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Abstract

In an e-health cardiology environment, the current knowledge engineering systems can support two knowledge processes; the knowl-

edge tracing, and the knowledge cataloguing.

We have developed an n-tier system capable of supporting these processes by enabling human collaboration in each phase along with,
a prototype scalable knowledge engineering tactic. A knowledge graph is used as a dynamic information structure. Biosignal data (values
of HR, QRS, and ST variables) from 86 patients were used; two general practitioners defined and updated the patients’ clinical manage-
ment protocols; and feedback was inserted retrospectively. Several calibration tests were also performed.

The system succeeded in formulating three knowledge catalogues per patient, namely, the “patient in life”, the “patient in time”’, and

the “patient in action”.

For each patient the clinically accepted normal limits of each variable were predicted with an accuracy of approximately 95%. The
patients’ risk-levels were identified accurately, and in turn, the errors were reduced. The data and the expert-oriented feedback were also
time-stamped correctly and synchronized under a common time-framework.

Knowledge processes optimization necessitates human collaboration and scalable knowledge engineering tactics. Experts should be
responsible for resenting or rejecting a process if it downgrades the provided healthcare quality.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a medical environment, current knowledge engineer-
ing systems are able to support two knowledge processes:
knowledge tracing, the processes that the system executes
to produce knowledge; and knowledge cataloguing, the pro-
cesses that the system executes to classify existing knowl-
edge [1-5]. These processes cannot be sustained without
dynamic dealing with the vast amounts of heterogeneous
data and knowledge existing distributed in the environment
[6].

However, several systems [2,3] still use the following: (i)
resident assessment tactics to trace biosignal data, (ii) gen-
eric criteria within the resident assessment tactics to cata-

* Corresponding author. Fax: 430 2610 997882.
E-mail address: gortzis@med.upatras.gr (L.G. Gortzis).

1532-0464/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jbi.2007.09.001

logue knowledge, (iii) predetermined non-personalized
risk criteria to activate generic alarms, and (iv) limited
feedback insertion. The first cause is that physicians on-
duty due to their heavy workload, do not have the time
to define and update the patients’ clinical management pro-
tocols (CMP) and then check the outcomes by considering
multiple variable values, following complex operating
logic, and physically manipulating software modules [7].
The second cause is that usually there are differences in
knowledge, skills, and orientation among the various
healthcare providers (such as physicians, general practi-
tioner etc.) [7,8]. Therefore, although the potential of the
knowledge engineering systems is great, their outcomes
often are insufficient [4,5].

Continuous human-agent collaboration and scalable
knowledge engineering tactics, may be a solution. How-
ever, they necessitate heterogeneous human-machine inter-
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action and, tasks that allow the collaborators to surpass
the need of working at the same place and time [1,9]. Fur-
thermore, data and feedback have to be time-stamped
under a common framework [4,10] while the human factor
needs to be investigated [11,12].

In an e-health cardiology environment, the investigation
of issues referring to the aforementioned requirements is
relative to the thorough understanding of the interrelation-
ships between collaborators (e.g., patient, general practi-
tioner, physician, expert) [13], the data they use, the
typical and atypical tasks they perform, and the structure
(portable biosignal devices, human-machine interfaces,
modules etc.) in which they collaborate [7,14,15]. Follow-
ing this understanding, specific pathways of continuous
multi-level collaboration and scalable knowledge engineer-
ing tactics can be established, resulting in personalized data
assessments [16,17]. Tasks that can be hazard-related and
are not anticipated can also be recognized [15]. This is
important as it is extremely difficult to identify all signifi-
cant hazards in advance [4,11,18-20].

After these steps, knowledge processes outcomes can
possibly be optimized, hazard can be mitigated or con-
trolled, and patient’s risk-level can be identified more
efficiently.

In this study, we propose a system able to support the
tracing and cataloguing of the knowledge in an e-health
cardiology environment, by utilizing the human collabora-
tion in each phase of a process, and a scalable knowledge
engineering tactic, called self-paring tactic. Our objective
is to minimize errors, ensure that intended collaborators
are able to perform the essential tasks safely and effectively
throughout the knowledge processes, so as to maximize the
quality of healthcare.

2. Methods and materials
2.1. System implementation

In the present system, a number of physicians and gen-
eral practitioners are able to contribute to the accumula-
tion of the knowledge, software agents support their
contribution by enabling the self-paring tactic [21], experts
evaluate the knowledge processes providing feedback and,
knowledge is built over time.

The system is structured on an n-tier architecture
(Fig. 1) to support simultaneously the following data
exchanges: (i) incoming data using the web forms, (ii) data
requests by the Web Services [22], (iii) data submissions
from the patients, and (iv) the expert-oriented feedback.

A module, called Analyzer, is responsible to create com-
prehensive XML-formatted data [23] by analyzing the het-
erogeneous data inputs. Moreover, JAVA APIs [24] are
used to (i) establish communication among XML-format-
ted data, (ii) enable collaboration based on Web Services,
and (iii) support data analysis and knowledge tracing.

The human-agent collaboration is established via several
levels of abstraction and dynamically created levels of spec-
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Fig. 1. System n-tier architecture.

ification. The abstraction is achieved by using state-of-the-
art JAVA technologies (Sun Microsystems, Santa Clara,
US) [25]and XML features, whilst the specifications on each
process are derived from on-demand enabled Web Services
[22]. Finally, the necessary web interfaces are constructed
“on the fly”” by using PHP and MySQL features [26,27].

2.2. The knowledge tracing process

During the time the patient first visits the Cardiology
Department, the on-duty physician reviews the paper-
based patient medical history (PMH), and defines an elec-
tronic CMP for the patient (initial CMP on the system),
using an individual web form, as shown in Fig. 2. The
CMP includes information regarding when new measure-
ments should be performed by the remote patient and
how; which variables (e.g., heart rate, QRS complex, ST
segment) should be obtained; the expected upper threshold
(Vup) and the expected lower threshold (71 o) per variable;
and the timeline of CMP re-appraisal.

In case of emergency, or according to timeline, the
patient performs the specified measurements, by using por-
table devices, and submits the biosignal values to the sys-
tem, via a communication channel. The incoming data
are parsed, classified, and checked by a software agent.
Noisy data or data judged as irrelevant to the patient are
discarded. Valid data are stored at a knowledge database
(KDB), as a new record including the patient’s identifica-
tion number (ID), a time stamp, and values regarding the
following variables: heart rate (HR), QRS complex
(QRS), ST segment (ST), or/and QT interval, or/and QT
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Fig. 2. Web form for defining patient CMP.

dispersion, or/and blood oxygen saturation (%Sp02), or/
and pulse rate (PR), or/and non-invasive blood pressure
(NIBP).

The system responds to specific requests and derives the
first round of results. These results are then evaluated by an
experienced physician (expert) and the knowledge cycle is
completed, as shown in Fig. 3. The cycle is supported by
a knowledge graph [21] that is used as a dynamic informa-
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tion structure [28]. The knowledge graph utilizes either
data that are created by writing from scratch, or data
retrieved by a client module, in order to formulate an
abstraction level of information hierarchy (“know it and
know why”’).

The knowledge graph consists of a layer of an input
node (patient), two intermediate layers of nodes (variables,
abnormalities), and a layer of output nodes (diseases). The
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Fig. 3. The knowledge cycle.
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Variables layer represents the values of biosignals obtained
from the patient. The abnormalities layer represents possi-
ble abnormalities implied by the value of one or more vari-
ables. According to the incoming biosignal data, or to a
specific request, each node calculates the value of the corre-
sponding attribute. Subsequently, this output feeds into
nodes in the next layer with a specific weight, and this
weighted value becomes the input of the next node. The
software agents locate the appropriate path from the node
“Patient” to the node “Disease”, as shown in Fig. 4, lead-
ing to the creation of an output and in turn to the recording
of information in the KDB.

2.3. The knowledge cataloguing process

The system utilizes a prototype scalable self-paring tac-
tic to structure the following three knowledge catalogues
per patient: (a) the “patient in life”’, (b) the ‘““patient in
time”, and (c) the “patient in action”. The “patient in life”
catalogue contains data provided by the physician(s). The
“patient in time” catalogue includes information regarding
the evolution of patient measurements over time and also
assessment (control) values per measured variable that
are calculated based on the distribution of measurement
data (biosignal values), and the current thresholds per var-
iable as defined by the physician (reference values). New
information is added to the catalogue every time a CMP
is updated or the results of new measurements are
obtained. The “patient in action” catalogue includes infor-
mation regarding the patient’s risk level over time, as calcu-
lated by the system using the incoming measurements.

Specifically, each time a physician at the Cardiology
Department or a general practitioner examining the patient
at his/her home, updates the individual CMP using the web
form, new information is provided for the formulation of
the “patient in life” catalogue.

Using the individual KDB record sets per variable, the
responsible software agent calculates the standard devia-
tion (SD). Subsequently, using the current physician-ori-
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Fig. 4. The knowledge graph.

ented Vyp and Vi, and the SD (entire distribution), the
agent calculates for the patient the current “normal’ limits
of variable, and provides information for the “patient in
time” catalogue. This calculation is based on a mathemat-
ical Eq. (1), called the patient current equation (PCE).

PCE = mean[(VUp)7 (VLO)} + SD (1)

Finally, comparing each incoming value per variable with
the corresponding PCE-oriented limits, the system receives
information for the “patient in action” catalogue.

If the result is identified as “abnormal”, an alarm is ini-
tiated depending on the identified risk level. Three discrete
risk-levels can be identified by the system:

e Red risk level:
exceeded.

e Orange risk level: when the current personalized normal
thresholds (Vyp, Vio) are exceeded.

e Yellow risk level: when the value is abnormal (>mean
value).

when the PCE-oriented limits are

2.4. The expert-oriented feedback

As mentioned previously, the individual who provides
the feedback is an expert, usually the head of the Depart-
ment, which has the depth of pathophysiological knowl-
edge necessary to interpret complex cases properly. The
expert reviews the patient’s knowledge catalogues and
his/her current CMP periodically, and evaluates the knowl-
edge outcomes providing feedback. More specifically, the
expert can decide to discard an outcome that was extracted
via a process, indicate in the CMP additional variables to
be measured, or update the physician-oriented descriptions
of an abnormality or a disease. This feedback is obtained
via a client module, as shown in Fig. 5.

3. Results

We investigated the feasibility and effectiveness of the
present system using data from 86 patients including their
PMHs and ECG findings (values of HR, QRS, and ST).
The data were assessed once by the on-duty physician dur-
ing the routine daily examination (Cardiology Department
of the University of Patras). Three additional ECG mea-
surements per patient were acquired by using an accurate
12-leads portable device, and two general practitioners
defined and updated the CMP by reviewing the data. The
assessment by the on-duty physician was then inserted ret-
rospectively via the expert’s client module as feedback.

Our findings indicated that the majority of biosignal val-
ues (~95%) were within the PCE-oriented limits and the
risks-levels were identified accurately. Fig. 6 shows two
characteristic diagrams regarding the HR from two
patients with similar abnormalities. The PCE-oriented lim-
its that were identified, are illustrated with dotted lines.
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Fig. 6. Characterisitic diagrams regarding the HR from two individual patients with similar abnormalities.

They also indicated that by utilizing feedback, the system
corrected several errors producing optimized outcomes.

Following the trials, the involved general practitioners
were asked to assess the processes. They noted that (i) it
was easy to define and update the patients’ CMP via the
individual web-forms, and (ii) the physicians formed the
typical assessment about the patient’s risk-level by examin-
ing the PMH and the ECG findings whereas the system
achieved a risk-level hypothesis with sufficient information
provided by the system’s catalogues.

To investigate the overall system functionality, several
calibration tests were also performed wherein the observer
served as a user of the system modules. We observed that
both the CMPs and the feedback were time-stamped cor-
rectly and synchronized under a common time-framework.
We also observed that insufficient values were obtained to
the system due to displacement of the peripheral ECG elec-
trodes or due to incorrect electrodes placement were the
most common causes leading to false process.

4. Discussion

It is generally assumed that health care teams function
in a collaborative manner and deliver health care efficiently
and effectively [1,7,9]. In this study, we propose a collabo-
rative system that is capable of tracing and cataloguing
knowledge in an e-health environment, and we investigate
its feasibility and effectiveness.

One of the key characteristic of the system is that it
enables the collaboration at four different levels. First,
remote patient performs measurements and submits biosig-
nal data to the system. Second, physician or general prac-
titioner defines the patient’s CMP. Third, the software
agents support the knowledge processes maintaining syn-
chronicity throughout. Fourth, expert retrospectively
attaches feedback, correcting the outcomes to optimize
the knowledge process.

While the importance of involving experts in all strate-
gies to improve services has been repeatedly stressed, only
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few studies incorporated any mechanism for the doctors
themselves to evaluate appropriateness [29,30].

Several knowledge engineering systems use machine
learning methods to trace the knowledge [31]. Feedback
usually is not inserted by any means. The expert systems,
on the other hand, are entirely based on the knowledge
of the experts (beliefs, rules, ontologies etc.), that “a priori”
exists in the environment [32]. In the present system, the
“knowledge tracing” results not only from acquiring the
“a priori” existing knowledge, but also from continuous
collaboration and a scalable knowledge engineering tactic.

Our findings indicated that the system optimized the
knowledge processes and succeeded to reduce the errors.
More precisely, the system did not activate alarms when
a generic abnormality was detected, but only if a true risky
situation for a specific patient was identified.

In this study, we argue that the collaborative knowledge
processes, necessitate the investigation of several “environ-
mental issues” [1,7,9], in common, although the methods
that are used to address the investigation and result may
vary for each one. The “types of human” in such environ-
ment are typically patients, physicians, general practitio-
ners, and experts. In this heterogeneous “human puzzle”
the role of each patient is major [7] for two reasons: (i)
he/she is actively involved by performing measurements
and (ii) he/she is finally the subject under investigation.
Considering this assumption, we utilize three levels of cat-
aloguing regarding each patient in the present system; the
“patient in life”, the “patient in time”, and the “patient
in action”.

In addition, we should consider the role of the on-duty
physician. The mental workload imposed on physicians
on-duty by the e-health environment can exceed their abil-
ities to support knowledge engineering processes properly
[7]. The patients, the CMPs, and in turn the alarms, could
be too many and if he/she must follow complex operating
logic, or physically manipulate software modules, hazards
are likely. Considering this assumption, this system enables
the human-agent collaboration in all phases of a knowl-
edge process.

The question of what makes for a quality knowledge
process is always a difficult for a physician on-duty to
answer. In many ways, it is easier to answer in the negative,
that is, it is often easy to describe what a process of poor
quality is. Therefore, it is doubtful to eliminate the expert
role [33]. Experts axiomatically should be responsible for
resenting or rejecting a process if it downgrades the pro-
vided healthcare quality [34]. The expectation is that they
will collaborate to support such systems, providing contin-
uously the appropriate contribution.

It ought to be observed that this study expands the exist-
ing approaches dealing effectively with knowledge pro-
cesses optimization by enabling the collaboration in each
phase. On the other hand, it also ought to be observed that
a collaborative system offered advantages and disadvan-
tages [8]. Thus, the clinical collaborators should choose
the mode of the system that best meets their goals, e.g.,

the time for feedback insertion, the responsibilities and
the rights of the general practitioners, and the amount of
CMP that a physician is able to manage.

Further evaluation is also needed to determine in
more detail the system feasibility by incorporating more
biosignal variables. Finally, we should take into consid-
eration that there are significant technical and regula-
tory issues surrounding the data insertion via free-text
format, which need to be settled. Our future work will
use text mining methods and dynamic ontologies in this
direction.

5. Conclusions

In an e-health environment, knowledge processes neces-
sitate human collaboration and scalable knowledge engi-
neering tactics. Collaborative knowledge processes, in
general, necessitate the investigation of several “environ-
mental issues”, in common, although the methods that
are used to address the investigation and result may vary
for each one. Experts should be responsible for resenting
or rejecting a process if it downgrades the provided health-
care quality.
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