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a b s t r a c t

Themain purpose of the paper is to develop an approach to the evaluation or the estimation
of the spanning tree congestion of planar graphs. This approach is used to evaluate the
spanning tree congestion of triangular grids.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

LetGbe a graph and let T be a spanning tree inG (saying thiswemean that T is a subgraphofG).We follow the terminology
and notation of [5]. For each edge e of T let Ae and Be be the vertex sets of the components of T − e. By eG(Ae, Be)we denote
the number of edges in Gwith one end vertex in Ae and the other end vertex in Be. We define the edge congestion of G in T by

ec(G : T ) = max
e∈E(T )

eG(Ae, Be).

The number eG(Ae, Be) is called the congestion in e. The name comes from the following analogy. Imagine that edges of G
are roads, and edges of T are those roads which are cleaned from snow after snowstorms. If we assume that each edge in G
bears the same amount of traffic, and that after a snowstorm each driver takes the corresponding (unique) detour in T , then
ec(G : T ) describes the traffic congestion at the most congested road of T . It is clear that for applications it is interesting to
find a spanning tree which minimizes the congestion.
We define the spanning tree congestion of G by

s(G) = min{ec(G : T ) : T is a spanning tree of G}. (1)

Each spanning tree T in G satisfying ec(G : T ) = s(G) is called aminimum congestion spanning tree. The parameters ec(G : T )
and s(G) were introduced and studied in [13]. This study was continued in [2–4,6–8,10,12,16], where many interesting
results were obtained.
The spanning tree congestion is of interest in the study of Banach-space-theoretical properties of Sobolev spaces on

graphs; see [14]. Many known results and algorithms related to spanning trees are collected in themonograph [19], but this
monograph does not contain any results on the spanning tree congestion. Many related parameters have been introduced
in the literature; see [1,9] and references therein. The paper [9] introduced parameters which are more general than the
spanning tree congestion.
One of the interesting problems about the spanning tree congestion is to evaluate it for some natural families of graphs.

The purpose of this paper is to develop techniques which can be used to evaluate or estimate the spanning tree congestion
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Fig. 1. Examples of center-tail systems.

of planar graphs. The techniques use duality for planar graphs which goes back to Poincarè and Whitney (see [15, Section
8.8.2] and [17,18]) and the notion of a dual tree which is implicitly present in the work of Whitney (see [11, Problems 5.23
and 5.36]). Dual trees were introduced to this area by Hruska [7] who used them to evaluate the spanning tree congestion
for rectangular planar grids.
In conclusion we would like to mention that another technique used to estimate the spanning tree congestion is based

on the notion of a centroid of a tree (see [19, p. 46] or [13] for the definition) and edge-isoperimetric inequalities. This
technique was initiated in [13] and developed in [4] and [10]. It would be interesting to obtain the results for triangular grid
(Theorem 2) using isoperimetry.

2. Dual graphs and spanning tree congestion estimates

Let G be a connected plane graph, that is, a planar graph with a fixed drawing in the plane.

Definition 1. The dual graph G∗ ofG is defined as the graphwhose vertices are faces ofG, including the exterior (unbounded)
face, and whose edges are in a bijective correspondence with edges of G. The edge e∗ ∈ E(G∗) corresponding to e ∈ E(G)
joins the faces which are on different sides of the edge e.
Let T be a spanning tree of G. The dual tree T ] is defined as a spanning subgraph of G∗ whose edge set E(T ]) is determined

by the condition: e∗ ∈ E(T ]) if and only if e 6∈ E(T ).

Note. The graph G∗ does not have to be a simple graph even when G is simple. It is easy to verify that T ] is a spanning tree
in G∗ (see [11, Solution of Problem 5.23]). See [5, Section 5.6] and [17,18,11] for information about dual graphs.

Definition 2. Let e ∈ E(G). We say that e is an outer edge if it is an edge which occurs in the boundary of the exterior face
and one of the interior faces. For each outer edge e and each bounded face F of G define the index i(F , e) as the length of a
shortest path in G∗ which joins the exterior face Owith F and satisfies the additional condition: its first edge is e∗.

Definition 3. A center-tail system S in the dual graph G∗ of a plane graph G consists of

(1) A set C of vertices of G∗ spanning a connected subgraph of G∗, the set C is called a center.
(2) A set of paths in G∗ joining some vertices of the center with the exterior face O. Each such path is called a tail. The tip of
a tail is the last vertex of the corresponding path before it reaches the exterior face.

(3) An assignment of opposite tails for outer edges of G. This means: For each outer edge e of the graph G one of the tails is
assigned to be the opposite tail of e, it is denoted N(e) and its tip is denoted by t(e).

See Fig. 1 for examples of center-tail systems.
In the examples shown in Fig. 1 intersections of ‘‘thin’’ line segments are regarded as vertices of the graphs, and there

are no other vertices. Edges of the graphs are the corresponding pieces of the ‘‘thin’’ line segments. For the first center-tail
system the triangle containing the letter C is the only element of the center. The center of the second center-tail system
consists of six faces marked with C . Each of the systems has three tails, shown in Fig. 1 using ‘‘fat’’ lines; we do not show
edges joining tips of tails and the exterior face O. The tails going in the upward direction are assigned to be the opposite tails
for all outer edges contained in the bottom side of the triangles. Assignments of the opposite tails to edges from other sides
of the triangles are made in order to make the assignments rotationally invariant for angles of 120◦ and 240◦. We denote
these center-tail systems S3 and S4, respectively.
The result below is true for an arbitrary system S satisfying the relations described above, but to be useful for estimates

of the spanning tree congestion, a center should consist of vertices which are far from the exterior face in G∗ and opposite
tails should be tails which in some natural metric sense go in directions which are opposite to the corresponding edges.

Definition 4. The congestion indicator CI(S) of a center-tail system S is defined as the minimum of the following three
numbers:

(1) minF ,H,f ,h(i(F , f )+ i(H, h)+ 1), where the minimum is taken over all pairs F ,H of adjacent vertices in the center C and
over all pairs f , h of outer edges with f 6= h. In the cases where the center contains just one face we assume that this
minimum is∞.
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(2) mine i(t(e), e)+ 1, where the minimum is taken over all outer edges of G.
(3) mineminF∈N(e)minẽ6=e(i(F , e) + i(̃F , ẽ) + 1), where the first minimum is taken over all outer edges of G; the second
minimum is over vertices F from the path N(e) different from t(e) and the exterior face, F̃ is the vertex in N(e) which
follows immediately after F if one moves along N(e) from F to t(e); and the third minimum is over all outer edges
different from e.

To illustrate this definition we evaluate the congestion indicator for the center-tail systems S3 and S4 described in Fig. 1.
The values of the minimum in (1) are∞ and 4, respectively. The values of (2) are 4 and 6, respectively. The values of (3) are
4 and 6, respectively (in each case the minimumminF∈N(e) is over a one-element set). Thus we get CI(S3) = CI(S4) = 4.

Theorem 1. Let S be any center-tail system in a connected planar graph G. Then s(G) ≥ CI(S).
Proof. Let T be a spanning tree in G and T ] be its dual tree.We split the set of interior faces of G into branches corresponding
to outer edges (many of the branches can be empty): the branch corresponding to an outer edge e is the set of faces which
are separated from the exterior face O if we delete e∗ from T ]. We assume that the branch is empty if e∗ is not an edge of T ].
The edge e (corresponding to e∗) is called the entrance of the branch.

Observation 1. If faces of the centerC belong to different branches, then ec(G : T ) ≥ theminimum in item (1) ofDefinition 4.
In fact, let F and H be faces which are adjacent in G∗ and belong to two different branches with entrances at f and h,

respectively. Let g be an edge which occurs in the boundaries of the faces F and H . It is clear that g ∈ E(T ) (otherwise T
would be disconnected). It suffices to show that eG(Ag , Bg) ≥ i(F , f )+ i(H, h)+ 1.
Let f ∗1 , . . . , f ∗k be the OF-path in T

] and h∗1, . . . , h
∗
m be the OH-path in T

]. It is clear that k ≥ i(F , f ) and m ≥
i(H, h). To complete the proof we show that g is used in detours for f1, . . . , fk, h1, . . . , hm, and itself. In fact, the edges
f ∗1 , . . . , f ∗k , g∗, h∗m, . . . , h∗1 form a cycle in G

∗. Hence the edges f1, . . . , fk, g, hm, . . . , h1 form a cut in G, and g is the only edge
in T connecting the vertex sets separated by the cut. This completes our proof of Observation 1.

Observation 2. Suppose that all faces of the center belong to the same branch with entrance e. Then:
(a) If all faces from the tail N(e) also belong to the same branch (with entrance e), then ec(G : T ) ≥ the minimum in item

(2) of Definition 4.
(b) If some faces from the tail N(e) belong to another branch, then ec(G : T ) ≥ the minimum in item (3) of Definition 4.
In fact, in the case (a) let g be an edge which occurs in the boundaries of the tip t(e) and the outer face O. As in

Observation 1 we get that g ∈ E(T ) (otherwise T would be disconnected) and that eG(Ag , Bg) ≥ i(t(e), e)+ 1.
In the case (b) let F̃ be the first face on the path N(e) (we assume that the path starts at a vertex of the center) which

belongs to a different branch and let F be the previous edge of the path. Let g ∈ E(G) be the edge corresponding to the edge
of g∗ ∈ E(G∗) joining F and F̃ . Let ẽ be the entrance of the branch to which F̃ belongs. As in the previous observations we
show that eG(Ag , Bg) ≥ i(F , e)+ i(̃F , ẽ)+ 1; and we are done.
It is clear that together Observations 1 and 2 imply the statement of the theorem. �

In our estimates of s(G) from above we use the following definition.

Definition 5. The absolute index i(F) of a face F is defined as mine i(F , e), where the minimum is over all outer edges.

Proposition 1. For each connected planar graph G with at least two bounded adjacent faces we have

s(G) ≤ max(i(F)+ i(̂F))+ 1, (2)

where the maximum is over all pairs F , F̂ of bounded faces which have a common edge in their boundaries.
Proof. We let T ] be a so-called breadth-first-search (BFS) tree in G∗ rooted at the exterior face O. See [15, Section 9.2.1] for
a definition of a breadth-first-search tree. The definition in [15] explains the name. We need only the following defining
property of a BFS tree in a connected graph H: it is a spanning tree in H for which the distance between any vertex and the
root in the tree is the same as in H . It is easy to see that BFS trees exist in an arbitrary connected graph.
So let T ] be a BFS tree rooted at O in G∗ and E(T ]) be the edge set of T ]. We delete from E(G) the set {e : e∗ ∈ E(T ])}. It

is easy to check that we get a spanning tree (see [11, Solution of Problem 5.23] for detailed explanation). We denote it by T
because T ] is its dual tree.
Consider any edge f ∈ E(T ). Suppose that it occurs in the boundaries of faces of F1 and F2.
Observe that the number of edge detours which use f is equal to the number of edges in the cycle contained in T ]

∪ {f ∗}.
The length of the cycle is≤ i(F1)+ i(F2)+1 because the cycle is a part of the closed walk which starts at O, uses an OF1-path
in T ], then f ∗, and then an F2O-path in T ]. �

Remark. The proof of Proposition 1 explains why we do not have the equality in (2): in some cases the cycles contained in
T ]
∪{f ∗}, where f ∗ is an edge joining faces F and F̂ maximizing i(F)+ i(̂F) do not pass throughO. To illustrate this remarkwe

consider the following planar graph H: It is obtained if we consider n concentric circles and k radial line segments, n � k.
Each intersection of a circle and a line segment is regarded as a vertex. (See Fig. 2, where n = 3, k = 4, and ‘‘circles’’ are
sketched as squares. We do not have n � k in this picture, but it shows how we construct the spanning tree (drawn using
‘‘fat’’ edges), also it shows values of absolute indices of different faces.)
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Fig. 2. The estimate in Proposition 1 is not sharp.

Fig. 3. Triangular grids.

Fig. 4. A center-tail system for T5 .

For such graphs the absolute indices i(F) of faces F contained in the smallest circle are equal to n. On the other hand, it is
easy to check that the spanning tree T in H consisting of all edges from one of the line segments and all edges from circles
with one edge per circle removed satisfies ec(G : T ) ≤ 2k (actually, if we remove edges from circles in an optimal way, it
will satisfy ec(G : T ) ≤ k+ 2, see Fig. 2).

3. Triangular grids

Nowwe are going to use center-tail systems to find the spanning tree congestion for triangular grids {Tk}nk=2. The graph Tk
is defined as the graphwhichwe obtain if we divide each side of a triangle into k−1 equal pieces and join the corresponding
subdivision points of different sides of the triangle. To make this definition clear we sketch T2, T3, and T4 (see Fig. 3). In these
graphs all intersections of line segments are regarded as vertices, and there are no other vertices.

Theorem 2. s(T3n) = 4n, s(T3n+1) = 4n, s(T3n+2) = 4n+ 2, n = 1, 2, . . ..

Proof. To estimate the spanning tree congestion from below we use center-tail systems. Our descriptions of center-tail
systems Sn for Tn are somewhat different in the cases when n = 3k, n = 3k+ 1, and n = 3k+ 2.
We shall give a detailed argument for n = 5, 6, 7 and use induction to derive the formula from the statement of the

theorem. At the end of the proof we explain how to get s(T2) = 2 and s(T3) = s(T4) = 4.
The case n = 5. The center-tail system S5 is described in the following way. The triangle containing the letter C (see

Fig. 4) is the only element of the center. There are three tails, shown in Fig. 4 using ‘‘fat’’ lines; we do not show edges joining
tips of tails andO. The tail going in the upward-right direction is assigned to be the opposite tail for all outer edges contained
in the bottom side of the triangle. Assignment of the opposite tails to edges from other sides of the triangle is made in order
to make the assignment rotationally invariant for angles of 120◦ and 240◦.
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Fig. 5. Indices ibot for T5 .

Fig. 6. Absolute indices for T5 .

Fig. 7. A center-tail system for T6 .

Nowwe evaluate for S5 all of the minima from the definition of the CI. The first minimum is∞ by the definition because
the center contains just one face.
Because of the symmetry in the second and the third minimum it suffices to consider the minima over the edges of the

bottom side only. To do this it is convenient to introduce ibot(F) = min i(F , e), where F is a face of the triangle and the
minimum is over e from the bottom side of the triangle. The values of ibot are shown in Fig. 5. It is clear from Fig. 5 that for
each e from the bottom side of the triangle we have i(t(e), e)+ 1 ≥ 6.
The values of the absolute index i(F) for faces of T5 are shown in Fig. 6. Comparing Figs. 5 and 6 we see that for each face

F from N(e) for e from the bottom side, and the following face F̃ the sum i(F , e)+minẽ6=e i(̃F , ẽ)+ 1 is at least 6.
By Theorem 1 we get s(T5) ≥ 6.
Applying Proposition 1 to the values of i(F) in Fig. 6 we get s(T5) ≤ 6.
Observe that if we add one row on each side of T5 we get T8, the index of each triangle from T5 increases by 2. If we

construct S8 in a similar way (that is, letting C to be the central face and extending each of the tails by two edges), we get
CI(S8) = 10. Applying Proposition 1 we get s(T8) = 10.
It is easy to see that the same pattern repeats. Each time when we add a row from each side, the index of the central

square increases by 2 and the spanning tree congestion increases by 4. By induction, this implies s(T3n+2) = 4n+ 2.
For T3n the argument is almost the same. Fig. 7 shows the suggested center-tail system in T6. The argument in this case

is a repetition of the argument for T3n+2.
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Fig. 8. A center-tail system for T7 .

For T3n+1, n ≥ 1, we suggest somewhat different center-tail systems (because there is no central triangle). In this case
the center consists of 6 faces (wemark all of them using C on Fig. 8), but there are still three tails, and the assignment of tails
is similar to the previous cases: all edges from the bottom side of the triangle are assigned the tail which goes in the upward-
right direction. Fig. 8 shows the center and the tails for T7. The argument is quite similar to the argument for previous cases,
but now we have to compute the first minimum, which is equal to 8 for T7 and is equal to 4n for T3n+1. The second and the
third minima are equal to 10 for T7 and to 4n+ 2 for T3n+1.
To complete the proof we would like to mention how to get the formulas from Theorem 2 for small grids, namely

s(T2) = 2 and s(T3) = s(T4) = 4. Since T2 is just a triangle, this case is completely trivial. To evaluate s(T3) and s(T4)
we use Proposition 1 to get estimates from above and the center-tail systems in Fig. 1 to get estimates from below. �

Remark. The values of the spanning tree congestion for the graphs {Tk} were studied in [3]. Unfortunately one of the
formulas in [3] is erroneous (our Theorem 2 implies that the formula s(Tm) = 2

(⌊m−1
3

⌋
+
⌊m
3

⌋)
(m ≥ 4) in [3, Theorem 2]

does not hold form = 3n+2). Also it is not clear whether the authors of [3] had proofs of the corresponding estimates from
below. The reason for this doubt: the proof of the estimate from below for square grids contains gaps (one error is at the top
of page 82: there can be several edges connecting Me and P; the second error is in item (b) on page 82: one can construct
examples which show that the congestion with respect to trees with added edges is not related with the congestion in the
original tree in the stated way), and for triangular grids no proof of the estimate from below is given in [3], the authors just
say that the proof is identical with the case of square grids.

Final remark. It is not difficult to verify that center-tail systems can be used to prove the results of [4,7] on rectangular
planar grids and the result of [3, Theorem 3] on hexagonal grids. However, it is far from being clear whether it is possible to
use center-tail systems to develop an algorithm for finding the spanning tree congestion for general planar graphs.
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