let P = (A; C)∈Pm, Q = (M;N )∈Qr
P and de:ne for every m∈M :

!m: A→ M; a �→ ma for all a∈A;
"m: N → C; n �→

∑
〈m; n〈0〉〉n〈1〉 for all n∈N:

Then we have for all a∈A and n∈N :

〈!m(a); n〉= 〈ma; n〉= 〈m; an〉=
∑
〈m; n〈0〉〉〈a; n〈1〉〉= 〈a; "m(n)〉:
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Obviously !m :A→ M is A-linear. Moreover, it follows for all n∈N and a∈A that
�PN
(∑

"m(n)1 ⊗ "m(n)2
)
(a) =

∑
"m(n)1〈a; "m(n)2〉

= a * "m(n)

=
∑
〈m; n〈0〉〉(a * n〈1〉)

=
∑
〈m; n〈0〉〉n〈1〉1〈a; n〈1〉2〉

=
∑
〈m; n〈0〉〈0〉〉n〈0〉〈1〉〈a; n〈1〉〉

= �PN
(∑

"m(n〈0〉)⊗ n〈1〉
)
(a):

If �PN :N ⊗R C → HomR(A; N ) is injective then∑
"m(n)1 ⊗ "m(n)2 =

∑
"m(n〈0〉)⊗ n〈1〉 for every n∈N;

i.e. "m : N → C is C-colinear and

(!m; "m) : (M;N )→ (A; C)

is a morphism in Qr
P .

Notation. Let P=(A; C)∈Pm and Q=(M;N )∈Qr
P . For R-submodules L ⊆ M , K ⊆ N

we set

K⊥ := {m∈M |〈m;K〉= 0}; AnnM (K) := {m∈M |"m(k) = 0 ∀k ∈K};
L⊥ := {n∈N |〈L; n〉= 0}; AnnN (L) := {n∈N |"m(n) = 0 ∀m∈L}:

As a consequence of Theorem 2.6 one can easily derive the following result:

Lemma 5.3. Let P=(A; C)∈Pm and Q=(M;N )∈Qr
P (respectively Q∈Ql

P , Q∈QP).

1. Every right C-subcomodule (respectively left C-subcomodule, C-subbicomodule)
K ⊆ N is a left A-submodule (respectively a right A-submodule, an A-subbimodule)
and K⊥ ⊆ M is a right A-submodule (respectively a left A-submodule, an A-
subbimodule).

2. Let (A; C)∈P�
m. If L ⊆ M a right A-submodule (respectively a left A-submodule,

an A-subbimodule) then L⊥ ⊆ N is a right C-subcomodule (respectively a left
C-subcomodule, a C-subbicomodule).

The topology Tr
N (M)

Let P = (A; C) be a measuring R-pairing and consider A as a right linear topo-
logical R-algebra with the right C-adic topology T−C(A). For every Q = (M;N )∈Qr

P
we present on M a topology Tr

N (M), such that (M;Tr
N (M)) is a linear topological

(A;T−C(A))-module.
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5.4. Let P = (A; C)∈Pm, Q = (M;N )∈Qr
P and consider C with the canonical right

A-module structure and A as a right linear topological R-algebra with the right C-adic
topology T−C(A) (compare 2.3). If K ⊆ N is an R-submodule and m∈AnnM (K) then
we have for arbitrary n∈K and a∈A:

"ma(n) :=
∑
〈ma; n〈0〉〉n〈1〉

=
∑
〈m; an〈0〉〉n〈1〉

=
∑
〈m; n〈0〉〈0〉〉〈a; n〈0〉〈1〉〉n〈1〉

=
∑
〈m; n〈0〉〉〈a; n〈1〉1〉n〈1〉2

=
[
(�PC ◦Lcop

C )
(∑

〈m; n〈0〉〉n〈1〉
)]
(a)

= [(�PC ◦Lcop
C )("m(n))](a) = 0;

i.e. AnnM (K) ⊆ M is an A-submodule. Let K =
∑l

i=1 Rni ⊆ N be an arbitrary :nitely
generated R-submodule with %N (ni) =

∑li
j=1 nij ⊗ cij for i = 1; : : : ; l and set W :=∑l

i=1

∑li
j=1 Rcij. Let m∈M be arbitrary. If a∈AnnrA(W ) then for i = 1; : : : ; l:

"ma(ni) =
l∑

i=1

li∑
j=1

〈ma; nij〉cij

=
l∑

i=1

li∑
j=1

〈m; anij〉cij

=
l∑

i=1

li∑
j=1

∑
nij

〈m; nij〈0〉〉〈a; nij〈1〉〉cij

=
l∑

i=1

li∑
j=1

∑
cij

〈m; nij〉〈a; cij1〉cij2

=
l∑

i=1

li∑
j=1

〈m; nij〉(cij ( a) = 0;

i.e. (AnnM (K) : m) ⊇ AnnrA(W ) and so it is open with respect to the right C-adic
topology T−C(A). So

B(0M ) := {AnnM (K)|K ⊆ N is a :nitely generated R-submodule}
is neighborhood basis of 0M consisting of A-submodules of M and M becomes a
topology Tr

N (M), such that (M;Tr
N (M)) is a linear topological right (A;T−C(A))-

module.
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Remark 5.5. Let P = (A; C) be a measuring R-pairing. Considering P itself as a right
P-pairing, it turns out that the right linear topology Tr

C(A) and the right C-adic
topology TC−(A) coincide. In fact our de:nition of Tr

N (M) was motivated by that
of TC−(A).

5.6. Let P = (A; C)∈Pm and Q = (M;N )∈Qr
P . Then

F(0M ) := {K⊥|K ⊆ N is a :nitely generated R-submodule}
is a :lter basis consisting of R-submodules of M and induces on M the linear weak
topology M [Tls(N )], such that (M;M [Tls(N )]) is a linear topological R-module and
F(0M ) is a neighborhood basis of 0M .

5.7. Let R be Noetherian, P = (A; C)∈Pm and consider C∗ with the right co3nite
topology Cf r(C∗) (see 3.20). The R-algebra morphism �P :A → C∗ induces on A a
right linear topology �P-Cf

r(A) with neighborhood basis of 0A:

B�P (0A) := {�−1P (J )|J / C∗ is an R-co:nite right ideal}:
By de:nition �P-Cf

r(A) the 3nest linear topology T on A, such that (A;T) is a right
linear topological R-algebra and �P : (A;T)→ (C∗;Cf r(C∗)) is continuous.
Let Q = (M;N )∈Qr

P and consider N
∗
A with the co:nite topology Cf

r(N ∗). The A-
linear mapping �Q :M → N ∗ induces on M a topology �Q-Cf (M) with neighborhood
basis of 0M

B�Q (0M ) := {�−1Q (L)|L ⊆ N ∗ is an R-co:nite A-submodule}:
Clearly �Q-Cf (M) is a linear topological right Cf

r(A)-module and is the 3nest topology
T on M , such that (M;T) is a linear topological right (A;Cf r(A))-module and �Q :
(M;T)→ (N ∗;Cf(N ∗)) is continuous.

Lemma 5.8. Let P = (A; C)∈Pm and Q = (M;N )∈Qr
P .

1. The linear weak topology M [Tls(N )] and the topology Tr
N (M) coincide. So M ,

considered with the linear weak topology, is a linear topological right (A;T−C(A))-
module.

2. If R is Noetherian and P satis3es the �-condition then

M [Tls(N )] � �Q-Cf (M) � Cf(M): (19)

Proof.

1. Let U ⊆ M be a neighborhood of 0M with respect to M [Tls(N )]. Then there exists
a :nitely generated R-submodule K ⊆ N , such that K⊥ ⊆ U . If m∈AnnM (K) then
we have for arbitrary n∈K :

〈m; n〉=
〈
m;
∑

n〈0〉�C(n〈1〉)
〉
= �C

(∑
〈m; n〈0〉〉n〈1〉

)
= �C("m(n)) = 0:

So AnnM (K) ⊆ K⊥ ⊆ U , i.e. U is a neighborhood of 0M with respect to Tr
N (M).
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On the other hand, let U ⊆ M be a neighborhood of 0M with respect to Tr
N (M).

Then there exists a :nitely generated R-submodule K =
∑l

i=1 Rni ⊆ N , such that
AnnM (K) ⊆ U . Assume now that %N (ni) =

∑li
j=1 nij ⊗ cij and set W :=

∑l
i=1

∑li
j=1

Rnij. Then W⊥ ⊆ AnnM (K) ⊆ U , i.e. U is a neighborhood of 0M with respect to
M [Tls(N )]. Consequently M [Tls(N )] = Tr

N (M).
2. Let R be Noetherian and P ∈P�

m. Let U ⊆ M be a neighborhood of 0M with respect
to M [Tls(N )], i.e. there exists a :nitely generated R-submodule K ⊆ N such that
K⊥ ⊆ U . By assumption P ∈P�

m and so there exists by the Finiteness Theorem
2.10 a left A-submodule K̃ ⊆ N , such that K ⊆ K̃ and K̃R is :nitely generated.
Moreover N ∗=An(K̃) ,→ K̃∗, i.e. An(K̃) ⊆ N ∗ is an R-co:nite right A-submodule.
It follows then that �−1Q (An(K̃)) := K̃⊥ ⊆ K⊥ ⊆ U , i.e. U is a neighborhood of
0M with respect to �Q-Cf (M).
On the otherhand, let U ⊆ M be a neighborhood of 0M with respect to �Q-Cf (M),
i.e. there exists an R-co:nite A-submodule L ⊆ N ∗ such that �−1Q (L) ⊆ U . Then
M=�−1Q (L) ,→ N ∗=L, and so �−1Q (L) ⊆ M is an R-co:nite A-submodule. Consequently
U is a neighborhood of 0M with respect to Cf (M).

De�nition 5.9. Let P = (A; C)∈Pm and Q = (M;N )∈Qr
P .

1. If P ∈P�
m then we call Q weakly core�exive, if N =Mr .

2. If R is Noetherian then we call Q core�exive, if M [Tls(N )] = Cf (M).
3. We call Q proper (respectively weakly re�exive, re�exive), if �Q :M → N ∗ is
injective (respectively surjective, bijective).

De�nition 5.10.

1. Let C be an R-coalgebra and N be a right C-comodule.
(a) If RC is locally projective then we call N weakly core�exive, if N = N ∗ .
(b) If R is Noetherian then we call N core�exive, if N ∗[Tls(N )] = Cf

r(N ∗).
2. Let R be Noetherian and A be an R-algebra. We call a right A-module M

proper (respectively weakly re�exive, re�exive), if the canonical A-linear mapping
FM :M → M◦∗ is injective (respectively surjective, bijective).

Remark 5.11.

1. Consider the ground ring R as a trivial R-bialgebra. Then R∗ � R, MR � MR

and for every R-(co-)module N we have N ∗∗ = RatR(N ∗∗) = Loc(R∗N ∗∗). So N is
(co)re%exive if and only if N is re%exive in the usual sense, i.e. if the canonical
R-linear mapping HN :N → N ∗∗ is bijective.

2. For every P=(A; C)∈P�
m we have C =Ar (by Corollary 2.9 (1)) and so P ∈Qr

P is
weakly core%exive.

Proposition 5.12. Let R be Noetherian, A be an R-algebra and denote with Cf(A) the
left (or the right) co3nite topology.
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1. If A is proper, i.e. the canonical mapping FA :A→ A◦∗ is injective, then Cf(A) is
Hausdor@.

2. Let A be co3nitely R-cogenerated. Then A is proper if and only if Cf(A) is Haus-
dor@.

3. Assume R to be a QF ring. Then A is proper if and only if Cf(A) is Hausdor@ if
and only if A◦ ⊆ A∗ is dense.

Proof.

1. Obviously 0A :=
⋂

KA
I ⊆ Ker(FA) and the result follows.

2. Assume Cf (A) to be HausdorU. If A is not proper then there exists some 0 �= ã∈A,
such that f(ã) = 0 for every f∈A◦. If I / A is an arbitrary R-co:nite two-sided
A-ideal then ã∈KeAn(I)=I (compare [31, 28.1]) and so

⋂
KA

I �= 0 (contradiction).
3. By [2, Theorem 1.8 (1)] we have

A◦ =AnKe(A◦) = An

(
Ke

(∑
I∈KA

An(I)

))

=An

(⋂
I∈KA

KeAn(I)

)
=An

(⋂
I∈KA

)
:

So A◦ ⊆ A∗ is dense if and only if
⋂

KA
I = 0.

Lemma 5.13 (Krull’s Theorem). Let A be a commutative Noetherian ring. For every
:nitely generated A-module M and every A-ideal I / A we have

∞⋂
k=0

MIk+1 = {m∈M |∃b∈ I; such that m(1A − b) = 0}:

The following result was obtained in [25, 6.1.3] for commutative aBne algebras
over base :elds:

Lemma 5.14. Let R be a QF ring and A be a commutative Noetherian R-algebra. If
every maximal A-ideal is R-co3nite then A◦ ⊆ A∗ is dense.

Proof. Let 0 �= a∈A be arbitrary and consider the A-ideal J := (0 : a). Let m / A
be a maximal A-ideal, such that J ⊆ m. Sine A is Noetherian, mA is :nitely gen-
erated. If a∈⋂∞k=0mk+1 then there exists by Krull’s Theorem some b∈m, such that
a(1A − b) = 0 and so 1A ∈m (contradiction). So there exists k¿ 0, such that a �∈
mk+1. By assumption m ⊆ A is R-co:nite and it follows then from Lemma 2.14 that
mk+1 ⊆ A is R-co:nite, i.e. a �∈ ⋂KA

I . Since 0 �= a∈A is arbitrary by our choice,
it follows that

⋂
K(A) I = 0, i.e. A is proper and consequently A◦ ⊆ A∗ is dense by

Proposition 5.12.

Analogous to the proof of Proposition 5.12 we get
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Proposition 5.15. Let R be Noetherian, A be an R-algebra and M be a right
A-module.

1. If M is proper then Cf(M) is Hausdor@.
2. Let M be co3nitely R-cogenerated. Then Cf(M) is Hausdor@ if and only if M is

proper.
3. Assume R to be a QF ring. Then M is proper if and only if Cf(M) is Hausdor@

if and only if M◦ ⊆ M∗ is dense.

Theorem 5.16. Let R be Noetherian, P = (A; C)∈P�
m and Q = (M;N )∈Qr

P .

1. If Q is core�exive then Mr =M◦.
2. Let M be co3nitely R-cogenerated.

(a) If N
 Q�M◦ then Q is core�exive.

(b) Let Q be weakly core�exive. Then Q is core�exive if and only if N
 Q�M◦.

Proof.

1. Assume Q to be core%exive and consider A and M with the linear weak
topology A[Tls(C)], M [Tls[N ]) respectively. Let f∈M∗ with f(L) = 0 for an
R-co:nite A-submodule L ⊆ M , say M=L =

∑k
i=1 R(mi + L). By assumption

M [Tls(N )]=Cf (M) and so L is open with respect to M [Tls(N )]. By [2, Corollary
1.9] !mi :A→ M is continuous and so there exist :nitely generated R-submodules
Z1; : : : ; Zk ⊆ C, such that Z⊥i ⊆ !−1mi

(L). Consequently (
∑k

i=1 Zi)
⊥ =

⋂k
i=1 Z

⊥
i ⊆

(0M∗ : f), i.e. f∈Mr (by Proposition 2.11). Obviously Mr ⊆ M◦ and the result
follows.

2. Let M be co:nitely R-cogenerated.

(a) Assume that N
 Q�M◦. Let L ⊆ M be an R-co:nite A-submodule with {f1; : : : ; fk}

a generating system of An(L) � (M=L)∗. Then there exists by assumption
{n1; : : : ; nk} ⊂ N , such that  Q(ni) = fi. By [31, 28.1] we have then(

k∑
i=1

Rni

)⊥
=

k⋂
i=1

Ker(fi) = Ke

(
k∑

i=1

Rfi

)
=KeAn(L) = L;

i.e. L is open with respect to M [Tls(N )]. Consequently Cf (M) � M [Tls(N )].
By Lemma 5.8 (2) M [Tls(N )] � Cf(M) and so M [Tls(N )] = Cf (M), i.e. Q
is core%exive.

(b) The result follows from (1) and (a).

Corollary 5.17. Let R be Noetherian and C be a locally projective R-coalgebra.

1. If N is core�exive then N ∗ = N ∗◦.
2. Let N ∗ be co3nitely R-cogenerated.
(a) If N � N ∗◦ then N is core�exive.
(b) Let N be weakly core�exive. Then N is core�exive if and only if N � N ∗◦.
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Theorem 5.18. Let R be Noetherian and P = (A; C)∈P�
m.

1. If P is core�exive then C = A◦.
2. Assume R to be Artinian. Then P is core�exive if and only if all R-co3nite A-ideals

are closed with respect to A[Tls(C)] =T−C(A).
3. If A is co3nitely R-cogenerated then the following statements are equivalent:
(i) P is core�exive;
(ii) C = A◦.
(iii) every locally 3nite left A-module is C-rational, i.e. Loc(AM) = �[AC].

Proof.

1. By Corollary 2.9 (1) C = Ar and so the result follows from Theorem 5.16 (1).
2. Let R be Artinian. By [2, Lemma 1.7 (4)] every R-co:nite closed A-ideal is open
and the result follows.

3. (i) if and only if (ii) follows from Theorem 5.16 (3).
(ii) ⇒ (iii) By assumption and Proposition 3.23 (2) Loc(AM) = �[AA◦] = �[AC].
(iii) ⇒ (ii) Assume all locally :nite left A-modules to be C-rational. Then in
particular AA◦ is C-rational and it follows from Corollary 2.9 (2) that C = A◦.

Corollary 5.19. Let R be Noetherian and C be a locally projective R-coalgebra.

1. If C is core�exive then the canonical R-linear mapping OC :C → C∗∗ induces an

isomorphism C
HC�C∗◦.

2. Let R be Artinian. Then C is core�exive if and only if all R-co3nite C∗-ideals are
closed with respect to the 3nite topology.

3. If C∗ is co3nitely R-cogenerated then the following statements are equivalent:
(i) C is core�exive;
(ii) C � C∗◦;
(iii) every locally 3nite left C∗-module is C-rational.

As a consequence of Lemma 3.22 and Theorem 5.18 (3) get we

Proposition 5.20. Let R be Noetherian. If A is a co3nitely R-cogenerated �-algebra
and M is a right A-module with structure map OM :M ⊗R A → M then for every
f∈M∗ the following statements are equivalent:

1. f∈M◦,
2. O∗M (f)∈M◦ ⊗R A◦,
3. O∗M (f)∈M◦ ⊗R A∗,
4. O∗M (f)∈M∗ ⊗R A∗,
5. Af is 3nitely generated in MR,
6. f(MI) = 0 for an R-co3nite (right) A-ideal,
7. f(L) = 0 for an R-co3nite right A-submodule L ⊆ M .
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Analogous to [28] we get

Corollary 5.21. Let R be a QF ring.

1. A projective R-coalgebra C is core�exive if and only if C∗ is a re�exive R-algebra.
2. Let A be an �-algebra. If A is weakly re�exive then A◦ is a core�exive R-coalgebra.

Example 5.22 ([17, Example 5]). Let R be a :eld and consider the Hopf R-algebra
(H; �; �; ?; �; S) with countable basis {h0; h1; h2; : : :} and

�(hn ⊗ hk) :=

(
n+ k

n

)
hn+k ; ?(hn) :=

∑
i+j=n

hi ⊗ hj; S(hn) := (−1)nhn:

�(1R) := h0; �(hn) := )0; n:

1. H∗ � R[[x]] is a principal ideal domain and

MH � RatH (H∗M) = {M ∈ H∗M |M is a torsion module}:

So RatH (−) is a radical and RatH (H∗M) is closed under extensions.
2. H := RatH (HH∗) = 0.
3. There exists no :nite dimensional nonzero projective right H -comodules.
4. H � H∗◦, i.e. H is a core%exive R-coalgebra.
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