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In this paper, a semi-orthogonal cubic spline wavelet basis of
homogeneous Sobolev space H2

0(I) is constructed, which turns out
to be a basis of the continuous space C0(I). At the same time, the
orthogonal projections on the wavelet subspaces in H2

0(I) are ex-
tended to the interpolating operators on the corresponding wavelet
subspaces in C0(I). A fast discrete wavelet transform (FWT) for
functions in C0(I) is also given, which is different from the pyra-
mid algorithm and easy to perform using a parallel algorithm.
Finally, it is shown that the singularities of a function can be
traced from its wavelet coefficients, which provide an adaptive
approximation scheme allowing us to reduce the operation time
in computation. c© 1996 Academic Press, Inc.

1. INTRODUCTION

The use of polynomial splines is widespread in numeri-
cal analysis and many other fields because they have simple
structure, good localization properties, and computing sta-
bility. (See [7].) Based on this fact, recently splines have
often been used to construct wavelet bases. (See [1–3, 6,
11, 12, 14, 17].) In applications, wavelets on a bounded in-
terval are also very useful. Chui and Quak first constructed
spline wavelet bases of L2(I) (see [4]). A general discussion
of the construction of wavelets on the interval [0, 1] can be
found in Micchelli and Xu [13]. The aim of this paper is to
construct a (semiorthogonal) cubic spline wavelet basis for
the Sobolev space on a bounded interval and to present its
properties.

Let I = [a, b] be a bounded interval. The homogeneous
Sobolev space H2

0(I) can be defined by

H2
0(I) = {f : f" ∈ L2(I), f(a) = f′(a) = f(b) = f′(b) = 0}.

1The author is supported by National Science Foundation Grant DMS-
9503282.

Equipped with the inner product
∫
I f"g", H2

0(I) is a Hilbert
space, in which cubic splines on I with dyadic knots are
dense. Hence the cubic B-spline creates a multiresolution
analysis for space H2

0(I). In a way similar to that in [3],
we can construct a semiorthogonal cubic spline wavelet
and its dual in H2

0(I). Since H2
0(I) is dense in the space

C0(I) := {f : f ∈ C(I), f(a) = f(b) = 0} equipped with the
uniform norm ‖f‖ := maxx∈I |f(x)|, a basis of H2

0(I) is also
a basis of C0(I). Furthermore, the interpolation operator in
the spline subspace of C0(I) turns out to be the extension
of the orthogonal projection in H2

0(I). Then the correspond-
ing Fast Wavelet Transform (FWT) can be performed as
a multilevel interpolation procedure which computes the
wavelet coefficients on the different levels simultaneously.
Meanwhile, the singularities of functions in C0(I) can be
characterized by their wavelet coefficients with respect to
this basis. Based on this fact, an adaptive approximation
scheme is designed to reduce the operation time.

The outline of this paper is as follows. In Section 2, we
construct the semiorthogonal cubic spline wavelet basis of
H2

0(I). In Section 3, we describe the singularities of func-
tions by their wavelet coefficients. Finally, an FWT algo-
rithm and an adaptive approximation scheme are presented
in Section 4.

2. CUBIC SPLINE WAVELET BASIS OF H2
0

Let I = [0, L], where L is a positive integer (for the sake
of simplicity, we assume that L á 4). For any j ∈ Z+, we
define the cardinal spline space Sj by

Sj = {s(x); s ∈ C2(I) and s(x) ∈ π3, x ∈ [x
j
k, x

j
k+1]

for k = 0, . . . , nj − 1},

where πk is the set of all polynomials of degree no greater

than k, x
j
k = k/2j, and nj = 2jL. Later the knot set {xjk}

nj−1
k=1

will be denoted by ∆j.
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Let S0
j := Sj

⋂
H2

0(I).{S0
j}∞
j=0 forms a multiresolution ap-

proximation of H2
0(I) in the following sense:

S0
0 ⊂ S0

1 ⊂ S0
2 ⊂ · · · ⊂ S0

j ⊂ · · ·
and

∞⋃
j=0

S0
j = H2

0(I).

We define

φ(x) =
1
6

4∑
j=0

(
4
j

)
(−1)j(x− j)3

+

φb(x) = 3
2x

2
+ − 11

12x
3
+ + 3

2 (x− 1)3
+ − 3

4 (x− 2)3
+,

where

xn+ =

{
xn if x á 0

0 otherwise,

and denote, for any j, k ∈ Z,

φj,k(x) = φ(2jx− k), φb,j(x) = φb(2jx),

φr,j(x) = φb,j(L − x). (2.3)

The set {φj,k, φb,j, φr,j}
nj−4
k=0 is a basis of the space S0

j

(see [7]).
In order to construct a wavelet basis, we introduce the

following lemma.

Lemma 2.1. A function g ∈ H2
0(I) is orthogonal to the

space S0
j if and only if

g(x
j
k) = 0, k = 1, · · · , nj − 1. (2.4)

Proof. This is derived from the fact that for any g ∈
H2

0(I), s ∈ S0
j ,

〈g, s〉 =
∫
I
g"(x)s"(x)dx

=
nj−1∑
k=1

g(x
j
k)[s

(3)(x
j
k+) − s(3)(x

j
k−)].

Let Wj be the orthogonal compliment of S0
j in S0

j+1. From
Lemma 2.1, we know that any function in Wj satisfies (2.4).
Now we define two functions ψ(x), ψb(x) ∈ W0,

ψ(x) = − 3
7φ(2x) + 12

7 φ(2x− 1) − 3
7φ(2x− 2) (2.5)

ψb(x) = 24
13φb(2x) − 6

13φ(2x). (2.6)

We set

ψj,k(x) = ψ(2jx− k), ψb,j(x) = ψb(2jx),

ψr,j(x) = ψb,j(L − x). (2.7)

It is easy to verify that {ψj,k}
nj−3
k=0

⋃
{ψb,j, ψr,j} ⊂ Wj

forms a basis of Wj. For convenience, we set ψ−1,k =
φ0,k, ψ−1,−1 = φb,0, ψ−1,L−3 = φr,0, n−1 = L − 1, and
W−1 = S0

0. Similarly, for j á 0, we set ψb,j = ωj,−1 and
ψr,j = ψj,nj−2. By these notations, we have

H2
0(I) =

⊕
já−1

Wj

and that {ψj,k; −1 à k à nj − 2, j á 0} forms a basis of
H2

0(I). The following theorem confirms that it becomes an
unconditional basis when they are stretched.

Theorem 2.2. Let Bj = {2−3j/2ψj,k}
nj−2
k=−1,−1 à j < ∞.

Then B :=
⋃∞
j=−1 Bj is an unconditional basis of H2

0(I).

Proof. Recall that Wj ⊥ Wk, if k ≠ j. The theorem
will be proved if we can verify that, for any sequence
{dj,k}

nj
k=1, 0 à j < ∞,

c1

( nj∑
k=1

d2
j,k

)1/2

à ‖
nj∑
k=1

dj,k2−3j/2ψj,k−2‖H2
0

à c2

( nj∑
k=1

d2
j,k

)1/2

, (2.8)

where c1 and c2 are two constants independent of j. Note
that, for 0 à j < ∞,

‖
nj∑
k=1

dj,k2−3j/2ψj,k−2‖H2
0

=
nj∑

k,l=1

dj,kdj,lα
(j)
k,l, (2.9)

where

α
(j)
k,l = 2−3j

∫
I
ψ′′
j,k−2(x)ψ′′

j,l−2(x)dx, 1 à k, l à nj. (2.10)

Now we write

A(j) = (α
(j)
k,l)nj×nj . (2.11)

By (2.10), α
(j)
k,l can be represented as

α
(j)
k,l =

∫
2jI
ψ

(4)
0,k−2(x)ψ0,l−2(x)dx, 1 à k, l à nj,

from which it follows that

A(j) = 3
7 × 27Γj, (2.12)

where

Γj = NjMj (2.13)
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with

Nj =



70
13

14
13

1 4 1
. . .

. . .
. . .

1 4 1
14
13

70
13


(2.14)

and

Mj =

1 − 1
14

− 1
13 1 − 1

14
− 1

14 1 − 1
14

. . .
. . .

. . .
− 1

14 1 − 1
14

− 1
14 1 − 1

13
− 1

14 1


. (2.15)

Since both Nj and Mj are diagonally dominant, (2.8) is
true.

An unconditional basis of H2
0(I) provides a one-to-one

mapping from H2
0(I) to l2. Therefore we have the following.

Corollary 2.1. Let f =
∑∞

j=−1
∑nj

k=1 dj,kψj,k−2. Then
f ∈ H2

0(I) if and only if

∞∑
j=−1

nj∑
k=1

23jd2
j,k < +∞.

We remark that an advantage of expanding a function to a
series of the basis B is that the coefficients in the expansion
can be obtained by interpolation. In order to illustrate this
fact, we derive representations of the orthogonal projections
Pj : H2

0(I) → S0
j and Qj : H2

0(I) → Wj, respectively. Let

∆̄j = ∆j+1 \ ∆j; that is, ∆̄j = {x̄jk}
nj
k=1, where x̄

j
k = (2k −

1)/2j+1). For any function f, we set

fj = f(∆j) = {f(x
j
k)}

nj−1
k=1 ,

f̄j = f(∆̄j) = {f(x̄
j
k)}

nj
k=1. (2.16)

By the Schoenberg–Whitney Theorem [16], there is a
unique (interpolatory) spline sf(w̄f) in S0

j (W
0
j ) such that

sf := sf(∆j) = fj (w̄f := wf(∆̄j) = f̄j).

Now we define the interpolatory operators Isj : H2
0(I) → S0

j

by Isj(f) = sf and Iwj : H2
0(I) → Wj by Iwj (f) = wf. Let I be

the identity operator on H2
0(I).

Theorem 2.3. Pj = Isj, Qj = Iwj (I−Isj). Therefore, Pj+1 =
Pj +Qj, I

s
j+1 = Isj

⊕
Iwj , where Isj

⊕
Iwj is the tensor sum of

the operators Isj and Iwj , defined by Isj
⊕

Iwj = Isj+Iwj −Iwj Isj.

Proof. For any f ∈ H2
0(I), 〈(I−Isj)f, Isjf〉 = 0 ⇒ Isj = Pj.

Now ∀f ∈ S0
j+1, (I−Isj)f ∈ Wj and Iwj (I−Isj)f = (I−Isj)f.

It follows that f = Isjf + Iwj (I − Isj)f. On the other hand,
∀f ∈ Wj, I

w
j (I−Isj)f = Iwj f = f. Hence Iwj (I−Isj) = Qj.

The operators Isj and Iwj can be extended on the space
C0(I) in a natural way. Let

Vj = Sj
⋂
C0(I), 0 à j < ∞,

and

Wj = spanC0(I)
{ψj,k}

nj−2
k=−1.

(For simplicity, we use the same notation Wj to denote both
the wavelet subspaces in H2

0(I) and C0(I).) It is clear that
Isj and Iwj are also operators from C0(I) to Vj and Wj re-
spectively. Furthermore, since H2

0(I) is dense in C0(I), we
obtain the following corollary from Theorem 2.2.

Corollary 2.2. ∀f ∈ C0(I),

lim
j→∞

‖(I− Isj)f‖ = 0

and the wavelet basis B of H2
0(I) is also a basis of C0(I).

3. DUAL BASIS AND REGULARITY ANALYSIS

From the previous section we know that any function in
C0(I) can be decomposed into the following series

f =
∞∑

j=−1

nj∑
k=1

dj,kψj,k−2. (3.1)

In this section, we want to obtain a formula for calculat-
ing the coefficients dj,k and then to describe the regularities
of the function f by using these coefficients. For this pur-
pose, at first we construct the dual basis of the basis B in
Theorem 2.2.

Let B∗
j denote the dual basis of Bj in the subspace Wj,−1

à j < ∞, that is, B∗
j = {ψ∗

j,k}
nj−2
k=−1 with ψ∗

j,k ∈ Wj and

〈ψ∗
j,k, ψj,k′ 〉 = δk,k′ , −1 à k, k′ à nj. (3.2)

Since Wj,−1 < j < ∞, are mutually orthogonal, B∗ =⋃∞
j=−1 B

∗
j is the dual of B. Then the wavelet coefficient dj,k

for f ∈ H2
0(I) can be computed by the formula

dj,k = 〈f, ψ∗
j,k−2〉. (3.3)
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Recall that ψ∗
j,k−2 ∈ Wj. Hence it has an expansion on the

basis {ψj,k−2; 1 à k à nj} and the coefficients of its ex-
pansion come from the entries of the inverse of the matrix

A(j) in (2.11). By writing (A(j))−1 := (β
(j)
k,l)nj×nj , we have

the following

Lemma 3.1. For j á 0,

ψ∗
j,k−2 = 2−3j

nj∑
l=1

β
(j)
k,lψj,l−2. (3.4)

Therefore, ∀f ∈ H2
0(I), j á 0,

dj,k = 2−3j
nj∑
l=1

β
(j)
k,l〈f, ψj,l−2〉. (3.5)

Now we are ready to estimate β
(j)
k,l. First we introduce a

general result about the inverse of a tridiagonal matrix.

Lemma 3.2. Let |a| < 1/2, 0 < |b| < 1/2, and T be a
tridiagonal matrix in the form

T =



1 b
a 1 b
b 1 b

. . .
. . .

. . .
b 1 b

b 1 a
b 1


n×n

. (3.6)

Then T is invertible and the element of T−1 := (τk,l)n×n
satisfies the inequality

|τl,k| à



∣∣∣∣αβ|k−l|

α+ a

∣∣∣∣, l = 1, n,

∣∣∣∣ β|k−l|

b(α− β)

∣∣∣∣, 1 < l < n,

(3.7)

where

α =
−1 −

√
1 − 4b2

2b
and β =

−1 +
√

1 − 4b2

2b
.

Proof. For any fixed l, the sequence (τl,k)
n
k=1 satisfies the

difference equation

bτl,k−1 + τl,k − bτl,k+1 = δl,k, k = 2, · · · , n− 1 (3.8)

with the boundary conditions{
τl,1 + ατl,2 = δl,1
ατl,n−1 + τl,n = δl,n.

(3.9)

The solution of (3.8) and (3.9) is

τ1,k =
α[(α+ a) − (β+ a)β2(n−k−1)]

(α+ a)2 − (β+ a)2β2(n−3) βk−1,

1 à k à n,

τl,k =

[(α+ a) − (β+ a)β2(l−2)]
× [(α+ a) − (β+ a)β2(n−k−1)]

b(β− α)[(α+ a)2 − (β+ a)2β2(n−3)]
βk−l, (3.10)

2 à l à k à nj − 1

τl,k = τn−l+1,n−k+1, k à l.

Since ∣∣∣∣∣ (α+ a) − (β+ a)β2(n−k−1)

(α+ a)2 − (β+ a)2β2(n−3)

∣∣∣∣∣ à
∣∣∣∣ 1
α+ a

∣∣∣∣
and∣∣∣∣∣ [(α+ a) − (β+ a)β2(l−2)][(α+ a) − (β+ a)β2(n−k−1)]

[(α+ a)2 − (β+ a)2β2(n−3)]

∣∣∣∣∣
à 1, 2 à l à k,

we obtain (3.7).

Lemma 3.3. Let j á 0 and λ = 2 −
√

3. Then the coeffi-

cient β
(j)
k,l in (3.5) satisfies

|β(j)
k,l| à 2−7λ|l−k|, 1 à k, l à nj. (3.11)

Proof. It is clear that the matrix Mj in (2.15) is in the
form of (3.6) with a = −1/13 and b = −1/14. Write
M−1

j = (m
(j)
l,k)nj×nj . By Lemma 3.2,

0 < m
(j)
j,k <

7
√

3
12

(7 − 4
√

3)|l−k|.

On the other hand, the matrix Nj can be factored as
Nj = DjSj, where Dj is an nj order diagonal matrix
Dj = diag{ 70

13 4 · · · 4 70
13 } and ST

j is an nj order tridiago-

nal matrix in the form of (3.6) with a = 1
5 and b = 1

4 .

Hence, the element of N−1
j := (η

(j)
k,l)nj×nj satisfies

0 < (−1)l−kη(j)
l,k <

√
3

6
(2 −

√
3)|l−k|.

Now writing Γ−1
j = (γ̄

(j)
k,l)nj×nj , we have

|γ̄(j)
l,k| = |

nj∑
s=1

m
(j)
k,sη

(j)
s,l |

à
7
24

(
1 +

λ

1 + λ
+

λ3

1 − λ3

)
λ|l−k| à

3
7
λ|l−k|.
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Recalling that A−1
j = 7

3 · 2−7Γ−1
j , we obtain (3.11).

Now we return to expansion (3.1). Before we employ
formula (3.5) to calculate the coefficients dj,k for a function
f ∈ C0(I), we have to extend the inner product 〈f, ψj,l−2〉
to it. Such an extension is given in the following theorem.

Theorem 3.4. For f ∈ C0(I), the inner product
〈f, ψj,k−2〉 can be defined by

〈f, ψj,k−2〉 = 23juj,k, 1 à k à nj, (3.12)

where

uj,1 = 3·25

13 (40f(2−(j+1)) − 24f(2 · 2−(j+1))

+ 8f(3 · 2−(j+1)) − f(4 · 2−(j+1)))

uj,l = − 3·25

7 (f(2−j(l− 2)) − 8f(2−j(l− 3/2))

+ 23f(2−j(l− 1)) − 32f(2−j(l− 1/2)) (3.13)

+ 23f(2−jl) − 8f(2−j(l+ 1/2))

+ f(2−j(l+ 1))), 1 < l < n,

uj,nj = 3·25

13 (40f(L − 2−(j+1)) − 24f(L − 2 · 2−(j+1))

+ 8f(L − 3 · 2−(j+1)) − f(L − 4 · 2−(j+1))).

Therefore, the coefficient in the decomposition series (3.1)
for f ∈ C0(I) is given by

dj,k =
nj∑
l=1

β
(j)
k,luj,l, 1 à k à nj, 0 à j < ∞. (3.14)

Proof. Recall that the functions ψj,l, j á 0,−1 à l à

nj − 2, are given by (2.5)–(2.7). Then, ∀f ∈ H2
0(I), by

direct calculation, we obtain the inner production formula
(3.13). Note that uj,k in formula (3.13) is a bounded linear
functional on C0(I). Since H2

0(I) is dense in C0(I), we can
extend 〈f, ψj,l−2〉 to any function f ∈ C0(I) by (3.12), and
calculate its coefficient by (3.14).

Now we consider the regularity of the wavelet se-
ries (3.1).

Definition 3.1. Let α be a positive number and n = bαc
be the largest integer in the interval [0, α). A function f
continuous on I is said to be uniformly Lipα on I, if f(n)

exists on I and satisfies

|f(n)(x) − f(n)(y)| à M|x− y|α−n, ∀x, y ∈ I, (3.15)

where M > 0 is a constant. The space containing all func-
tions uniformly Lipα on I is denoted by Cα(I).

When α is an integer, the space Cα(I) is a proper subspace
of Cα(I). The subspace Cα

0 (I) of C0(I) is defined as

Cα
0 (I) =


Cα(I)

⋂
C0(I), if 0 < α < 1,

Cα(I)
⋂
C1

0(I), if 1 à α,

where C1
0(I) is the space containing all such functions in

C1(R) that are supported on I.
The index α in the definition reflects the global regularity

of a function. The following theorem states that the regu-
larity of a function can be characterized by the decay rate
of its wavelet coefficients as the “level index” j tends to
infinity.

Theorem 3.5. For any positive number α, 0 < α à 3,
the wavelet series (3.1) is in space Cα

0 (I) if and only if

|dj,k| à C2−αj, 1 à k à nj, 0 à j à ∞, (3.16)

where C is a positive constant independent of j.

Proof. Write

∆n
jf(x) =

n∑
s=0

(−1)s
(
n
s

)
f(2−j(x+ s/2)).

If f ∈ Cα
0 (I) for 0 < α à 3, by (3.13), for j á 0, we have

uj,1 =

3 · 25

13

(
−23∆jf(0) + 17∆jf

(
1
2

)

− 7∆jf(1) + ∆jf

(
3
2

))
, 0 < α < 1,

3 · 25

13

(
− 12∆jf(0) − 11∆2

jf(0)

+ 6∆2
jf

(
1
2

)
− ∆2

jf(1)
)
, 1 < α < 2,

3 · 25

13

(
− 12∆jf(0) − 6∆2

jf(0)

− 5∆3
jf(0) + ∆3

jf

(
1
2

))
, 2 < α < 3,

(3.17)
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uj,l =



−3 · 25

7

(
∆jf(l− 2) − 7∆jf

(
l− 3

2

)
+16∆jf(l− 1) − 16∆jf

(
l− 1

2

)
+ 7∆jf(l) − ∆jf

(
l+ 1

2

))
, 0 < α < 1,

−3 · 25

7

(
∆2
jf(l− 2) − 6∆2

jf
(
l− 3

2

)
(3.18)

+ 10∆2
jf(l− 1) −6∆2

jf
(
l− 1

2

)
+ ∆2

jf(l)
)
,

1 < α < 2,

−3 · 25

7

(
∆3
jf(l− 2) − 5∆3

jf
(
l− 3

2

)
+ 5∆3

jf(l− 1) −∆3
jf
(
l− 1

2

))
, 2 < α < 3,

uj,nj =



3 · 25

13

(
23∆jf

(
L − 1

2

)
− 17∆jf(L − 1)

+ 7∆jf
(
L − 3

2

)
− ∆jf(L − 2)

)
,

0 < α < 1,

3 · 25

13

(
12∆jf

(
L − 1

2

)
− 11∆2

jf(L − 1)

+ 6∆2
jf
(
L − 3

2

)
− ∆2

jf(L − 2)
)
, (3.19)

1 < α < 2,

3 · 25

13

(
12∆jf

(
L − 1

2

)
− 6∆2

jf(L − 1)

+ 5∆3
jf
(
L − 3

2

)
− ∆3

jf(L − 2)
)
,

2 < α < 3.

Since f ∈ Cα
0 , we have

|uj,k| à C2−jα, 1 à k à nj,

where C is a constant independent of j. By (3.14),

|dj,k| à
nj∑
k=1

|β(j)
k,l||uj,l| à C2−jα

nj∑
k=1

|βk,l(j)| à C2−jα,

which proves (3.16).
Now assuming that (3.16) is true, we prove f ∈ Cα

0 (I).
Let n = bαc. Note that, ∀x, y ∈ I,

|f(n)(x) − f(n)(y)| à
∞∑

j=−1

nj∑
k=1

|dj,k||ψ(n)
j,k(x) − ψ

(n)
j,k(y)|

à C
∞∑

j=−1

nj∑
k=1

2−j(α−n)|ψ(n)(2jx− k)

− ψ(n)(2jy − k)|.

If we choose J such that 2−J à |x− y| à 2−J+1, then

∑
j<J

nj∑
k=1

2j(n−α)|ψ(n)(2jx− k) − ψ(n)(2jy − k)|

à C
∑
j

∑
k∈Kj,x,y

2j(n+1−α)Mn+1|x− y|,

whereMn = maxx∈I |ψ(n)(x)|, Kj,x,y = [(2jx−3, 2jx)
⋃

(2jy−
3, 2jy)]

⋂
Z.

Noting that |Kj,x,y| à 6, we obtain

|
∑
jàJ

∑
k

| à 6Mn+1C|x− y|
∑
jàJ

2(n+1−α)j

à C|x− y|2(n+1−α)J à C|x− y|α−n.

On the other hand,

|
∑
j>J

∑
k

| à 12MnC
∑

j>J 2−j(α−n)

à C2−J(α−n) à C|x− y|α−n.

Combining these two inequalities, we establish (3.15).

The decay rate of the wavelet coefficients of a function
not only provides the global regularity of the function but
also gives its local regularity information. Now we discuss
the local regularity of a function in detail.

Definition 3.2. Let α be a positive number, n = bαc,
and x0 ∈ I. We say that a function f belongs to Cαx0 if there
exists a polynomial Pn of degree n such that

f(x) = Pn(x− x0) + ◦(|x− x0|α). (3.20)

Then space (Cα
x0 )0 is defined by

(Cα
x0 )0 =

 Cα
x0

⋂
C0(I), if 0 < α < 1,

Cα
x0

⋂
C1

0(I), if 1 à α.

The following theorem gives a wavelet criterion of the
local regularity.

Theorem 3.6. If f ∈ (Cα
x0 )0 for x0 ∈ I and 0 < α < 4,

then

|dj,k| à C2−jα(1 + |2jx0 − k|α). (3.21)

Conversely, if (3.21) holds and f ∈ C0(I) is uniformly Cβ

for a positive number β, then there exists a polynomial of
degree n = bαc such that

|f(x) − Pn(x− x0)| à C|x− x0|α log
2

|x− x0| . (3.22)

Proof. From (3.18) we have that for any polynomial P ∈
π3
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uj,l(P) = 0, 2 à l à nj − 1, (3.23)

where uj,l(f) specifies the expression uj,l in (3.14) for a
particular function f. By (3.13), we have, for 2 à l à nj−1,

|uj,l(f)| = |uj,l(f − P(· − x0))|

à C
2∑

k=−4

∣∣∣∣ l+ k/2
2j

− x0

∣∣∣∣α
à C2−jα(1 + |l− 2jx0|α).

In order to estimate uj,1 and uj,nj , we write Ll(x) =
Pn(−x0) − P′

n(−x0)x, Pln(x) = Pn(x − x0) − Ll(x), Lr(x) =
Pn(L−x0)+P′

n(L−x0)(L−x), and Prn(x) = Pn(x−x0)−Lr(x).
Then uj,1(Pln) = uj,nj (P

r
n) = 0.

Now if 0 < α à 1,

uj,l(Ll) = Pn(−x0)ul,1(1) − Pln(−x0)ul,1(·)

à ◦(|x0|α) + ◦(2−j)

à C2−αj(|1 − 2jx0|α + 1).

If 1 < α, then f′(0) = 0 holds. By (3.20), we have
Pn(−x0) = ◦(|x0|α) and P′

n(−x0) = ◦(|x0|α−1). From (3.17),
we obtain uj,1(·) = ◦(2−j). It follows that

uj,1(Ll) à ◦(|x0|α)+◦(|x0|α−1)2−j à C2−jα(1+|2jx0−1|α).

Similarly,

uj,nj (L
r) à C2−jα(1 + |2jx0 − nj|α), 0 < α à 4.

Finally, we obtain

|dj,k| à
∑
l

|β(j)
k,l||uj,l|

à C

[∑
l

λ|k−l|2−jα(|l− 2jx0|α + 1)

]

à C2−jα
[∑

l

λ|l−k|(|k− 2jx0|α + |k− l|α) + 1

]

à C2−jα(|k− 2jx0|α + 1).

Assertion (3.21) is proved.
To prove the converse result, we borrow the method used

in [10]. (See the proof of Theorem 11 in [10].) Let j0 and
j1 be two integers determined by 2−j0−1 à |x− x0| < 2−j0

and j1 = (α/β)j0. Let fj(x) =
∑nj

k=1 dj,kψj,k−2. Since (3.23)
holds, we have

|fj(x)| à C2−αj
nj∑
k=1

(1 + |2jx0 − k|α)|ψj,k−2(x)|

à C2−αj(1 + |2j(x0 − x)|α)

and for any l, 0 à l à 3,

|f(l)
j (x)| à C2−j(α−l)(1 + |2j(x0 − x)|α).

For a function g, let Tx0 (g) be the Taylor expansion of g of
order n(= bαc) at x0. Then ∀f ∈ C0(I),

|f(x) − Tx0 (f)| à
∑
jàj0

|fj(x) − Tx0 (fj)(x)| +
∑
jáj0

|fj(x)|

+
∑
jáj0

|Tx0 (fj)(x)|.

The first term is bounded by∑
jàj0

|fj(x) − Tx0 (fj)(x)|

à C|x− x0|n+1
∑
jàj0

sup
x∈I

|f(n+1)
j (x)|

à C|x− x0|n+1
∑
jàj0

2(n+1−α)j(1 + 2jα|x− x0|α)

= C

|x− x0|n+1
∑
jàj0

2(n+1−α)j + |x− x0|n+1+α
∑
jàj0

2(n+1)j


à C|x− x0|α,

and the second term,∑
j0àj<j1

|fj(x)| à C
∑

j0àJ<j1

(|x− x0|α + 2−αj)

à C[(j − j0)|x− x0|α + 2−αj0 ]

à C|x− x0|α[(j1 − j0) + 1].

Since j1 − j0 = j0(α/β− 1) à C log(2/|x− x0|),∑
j0àj<j1

|fj(x)| à C log
2

|x− x0| (|x− x0|α).

Noting that f ∈ Cβ(I)
⋂
C0(I) and f′(0) = f′(L) = 0 when

α > 1, by Theorem 3.4, we have∑
jàj1

|fj(x)| à
∑
jàj1

2−βj à C|x− x0|s.

Finally,

Tx0 (fj)(x) =
n∑
s=0

f
(s)
j (x0)

s!
(x− x0)s

and

|T(s)
x0 (fj)(x0)| = |f(s)

j (x0)| à C2−(α−s)j.
Therefore∑
jáj0

|Tx0 (fj)(x)| à
∑
jáj0

n∑
s=0

(2−(α−s)j|x− x0|α) à C|x− x0|α.
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The converse part of the theorem is proved.

4. FAST WAVELET TRANSFORM AND
ADAPTIVE APPROXIMATION

In this section, we will introduce a Fast Wavelet Trans-
form (FWT) which directly decomposes the sampling data
of a function to its wavelet coefficients.

It is observed that for any function f(x) ∈ C0(I), there is
a sufficiently large J so that fJ := IsJ(f) ∈ VJ approximates
to f in the designed precision. Hence, in application, we can
consider fJ as the initial function to decompose. Note that
function fJ ∈ VJ is uniquely determined by its sampling
data fJ. Since in application functions are often represented
by their sampling data, considering the sampling data as
the initial data in a wavelet transform procedure is practi-
cal. As we know, sampling data have hierarchical property:
the sampling data of a function in the lower level can be
directly obtained from those ones in the higher level; i.e.,
fk and f̄k both are subsets of fj if k < j. Thus, the decom-
position algorithm in this case simply contains the step of
decomposing fj+1 into cj and d̄j, where cj stands for the
scaling coefficients of the function fj ∈ Vj and d̄j for the
wavelet coefficients in Wj. Now we present it as the fol-
lowing.

Fast Wavelet Transform (FWT). For 0 à j < J,

cj = B−1
j fj, (4.1)

s̄j = B̄jcj, (4.2)

ḡj = f̄j − s̄j, (4.3)

d̄j = M−1
j ḡj, (4.4)

where

Bj =



7
12

1
6

1
6

2
3

1
6

. . .
. . .

. . .
1
6

2
3

1
6

1
6

7
12


,

B̄j =



25
96

45
96

2
96

1
48

23
48

23
48

1
48

. . .
. . .

. . .
. . .

1
48

23
48

23
48

1
48

2
96

45
96

25
96


,

and Mj is in (2.15). By using formula (3.1), we can com-
pletely recover function fJ from the data c0,d0, · · · ,dJ−1.

Now we consider the computing complexity of the full
decomposition algorithm. As we assumed that the sampling
data is given in J-level, which counts 2J−1 cells. In order to
obtain cj from fj, we have to solve the tridiagonal system
which involves 7nj operations. To obtain s̄j from cj, we
need 5nj operations. We need 8nj operations for getting d̄j
from s̄j and f̄j. Then the number of operations for obtaining
total wavelet coefficients is

∑J−1
j=−1 20nj = 20L · 2J, which

is proportional to the quantity of sampling data fj.

Remark. If we only consider decomposing and recover-
ing the sampling data of functions, step (4.1) can be omit-
ted. It costs only 13L · 2J operations. The corresponding
recovering algorithm (to sampling data fj) is as follows.

For 0 à j < J,

s̄j = B̄jB−1
j fj,

f̄j+1 = ḡj + s̄j,

fj = fj−1

⋃
f̄j−1.

In application, a tolerance is allowable in recovering.
Since the wavelet components add the details of the func-
tion to its “blur” version, the components with small co-
efficients can be deleted without causing a big error. Re-
call that if function f has certain smoothness, for instance
f ∈ Lipα, then, by Theorem 3.4, the wavelet coefficient
dj,k = ◦(2−jα) which tends to 0 as j tends to ∞. Hence we
can reduce a quantity of the wavelet coefficients in order
to save the operation time and the memory space. Now we
will describe it more precisely.

Theorem 4.1. For a given ε > 0, if d∗
j,k is selected by

d∗
j,k =


dj,k, dj,k >

13ε
15J

,

0, dj,k à
13ε
15J

,

and f∗
J =

∑J−1
j=0

∑nj
k=1 d

∗
j,kψj,k−2 +

∑L−1
k=1 φ0,k−2, then

‖fj − f∗
J ‖ < ε.

Proof. We have

‖
nj∑
k=1

|ψj,k−2|‖ à 15
13
.

Hence if |dj,k| à ε, for all k, 1 à k à nj, then
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‖
nj∑
k=1

dj,kψj,k−2‖ à 15ε
13

,

from which the theorem follows.

Based on this fact, we can compress the set of wavelet
coefficients by setting the small coefficients to zero. Recall
that the wavelet coefficients are obtained by solving the
equation ḡj = Mjd̄j. The larger j is, the larger the dimen-
sion of the matrix Mj is. On the other hand, the larger j
is, the less the nonzero terms in d̄∗

j are. Hence we can also
reduce the operation time of getting d̄∗

j from ḡj by deleting
a selected part of the basis {ψj,k} in advance. The following
theorem gives such a selection.

Theorem 4.2. Assume that, for ε > 0, the function
gj(x) =

∑nj
k=1 dj,kψj,k−2 satisfies

|gj(x̄jk)| à ε, k1 à k à k2.

Let

g∗
j (x) =

∑
k∈K

dj,kψj,k−2(x)

where

K = {k ∈ Z; 1 à k à nj & k∈̄[k1 − l, k2 + l]} (4.5)

with

l =

⌊
− log ε

log(7 + r
√

3)

⌋
.

Then

‖gj(x) − g∗
j (x)‖ à 7

5 (1 + ‖gj‖)ε. (4.6)

Proof. We have

dj,k =
nj∑
i=1

m
(j)
k,igj(x̄

j
k), 1 à k à nj.

Hence we have, by Lemma 2.3,

|dj,k| à
7

4
√

3

nj∑
i=1

1
α|k−i| |gj(x̄(j)

i )|, (4.7)

where α = 7 + 4
√

3. Then for k ∈ Kc := [k1 − l, k2 + l],
and using (4.7), we obtain

|dj,k| à
7

4
√

3

ε ∑
|k−i|àl

α−|k−i| + ‖gj‖
∑

|k−i|>l
α−|k−i|


à

7
4
√

3
α+ 1
α− 1

[ε+ α−(l+1)‖gj‖] à
7
6

(1 + ‖gj‖)ε.

Finally,

|gj(x) − g∗
j (x)|

= |
∑
k∈Kc

dj,kψj,k−2(x)| à 7
6

(1 + ‖gj‖)ε
∑
k∈Kc

|ψj,k(x)|

à
7
5

(1 + ‖gj‖)ε.

Remark. The norm ‖gj‖ in Theorem 4.2 tends to zero as
j tents to ∞. For example, if f ∈ LipαM, 0 < α < 4, then
‖gj‖ à 2M2−jα, and if f ∈ C4(I), then ‖gj‖ à 5

384 ‖f(4)‖.
(See [9].)

By Theorem 4.2, the coefficients dj,k of the wavelet ex-
pansion gj(x) can be ignored if the magnitude of function

gj(x) at points x̄
(j)
k ∈ [x

(j)
k1+1, x

(j)
k2−l] is less than some given er-

ror tolerance. This fact provides an adaptive approximation
scheme.

Adaptive Approximation Scheme.
Step 1. c0 = B−1f0, ḡ0 = f̄0 − B̄0c0.
Step 2. Select the set K0 stated in Theorem 4.2 for level

0, and choose B∗
0 = {ψ0,k; k ∈ K0}.

Step 3. Obtain d∗
0 by formula d∗

0 = M∗−1
0 g∗

0 , where M∗
0

is the matrix corresponding to the reduced basis B∗
0 and g∗

0
is compressed from ḡ0.

Step 4. Let f1(x) =
∑n0−1

k=1 c0,kφ0,k−2 +
∑

k∈K0
d∗

0,kψ0,k−2.
Step 5. Repeat the process above up to J.
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