Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium

Asma Khalid a,c, Ilyas Khan b, Arshad Khan c, Sharidan Shafie c, * a Department of Mathematics, SRU Women’s University, Quetta 87300, Pakistan b College of Engineering Majmaah University, Majmaah 11952, Saudi Arabia c Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310 UTM, Malaysia

ABSTRACT
This article studies the unsteady MHD free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature. The fluid is electrically conducting and passing through a porous medium. This phenomenon is modelled in the form of partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The corresponding non-dimensional equations with conditions are solved using the Laplace transform technique. Exact solutions for velocity and energy are obtained. They are expressed in simple forms in terms of exponential and complementary error functions of Gauss. It is found that they satisfy governing equations and corresponding conditions, and are reduced to similar solutions for Newtonian fluids as a special case. Expressions for skin-friction and Nusselt number are also evaluated. Computations are carried out and the results are analysed for emerging flow parameters.

1. Introduction
The study of magnetohydrodynamic (MHD) flow of non-Newtonian fluid in a porous medium has attracted the attentions of many researchers. Of course, it is due to the fact that such phenomena are mostly found in the optimization of solidification processes of metals and metal alloys, the geothermal sources investigation and nuclear fuel debris treatment. However, non-Newtonian fluids are subtle compare to Newtonian fluids. Indeed, the resulting equations of non-Newtonian fluids give highly nonlinear differential equations which are usually difficult to solve. These equations add further complexities when MHD flows in a porous space have been taken into account. Ample applications for the MHD flows of non-Newtonian fluids in a porous medium are encountered in irrigation problems, heat-storage beds, biological systems, process of petroleum, textile, paper and polymer composite industries. Numerous studies have been presented on various aspects of MHD flows of non-Newtonian fluid flows passing through a porous medium. One may refer to some recent investigations [1–5].

On the other hand, convection flow arises in many physical situations such as in the cooling of nuclear reactors and in the study of environmental heat transfer processes amongst others. Convection is of three types namely free, mixed and force. Amongst them free convection is important in many engineering applications including an example of automatic control systems consist of electrical and electronic components, regularly subjected to periodic heating and cooled by free convection process. Some recent studies containing the free convection phenomenon can be found in [6–10] and the references therein. Besides that the work on free convection for non-Newtonian fluids when exact solutions are needed is limited. Further, when MHD and porosity effects are added to the governing equations then even such solutions are scarce. Farhad et al. [11] obtained closed form solutions for unsteady free convection flow of a second grade fluid over a oscillating vertical plate. Khan et al. [12] developed exact solutions for unsteady free convection flow of Walters’-B fluid. Samiuhaq et al. [13] analysed unsteady MHD free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

In nature, some non-Newtonian fluids behave like elastic solid that is, no flow occur with small shear stress. Casson fluid is one of such fluids. This fluid has distinct features and is quite famous recently. Casson fluid model was introduced by Casson in 1959 for the prediction of the flow behaviour of pigment-oil suspensions.
versions), in the presence of heat transfer is an important research area. Certain oils and greases, polymer melts, blood and many emulsions, perform sine and cosine oscillations with constant wall temperature. At time $t = 0^+$ the plate begins to oscillate in its plane ($y = 0$) according to

$$V = UH(t)\cos(\omega t)i, \quad V = U \sin(\omega t)i, \quad t > 0,$$

where the constant U is the amplitude of the plate oscillations, $H(t)$ is the unit step function, i is the unit vector in the vertical flow direction and ω is the frequency of oscillation of the plate. At the same time, the plate temperature is raised to T_w which is thereafter maintained constant.

The rheological equation of state for the Cauchy stress tensor of Casson fluid is written as (see \cite{22, 26, 27, 28, 32})

$$\tau = \tau_0 + \mu \gamma^*,$$

or

$$\tau_y = \begin{cases}
2 \left(\frac{\mu_B}{\sqrt{2 \pi}} \right) e_{ij}, & \pi > \pi_c \\
2 \left(\frac{\mu_B}{\sqrt{2 \pi} \pi_c} \right) e_{ij}, & \pi < \pi_c
\end{cases},$$

where $\pi = e_{ij} e_{ij}$ and e_{ij} is the $(i, j)^{th}$ component of the deformation rate, π is the product of the component of deformation rate with itself, π_c is a critical value of this product based on the non-Newtonian model, μ_B is plastic dynamic viscosity of the non-Newtonian fluid and p_b is yield stress of fluid. Before we derive the governing equations, the following assumptions are made, rigid plate, incompressible flow, unsteady flow, unidirectional flow, one dimensional flow, non-Newtonian flow, free convection, oscillating vertical plate and viscous dissipation term in the energy equation is neglected. Under these conditions we get the following set of partial differential equations

$$\rho \frac{\partial u}{\partial t} = \rho B_2^* u - \mu \frac{\partial^2 u}{\partial y^2} \bigg|_{x = 0} + \rho B_2^* \frac{\mu_B}{k_1} u + \rho g \beta (T - T_w), \quad (2)$$

$$\rho \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial y^2}, \quad (3)$$

together with initial and boundary conditions

$$t < 0: \quad u = 0, \quad T = T_w, \quad \text{for all} \quad y > 0,$$

$$t \geq 0: \quad u = UH(t)\cos(\omega t) \text{or} \quad u = U \sin(\omega t), \quad T = T_w \at \text{at} \quad y = 0,$$

$$u \rightarrow 0, \quad T \rightarrow T_w \at \text{as} \quad y \rightarrow \infty,$$

where $u, t, U, \mu_B, \gamma, \rho, g, \beta, \epsilon, \kappa, \alpha, \phi,$ and k_1 are the velocity of the fluid in $x-$ direction, time, temperature, plastic dynamic viscosity, Casson parameter, the constant density, the gravitational acceleration, volumetric coefficient of thermal expansion, specific heat at constant pressure and thermal conductivity, electric conductivity of the fluid, porosity and permeability of the fluid, respectively.

We introduce the following dimensionless variables

$$u^* = \frac{u}{U}, \quad y^* = \frac{y}{V}, \quad t^* = \frac{t}{V}, \quad \theta = \frac{T - T_{w_0}}{T_w - T_{w_0}}, \quad \omega = \frac{\omega_B}{U^2}, \quad \tau^* = \frac{\tau}{\rho U^2}, \quad \xi = \frac{x}{V}$$

into Equations, (2)–(4), and we get (* symbols are dropped for simplicity)

$$\frac{\partial u^*}{\partial t^*} = \left(1 + \frac{1}{\gamma} \frac{\partial^2 u^*}{\partial y^2} - \frac{M^2}{\kappa^*} u^* - 1 \frac{1}{\kappa^*} \epsilon u^* + \epsilon^* \theta^* \right)$$

$$\frac{\partial \theta^*}{\partial t^*} = \frac{\partial^2 \theta^*}{\partial y^2},$$

with associated initial and boundary conditions

2. Formulation of the problem

We consider Casson fluid over an infinite vertical flat plate embedded in a saturated porous medium. The flow being confined to $y > 0$, where y is the coordinate measured in the normal direction to the plate. The fluid is assumed to be electrically conducting with a uniform magnetic field B of strength B_0, applied in a direction perpendicular to the plate. The magnetic Reynolds number is assumed to be small enough to neglect the effects of applied magnetic field. Initially, for time $t = 0$, both the fluid and the plate are at rest with uniform temperature. At time $t = 0^+$ the plate begins to oscillate in its plane ($y = 0$) according to

$$V = UH(t)\cos(\omega t)i, \quad V = U \sin(\omega t)i, \quad t > 0,$$
\[\begin{align*}
\theta(y,t) &= \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right), \\
\text{erfc}(x) &= \frac{1}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt.
\end{align*} \]

The subscript “c” on the left side of Equation (12) stands for the cosine oscillations of the plate. Similarly, the velocity corresponding to the sine oscillations of the plate is given by

\[\begin{align*}
u_c(y,t) &= \frac{1}{4\tau} e^{-i\omega t} \left[e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + e^{y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) \right] \\
&\quad + \frac{1}{4\tau} e^{i\omega t} \left[e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + e^{y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) \right] \\
&\quad + \frac{ab}{2} \left[\left(t - \frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}} \right) e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) - \sqrt{(L+b^2)} \right] + \left(t + \frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}} \right) e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + (1)
\end{align*} \]

where

\[a = \frac{\gamma}{1+\gamma}, \quad b = \frac{Gr}{Pr-1}.\]

Note that the above solutions for velocity are only valid for \(Pr \neq 1 \). Moreover, the solution for \(Pr = 1 \) can be easily obtained by putting \(Pr = 1 \) into Equation (7), and follow a similar procedure as discussed above. The obtained solutions for cosine and sine oscillations of the plate when \(Pr = 1 \) are

\[\begin{align*}
u_c(y,t) &= \frac{H(t)}{4} e^{-i\omega t} \left[e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + e^{y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) \right] \\
&\quad + \frac{H(t)}{4} e^{i\omega t} \left[e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + e^{y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) \right] \\
&\quad + \frac{ab}{2} \left[\left(t - \frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}} \right) e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) - \sqrt{(L+b^2)} \right] + \left(t + \frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}} \right) e^{-y\sqrt{(L+b^2)}} \text{erfc}\left(\frac{y}{2} \sqrt{\frac{\text{Pr}}{\tau}}\right) + (14)
\end{align*} \]

The inverse Laplace transforms of Equations (9) and (10) are obtained as follows:

\[\begin{align*}
\eta(y,q) &= \frac{1}{q} e^{-y\sqrt{pq}}, \\
\pi(y,q) &= \frac{a}{q^2 + \omega^2} e^{-y\sqrt{aq + \omega^2}} + \frac{ab}{q^2} e^{-y\sqrt{aq + \omega^2}} - \frac{ab}{q^2} e^{-y\sqrt{pq}}.
\end{align*} \]
\[u_t(y,t) = \frac{1}{4t} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} - \sqrt{(L-\hbar)t}\right) + e^{\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} + \sqrt{(L-\hbar)t}\right) \right] \\
+ \frac{1}{4t} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + e^{\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
- \frac{a}{2} \sqrt{\frac{\hbar}{\pi}} e^{-\gamma \sqrt{L}} \text{erf}\left(\frac{\sqrt{L}}{2 \sqrt{t}}\right). \] \tag{15}

Note that in Equations (12) and (13), the first two terms in each equation account the contribution from mechanical parts while the last two terms show the thermal effects. On the other hand in Equations (14) and (15), the last term in each equation shows the contribution from the thermal part.

4. Special cases

In order to underline the theoretical value of the general solutions (12) and (13) for velocity, as well as to gain physical insight of the flow regime, we consider some special cases whose technical relevance is well known in the literature.

4.1. Solutions for large values of \(\gamma \)

By taking \(\gamma \to \infty \) into Equations (12) and (13), the corresponding solutions for viscous fluid can be obtained as a special case:

\[u_t(y,t) = \frac{H(t)}{4} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L-\hbar)t}\right) + e^{\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L-\hbar)t}\right) \right] \\
+ \frac{H(t)}{4} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + e^{\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
+ \frac{b}{2} \left[\left(t - \frac{1}{2} \sqrt{t} \right) e^{\sqrt{L} \sqrt{t}} \text{erf}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + \left(t + \frac{1}{2} \sqrt{t} \right) e^{-\sqrt{L} \sqrt{t}} \text{erf}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
- b \left[\left(t + \frac{\Pr y^2}{2} \right) \text{erf}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) - \sqrt{\Pr} \sqrt{\frac{t}{\pi}} e^{\sqrt{L} \sqrt{t}} \right]. \tag{16}

3.1. Nusselt number and skin-friction

Expressions for Nusselt number and skin-friction are calculated from Equations (11) and (12) using the relations

\[\text{Nu} = \frac{\nu}{U_0(T - T_{\infty})} \frac{\partial T}{\partial y} \bigg|_{y=0} = \frac{\Pr}{\pi t} \sqrt{\frac{\pi}{\nu}}, \tag{16} \]

\[\tau = -\mu \left[\frac{1}{2} \left(\frac{1}{\gamma} \frac{\partial^2 u}{\partial y^2} \right)_{y=0} \right], \]

\[\tau = \frac{1}{2} \left(\frac{1}{\gamma} \frac{\partial^2 u}{\partial y^2} \right)_{y=0} \left[\frac{1}{\sqrt{\nu}} \left\{ e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} - \sqrt{(L-\hbar)t}\right) + e^{\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} + \sqrt{(L-\hbar)t}\right) \right] \\
+ e^{\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + e^{\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{\sqrt{a}}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
- \frac{a}{\sqrt{\nu \pi}} e^{-\gamma \sqrt{L}} \text{erf}\left(\frac{\sqrt{L}}{2 \sqrt{t}}\right) \right] \right] \right]. \tag{17} \]

4.2. Solutions for stokes first problem

By taking \(\omega = 0 \), which corresponds to impulsive motion of the plate, then Equations (12) and (13), yield

\[u_t(y,t) = \frac{1}{4t} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L-\hbar)t}\right) + e^{\gamma \sqrt{a(L-\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L-\hbar)t}\right) \right] \\
+ \frac{1}{4t} e^{-\frac{t}{4t}} \left[e^{-\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + e^{\gamma \sqrt{a(L+\hbar)}} \text{erfc}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
+ \frac{b}{2} \left[\left(t - \frac{1}{2} \sqrt{t} \right) e^{\sqrt{L} \sqrt{t}} \text{erf}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) + \left(t + \frac{1}{2} \sqrt{t} \right) e^{-\sqrt{L} \sqrt{t}} \text{erf}\left(\frac{1}{2 \sqrt{t}} + \sqrt{(L+\hbar)t}\right) \right] \\
- b \left[\left(t + \frac{\Pr y^2}{2} \right) \text{erf}\left(\frac{1}{2 \sqrt{t}} - \sqrt{(L+\hbar)t}\right) - \sqrt{\Pr} \sqrt{\frac{t}{\pi}} e^{\sqrt{L} \sqrt{t}} \right]. \tag{19} \]
where

\[u_c(y,t) = \frac{1}{2H} \left[e^{-y\sqrt{a\alpha}} \text{erfc} \left(\frac{\sqrt{a\alpha}}{\sqrt{t}} - \sqrt{t} \right) + e^{y\sqrt{a\alpha}} \text{erfc} \left(\frac{\sqrt{a\alpha}}{\sqrt{t}} + \sqrt{t} \right) \right] \]

\[+ \frac{ab}{2} \left[\left(t - \frac{\sqrt{a\alpha}}{2 \sqrt{t}} \right) e^{-y\sqrt{a\alpha}} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} - \sqrt{t} \right) + \left(t + \frac{\sqrt{a\alpha}}{2 \sqrt{t}} \right) e^{-y\sqrt{a\alpha}} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} + \sqrt{t} \right) \right] \]

\[- ab \left[\left(t + \frac{Pr^2}{2} \right) \text{erfc} \left(\frac{\sqrt{Pr^2}}{2 \sqrt{t}} \right) - \sqrt{Pr} \sqrt{t} e^{-\frac{ny^2}{Pr}} \right]. \]

4.4. Solution in the absence of mechanical effects

Let us now assume that the infinite plate is kept at rest all the time. In this case, the wall velocity of the fluid is zero for each real value of \(t \) and thus the mechanical component of velocity identically vanishes. Consequently, the velocity of the fluid \(u(y,t) \) reduces to the thermal component of Equation (13). Its temperature as well as the surface heat transfer rate are given by the same equalities (11) and (16).

4.5. Solution in the absence of mechanical effects

In the last case, we assume that the flow is induced only due to bounding plate and the corresponding buoyancy forces are zero equivalently it shows the absence of free convection (Gr = 0) due to the differences in temperature gradient. This shows that the thermal parts of velocities in Equations (12) and (13) are zero. Hence the flow is only governed by the corresponding mechanical parts given by

\[u_c(y,t) = \frac{H(t)}{4} e^{-L(L - i\alpha)t} \left[e^{\sqrt{a\alpha}(L - i\alpha)} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} - \sqrt{L - i\alpha}t \right) + e^{\sqrt{a\alpha}(L - i\alpha)} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} + \sqrt{L - i\alpha}t \right) \right] \]

\[+ \frac{H(t)}{4} e^{L(L + i\alpha)t} \left[e^{\sqrt{a\alpha}(L + i\alpha)} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} - \sqrt{L + i\alpha}t \right) + e^{\sqrt{a\alpha}(L + i\alpha)} \text{erfc} \left(\frac{\sqrt{a\alpha}}{2 \sqrt{t}} + \sqrt{L + i\alpha}t \right) \right]. \]

(24)
In this section, the obtained exact solutions are studied numerically in order to determine the effects of several involved parameters such as Prandtl number Pr, Grashof number Gr, Casson parameter γ, magnetic parameter M, permeability of porous medium K, phase angle ω and time t. Numerical values of skin-friction coefficient C_u and Nusselt number Nu are computed and presented in tables for different parameters. Physical sketch of the problem is shown in Fig. 1. Fig. 2 exhibits the velocity profiles for different values of Prandtl number Pr, when the other parameters are fixed. It is observed that velocity of the fluid decreases with increasing Prandtl number. Fig. 3 illustrates the profiles of velocity for different values of Gr. It is observed that velocity increases with increasing values of Gr. The flow is accelerated due to the enhancement in the buoyancy forces corresponding to the increasing values of Grashof number, i.e., free convection effects. The influence of Casson fluid parameter on velocity profiles is shown in Fig. 4. It is found that velocity decreases with increasing values of γ. It is important to note that an increase in Casson parameter makes the velocity boundary layer thickness shorter. It is further observed from this graph that when the Casson parameter γ is large enough i.e. $\gamma \to \infty$, the non-Newtonian behaviours disappear and the fluid purely behaves like a Newtonian fluid. Thus, the velocity boundary layer thickness for Casson fluid is larger than the Newtonian fluid. It occurs because of plasticity of Casson fluid. When Casson parameter decreases the plasticity of the fluid increases, which causes the

\[u_s(y,t) = \frac{1}{4t} e^{-t/4} \left[e^{-y\sqrt{a(L-i\omega)}} \text{erfc}\left(\frac{y}{2} \sqrt{a} - \sqrt{L-i\omega} t\right) + e^{y\sqrt{a(L-i\omega)}} \text{erfc}\left(\frac{y}{2} \sqrt{a} + \sqrt{L-i\omega} t\right) + e^{\sqrt{a} \sqrt{L+4\omega} t} \text{erfc}\left(\frac{y}{2} \sqrt{a} + \sqrt{L+4\omega} t\right) \right]. \]

(25)

Note that Equations (24) and (25) when $\gamma \to \infty$, are identical to those obtained by Fetecau et al. [31], see Equations (8) and (9). This fact is also shown in Fig. 10.

5. Results and discussion

In this section, the obtained exact solutions are studied numerically in order to determine the effects of several involved parameters such as Prandtl number Pr, Grashof number Gr, Casson parameter γ, magnetic parameter M, permeability of porous medium K, phase angle ω and time t. Numerical values of skin-friction coefficient C_u and Nusselt number Nu are computed and presented in tables for different parameters. Physical sketch of the problem is shown in Fig. 1. Fig. 2 exhibits the velocity profiles for different values of Prandtl number Pr, when the other parameters are fixed. It is observed that velocity of the fluid decreases with increasing Prandtl number. Fig. 3 illustrates the profiles of velocity for different values of Gr. It is observed that velocity increases with increasing values of Gr. The flow is accelerated due to the enhancement in the buoyancy forces corresponding to the increasing values of Grashof number, i.e., free convection effects. The influence of Casson fluid parameter on velocity profiles is shown in Fig. 4. It is found that velocity decreases with increasing values of γ. It is important to note that an increase in Casson parameter makes the velocity boundary layer thickness shorter. It is further observed from this graph that when the Casson parameter γ is large enough i.e. $\gamma \to \infty$, the non-Newtonian behaviours disappear and the fluid purely
increment in velocity boundary layer thickness. The graphical results for the phase angle ωt, are shown in Fig. 5. It is observed that the fluid is oscillating between -1 and 1. These fluctuations near the plate are maximum and decrease for further values of independent variable y. This figure can easily help us to check the accuracy of our results. For illustration of such results we have concentrated more on the values of $\omega t = 0, \pi/2, \pi$. We can see that for these values of ωt, the velocity shows its value either 1, 0.5, or 0.

Fig. 5. Profiles of velocity for different values of ωt, when $Gr = 3, Pr = 0.3, M = 0.5, K = 0.2, t = 1$ and $\gamma = 0.5$.

Fig. 6. Profiles of velocity for different values of M, when $Pr = 0.3, Gr = 3, \gamma = 0.5, K = 0.2, t = 1$ and $\omega = \pi/4$.

Fig. 7. Profiles of velocity for different values of K, when $Pr = 0.3, Gr = 3, \gamma = 0.5, M = 0.5, t = 1$ and $\omega = \pi/4$.

Fig. 8. Profiles of velocity for different values of t, when $Pr = 0.3, Gr = 0, \gamma = 0.5, M = 0.5, K = 1$ and $\omega = 0$.

Fig. 9. Profiles of velocity for different values of t, when $Pr = 0.3, Gr = 0, \gamma = 0.5, M = 0.5, K = 1$ and $\omega = 0$.

Fig. 10. Profiles of temperature for different values of Pr, when $t = 0.4$.

Fig. 11. Profiles of temperature for different values of t, when $Pr = 0.71$.

Fig. 12. Profiles of temperature for different values of t, when $Pr = 0.71$.

Fig. 13. Profiles of temperature for different values of t, when $Pr = 0.71$.
0 or \(-1\) which are identical with the imposed boundary conditions of velocity in Equation (9). Hence, both the graphical and mathematical results are found in excellent agreement.

Fig. 6 displays the effect of magnetic parameter \(M\) on the velocity profiles. It is observed that the amplitude of the velocity as well as the boundary layer thickness decreases when \(M\) is increased. Physically, it may also be expected due to the fact that the application of a transverse magnetic field results in a resistive type force (called Lorentz force) similar to the drag force, and upon increasing the values of \(M\), the drag force increases which leads to the deceleration of the flow. In Fig. 7, the profiles of velocity have been plotted for various values of permeability parameter \(K\) by keeping other parameters fixed. It is observed that for large values of \(K\), velocity and boundary layer thickness increase which explains the physical situation that as \(K\) increases, the resistance of the porous medium is lowered which increases the momentum development of the flow regime, ultimately enhances the velocity field. In Fig. 8 the influence of dimensionless time \(t\) on the velocity profiles is shown. It is found that the velocity is an increasing function of time \(t\).

It is depicted from Fig. 9 that, the temperature decreases as the Prandtl number \(Pr\) increases. It is justified due to the fact that thermal conductivity of the fluid decreases with increasing Prandtl number \(Pr\) and hence decreases the thermal boundary layer thickness. Fig. 10 is plotted to show the effects of the dimensionless time \(t\) on the temperature profiles. Four different values of time \(t = 0.1, t = 0.2, t = 0.3\) and \(t = 0.4\) are chosen. Obviously the temperature increases with increasing time \(t\). This graphical behaviour of temperature is in good agreement with the corresponding boundary conditions of temperature profiles as shown in Equation (8). Results for skin-friction and Nusselt number are computed in Tables 1 and 2. The computations of skin-friction give complex results. Therefore, for the sake of convenience we have considered in Table 1 only its real part. The influence of Casson parameter on velocity and skin-friction is found identical with the published results of Mukhopadhyay [23], see Figs. 3(a) and 7(a)]. Table 1 shows that skin-friction increases with increasing values of \(Pr\) and \(\omega t\) whereas it decreases with increasing values of \(Gr\), \(\gamma\) and \(t\). On the other hand, it is found from Table 2 that Nusselt number increases with increasing \(Pr\) whereas decreases with increasing \(t\). For the verification, we have compared our results with those of Fetecau et al. [31]. This comparison is shown in Fig. 11. It is found that our limiting solution (24) when \(\gamma \rightarrow \infty\) (graph shown by solid line) are identical to Equation (8) (graph shown by filled squares) obtained by Fetecau et al. [31]. This confirms the accuracy of our obtained results. This figure further shows the comparison of velocity profiles in the absence as well as in the presence of MHD and porous medium. The graph for velocity when \(M = 0.5\) and \(K = 0.2\) are shown by filled circles whereas the graph for present velocity when \(M = 1/\text{K} = 0\) are zero is given by solid line. It is clearly seen that the velocity decays early in the presence of MHD and porous medium.

6. Conclusion

In this paper an exact analysis is performed to investigate the unsteady boundary layer flow of a Casson fluid past an oscillating vertical plate with constant wall temperature. The dimensionless governing equations are solved by using the Laplace transform technique. The results for velocity and temperature are obtained and plotted graphically. The numerical results for skin-friction and Nusselt number are computed in tables. The main conclusions of this study are as follows:

1. Velocity increases with increasing \(Gr\), \(K\) and \(t\) whereas decreases with increasing values of \(Pr\), \(M\), \(\gamma\) and \(\omega t\).
2. Temperature increases with increasing \(t\) whereas decreases when \(Pr\) is increased.
3. Skin-friction increases with increasing values of \(Pr\), \(M\) and \(\omega t\) whereas it decreases with increasing values of \(Gr\), \(\gamma\), \(K\) and \(t\).
4. Nusselt number increases with increasing \(Pr\) whereas decreases with increasing \(t\).
5. Solution (24) is found in excellent agreement with those obtained by Fetecau et al. [31].

Acknowledgments

The authors would like to acknowledge the SBKWU (HEC) Pakistan, Ministry of Education Malaysia (MOE) and Research Management Centre-UTM for the financial support through vote numbers 06H67 and 4F255 for this research.

References

