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Abstract

In this article, we consider positive subdefinite matrices (PSBD) recently studied by J.-P.
Crouzeix et al. [SIAM J. Matrix Anal. Appl. 22 (2000) 66] and show that linear complemen-
tarity problems with PSBD matrices of rank � 2 are processable by Lemke’s algorithm and
that a PSBD matrix of rank � 2 belongs to the class of sufficient matrices introduced by R.W.
Cottle et al. [Linear Algebra Appl. 114/115 (1989) 231]. We also show that if a matrix A is
a sum of a merely positive subdefinite copositive plus matrix and a copositive matrix, and a
feasibility condition is satisfied, then Lemke’s algorithm solves LCP(q,A). This supplements
the results of Jones and Evers. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

We say that a real square matrix A of order n is positive subdefinite (PSBD) if for
all x ∈ Rn

xtAx < 0 implies either Atx � 0 or Atx � 0.

The class of PSBD matrices is a generalization of the class of positive semidefinite
matrices and is useful in the study of quadratic programming problem. The class of
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symmetric PSBD matrices has been introduced by Martos [8] while characterizing
a pseudo-convex quadratic function. Cottle and Ferland [3] also studied the class of
PSBD matrices nearly at the same time in connection with the class of quadratic
pseudo-convex functions. Recently nonsymmetric PSBD matrices have been studied
by Crouzeix et al. [4], in the context of generalized monotonicity and the linear
complementarity problem.

Given a real square matrix A of order n and a vector q ∈ Rn, the linear comple-
mentarity problem is to find w ∈ Rn and z ∈ Rn such that

w − Az = q, w � 0, z � 0, (1.1)

wtz = 0. (1.2)

This problem is denoted as LCP(q,A). It is well studied in the literature on Mathe-
matical Programming and arises in a number of applications in Operations Research,
Mathematical Economics and Engineering. In particular, the problem of computing a
Karush–Kuhn–Tucker point of a convex quadratic programming problem with linear
constraints on the variables can be formulated as an LCP. For recent books on this
problem, see [1,9].

In this paper we use the following convention. Suppose a class of matrices C ⊆
Rn×n is defined by specifying a property which is satisfied by each square matrix of
order n in C. We then say that A is a C matrix. Thus the symbol C is used for the
class of matrices satisfying the specified property as well for the property itself. For
the definition of various classes of matrices see Section 2.

In this paper, we study PSBD matrices and related classes. In Section 2, we
present the required definitions, introduce the notations and state the relevant results
used in this paper. In Section 3, we prove our main results.

2. Preliminaries

We consider matrices and vectors with real entries. Any vector x ∈ Rn is a column
vector unless otherwise specified, and xt denotes the row transpose of x. Rn+ denotes
the nonnegative orthant in Rn. For any vector x ∈ Rn, x+ and x− are the vectors
whose components are x+

i (= max{xi, 0}) and x−
i (= max{−xi, 0}), respectively, for

all i. We say that a vector x ∈ Rn is unisigned if either x ∈ Rn+ or −x ∈ Rn+. For
any matrix A ∈ Rm×n, aij denotes its ith row and j th column entry. For any matrix
A ∈ Rm×n, let Ai· denote its ith row and A·j denote its j th column. For any positive
integer n,N denotes the set {1, 2, . . . , n}. For any set α ⊆ {1, 2, . . . , n}, ᾱ denotes
its complement in {1, 2, . . . , n}. If A is a matrix of order n × n, α ⊆ {1, 2, . . . , n} and
β ⊆ {1, 2, . . . , n}, then Aαβ denotes the submatrix of A consisting of only the rows
and columns of A whose indices are in α and β, respectively. Given a symmetric ma-
trix S ∈ Rn×n, let ν+(S), ν−(S), ν0(S) denote the number of positive, negative and
zero eigenvalues of S, respectively. Let A be a given m × n matrix, not necessarily
symmetric. We say that A is positive semidefinite (PSD) if xtAx � 0 ∀x ∈ Rn and
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A is positive definite (PD) if xtAx > 0 ∀0 /= x ∈ Rn. A is said to be merely positive
subdefinite (MPSBD) if A is a PSBD matrix but not a PSD matrix. A is said to be
a P(P0) matrix if all its principal minors are positive (nonnegative). A is said to be
column sufficient if for all x ∈ Rn the following implication holds:

xi(Ax)i � 0 ∀i implies xi(Ax)i = 0 ∀i.
A is said to be row sufficient if At is column sufficient. A is sufficient if A and At are
both column sufficient. For details see [1,2,11].

Given a matrix A ∈ Rn×n and a vector q ∈ Rn we define the feasible set
F(q,A) = {z � 0 |Az + q � 0} and the solution set of LCP(q,A) by S(q,A) =
{z ∈ F(q,A) | zt(Az + q) = 0}. We say that A is a Q0 matrix if F(q,A) /= ∅ im-
plies S(q,A) /= ∅. Given a matrix A ∈ Rn×n and a vector q ∈ Rn, an affine map
F(x) = Ax + q, where A ∈ Rn×n and q ∈ Rn, is said to be pseudomonotone on
Rn+ if

(y − z)t(Az + q) � 0, y � 0, z � 0 ⇒ (y − z)t(Ay + q) � 0.

A matrix A ∈ Rn×n is said to be pseudomonotone if F(x) = Ax is pseudo-
monotone on the nonnegative orthant. Crouzeix et al. [4] proved that an affine map
F(x) = Ax + q, where A ∈ Rn×n and q ∈ Rn, is pseudomonotone if and only if

z ∈ Rn, ztAz < 0 ⇒
{
Atz � 0 and ztq � 0 or
Atz � 0, ztq � 0 and zt(Az− + q) < 0.

A ∈ Rn×n is said to be copositive (C0) if xtAx � 0 ∀x � 0 and conegative if xtAx ≤
0 ∀x � 0. We say that A ∈ Rn×n ∩ C0 is copositive plus (C+

0 ) if[
xtAx = 0, x � 0

] ⇒ (A + At)x = 0

and copositive star (C∗
0 ) if[

xtAx = 0, Ax � 0, x � 0
] ⇒ Atx � 0.

We require the following theorems in the next section. For proof of these results see
Crouzeix et al. [4].

Theorem 2.1 [4, Proposition 2.1]. Let A = abt, where a /= b, a, b ∈ Rn. A is PSBD
if and only if one of the following holds:

(i) ∃ a t > 0 such that b = ta,

(ii) for all t > 0, b /= ta and either b � 0 or b � 0.
Further suppose that A ∈ MPSBD. Then A ∈ C0 if and only if either (a � 0 and

b � 0) or (a � 0 and b � 0) and A ∈ C∗
0 if and only if A is copositive and ai = 0

whenever bi = 0.

Combining Theorem 2.1 and Proposition 2.5 in [4], we get:

Theorem 2.2 [4,Theorem 2.1]. Suppose A ∈ Rn×n is PSBD and rank(A) � 2. Then
At is PSBD and at least one of the following conditions holds:

(i) A is PSD,
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(ii) (A + At) � 0,
(iii) A is C∗

0 .

Theorem 2.3 [4, Proposition 2.2]. Assume that A ∈ Rn×n is MPSBD and rank(A) �
2. Then
(a) ν−(A + At) = 1,
(b) (A + At)z = 0 ⇔ Az = Atz = 0.

Theorem 2.4 [4,Theorem 3.3]. A matrix A ∈ Rn×n is pseudomonotone if and only
if A is PSBD and copositive with the additional condition that in case A = abt,

bi = 0 ⇒ ai = 0.

Theorem 2.5 [5,Corollary 4]. If A is pseudomonotone, then A is a row sufficient
matrix.

Murthy and Parthasarathy [10] have proved the following result on nonnegative
square matrices.

Theorem 2.6 [10,Theorem 2.5]. Let A � 0 be an n × n matrix. A is a Q0-matrix if
and only if for any i, Ai· /= 0 ⇒ aii > 0.

3. PSBD and MPSBD matrices

Since a PSBD matrix is a natural generalization of a PSD matrix, it is of interest
to determine which of the properties of a PSD matrix also holds for a PSBD matrix.
In particular we may ask whether

(i) A is PSBD if and only if (A + At) is PSBD and
(ii) any PPT (Principal Pivot Transform [1, p. 79]) of a PSBD matrix is a PSBD

matrix.
The following examples show that these statements are false.

Example 3.1. Let

A =
[

0 2
−1 0

]
.

Then for any x =
[
x1
x2

]
, xtAx = x1x2 < 0 implies x1 and x2 are of opposite sign.

Clearly A ∈ PSBD since xtAx < 0 and Atx =
[−x2

2x1

]
imply either Atx � 0 or Atx �

0.
Also it is easy to see that
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A + At =
[

0 1
1 0

]

is not a PSBD matrix.
Similarly let

A =
[

0 −2
1 0

]
so that A + At =

[
0 −1

−1 0

]
.

It is easy to verify that A + At is PSBD but A is not a PSBD matrix.

Example 3.2. Let us consider the matrix

A =
[

0 2
−1 0

]

in Example 3.1. Note that A ∈ PSBD but it is easy to see that

A−1 =
[

0 −1
0.5 0

]

is not a PSBD matrix.
Since A−1 is a PPT of A therefore any PPT of a PSBD matrix is not a PSBD

matrix.

Theorem 3.1. Suppose A ∈ Rn×n is a PSBD matrix. Then Aαα ∈ PSBD, where
α ⊆ {1, . . . , n}.

Proof. Let A ∈ PSBD and α ⊆ {1, . . . , n}. Let xα ∈ R|α| and

A =
[
Aαα Aαᾱ

Aᾱα Aᾱᾱ

]
.

Suppose that xt
αAααxα < 0. Now define z ∈ Rn by taking zα = xα and zᾱ = 0. Then

ztAz = xt
αAααxα . Since A is a PSBD matrix ztAz = xt

αAααxα < 0 ⇒ either Atz �
0 which implies that At

ααxα � 0 or Atz � 0 (which implies At
ααxα � 0). Hence

Aαα ∈ PSBD. As α was arbitrary, it follows that every principal submatrix of A
is a PSBD matrix. �

Theorem 3.2. Suppose A ∈ Rn×n is a PSBD matrix. Let D ∈ Rn×n be a positive
diagonal matrix. Then A ∈ PSBD if and only if DADt ∈ PSBD.

Proof. Let A ∈ PSBD. For any x ∈ Rn let y = Dtx. Note that xtDADtx = ytAy <

0 ⇒ Aty = AtDtx � 0 or Aty = AtDtx � 0. This implies that either DAtDtx � 0
or DAtDtx � 0, since D is a positive diagonal matrix. Thus DADt ∈ PSBD. The
converse follows from the fact that D−1 is a positive diagonal matrix and A =
D−1(DADt)(D−1)t. �
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Theorem 3.3. PSBD matrices are invariant under principal rearrangement, i.e., if
A ∈ Rn×n is a PSBD matrix and P ∈ Rn×n is any permutation matrix, then PAP t ∈
PSBD.

Proof. Let A ∈ PSBD and let P ∈ Rn×n be any permutation matrix. For any x ∈
Rn, let y = P tx. Note that xtPAP tx = ytAy < 0 ⇒ Aty = AtP tx � 0 or Aty =
AtP tx � 0. This implies that either PAtP tx � 0 or PAtP tx � 0, since P is just a
permutation matrix. It follows that PAP t is a PSBD matrix. The converse follows
from the fact that P tP = I and A = P t(PAP t)(P t)t. �

We now settle the question whether PSBD ⊆ Q0 and Lemke’s algorithm possess-
es PSBD matrices. In this connection we rewrite Theorem 2.1 as follows.

Theorem 3.4. Let A = abt ∈ Rn×n, a, b ∈ Rn, a, b /= 0, be a PSBD matrix. Sup-
pose either a � 0 or a � 0 when b /= ta for any t > 0. Then A ∈ Q0 if and only if
one or more of the following conditions hold:

(i) A is PSD,

(ii) a and b have opposite signs,
(iii) a and b has the same sign and

ai = 0 whenever bi = 0 ∀i = {1, 2, . . . , n}. (3.1)

Proof.
Case 1. There exists a t > 0 so that b = ta. It is easy to see that A is PSD and hence
A ∈ Q0.

Case 2. For all t > 0, b /= ta. In this case it follows from Theorem 2.1 that either
b � 0 or b � 0. Under our hypothesis about a, either A � 0 or A � 0. If A � 0, then
A ∈ Q0. But if A � 0, then from Theorem 2.6, it is easy to see that A ∈ Q0 if and
only if

ai = 0 whenever bi = 0 ∀i = {1, 2, . . . , n}. �

Remark 3.1. Note that any PSBD matrix A = abt ∈ Rn×n, a, b ∈ Rn, a, b /= 0 is
a sufficient matrix if ai = bi = 0 or aibi > 0. See [11, Corollary 4.2].

Lemma 3.1. Let A ∈ Rn×n be a PSBD matrix with rank(A) � 2 and let A + At �
0. We have:

(i) If aii < 0, then the column/row containing aii is nonpositive.
(ii) If A has a principal submatrix of the form

[
0 aks
ask 0

]
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with (aks + ask) < 0, then the sth and kth rows as well as sth and kth columns of A
are nonpositive.

Proof. By Theorem 2.2, At is a PSBD matrix. By Theorem 3.1 every principal
submatrix of A as well as At are also PSBD matrices. To prove (i) we proceed as fol-
lows. Suppose the diagonal entry aii < 0. Let (assuming i < k) α = {i, k}. Consider
the 2 × 2 submatrix

Aαα =
[
aii aik
aki akk

]
,

which is a PSBD matrix. Now for any x =
(
x1
x2

)
∈ R2,

xtAααx = aiix
2
1 + x1x2(aik + aki) + akkx

2
2 < 0

if x is nonnegative with x1 > 0, since by hypothesis, akk � 0 and aik + aki � 0. Thus
(Aαα)

tx is unisigned for any nonnegative x with x1 > 0. Now by taking x2 = 0,
x1 > 0 we conclude that aik � 0. Applying the same argument for At and (At

αα) =
(Aαα)

t we conclude that Aααx is also unisigned and hence aki � 0. This completes
the proof of (i).

To prove (ii) we proceed as follows: Note that for any y ∈ Rn,

ytAy =
n∑

i=1

aiiy
2
i +

∑
i<j

(aij + aji)yiyj .

By our hypothesis aii and aij + aji are nonpositive for all i and j. Suppose now
akk = ass = 0 and (aks + ask) < 0. In this case note that if z ∈ Rn is any vector such
that zi = 0, i /= k, s, zk > 0 and zs > 0, then ztAz = zszk(aks + ask) < 0. There-
fore it follows that for such a z, Atz is unisigned. Suppose now for some r, r /=
s, k, akr > 0. Choose zk = 1. Let δ be a positive number such that akr + asrδ > 0. It
is easy to see that such a δ exists. Define the vector z̄ by taking z̄i = 0, i /= k, s, z̄k =
1, z̄s = δ. Note that Atz̄ is not unisigned, a contradiction. This contradiction shows
that akr � 0 ∀r. In a similar manner it can be shown that asr is nonpositive for all r.
From the fact that At is also a PSBD matrix, by a similar argument it follows that ark
and ars are also nonpositive for all r.

This completes the proof. �

Lemma 3.2. Suppose A ∈ Rn×n is a PSBD matrix with rank(A) � 2 and
A + At � 0. If A is not a skew-symmetric matrix, then A � 0.

Proof. Let the index sets L1, L2 and L be defined as follows:

L1 = {
i | aii < 0

}; L2 = {
i | aii = 0, ∃k, with akk = 0, aik + aki < 0

}
.

Note that if i ∈ L2, then L2 will also contain the index k that satisfies the defining
conditions of L2 for i. Let L = L1 ∪ L2. By the hypothesis of the lemma L is non-
empty, for otherwise, A is skew-symmetric. Consider the following partitioned form
of A induced by the index set L:
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PAP t =
[
ALL ALL̄

AL̄L AL̄L̄

]
,

where L̄ denotes the set of indices {1, 2, . . . , n}\L and P is the appropriate permu-
tation matrix. (In what follows we will simply use the symbol A to denote PAP t.)
By the earlier lemmas, ALL � 0, ALL̄ � 0 and AL̄L � 0. Also note that by defini-

tion, AL̄L̄ is a skew-symmetric matrix. For any y ∈ Rn, let y =
(
yL
yL̄

)
denote the

corresponding partition of y. Note that

ytAy = yt
LALLyL + yt

L̄
AL̄L̄yL̄ + yt

L̄
(AL̄L + At

LL̄
)yL.

Since AL̄L̄ is skew-symmetric it follows that for all y ∈ Rn, yt
L̄
AL̄L̄yL̄ = 0. It fol-

lows that for all vectors y such that yL is positive, ytAy is negative and hence both Ay
and Aty are unisigned. To complete the proof we need to show that none of the entries
of AL̄L̄ is positive. Suppose to the contrary that for some s ∈ L̄, r ∈ L̄, asr > 0.
Choose ε such that

ε
∑
i∈L

air + asr > 0.

Define the vector ȳ by taking yi = ε ∀i ∈ L and yi = 0 ∀i /= r ∈ L̄ and yr = 1.
Note that since each row and column of ALL contains at least one negative entry and
all the entries of ALL, and AL̄L are nonpositive it follows that (Aty)i < 0 ∀i ∈ L.

Also by construction (Aty)r > 0. This is a contradiction! Hence AL̄L̄ � 0 and the
lemma follows. �

Theorem 3.5. Suppose A ∈ Rn×n is a PSBD matrix with rank(A) � 2. Then A is a
Q0 matrix.

Proof. By Theorem 2.2, At is a PSBD matrix. Also by the same theorem, either A ∈
PSD or (A + At) � 0 or A ∈ C∗

0 . If A ∈ C∗
0 , then A ∈ Q0 (see [1]). Now if (A +

At) � 0, and A is not skew-symmetric, then by Lemma 3.2 it follows that A � 0.
In this case A ∈ Q0 [1]. However if A is skew-symmetric, then A ∈ PSD. Therefore
A ∈ Q0. �

Corollary 3.1. Suppose A is a PSBD matrix with rank(A) � 2. Then LCP(q,A)

is processable by Lemke’s algorithm. If rank(A) = 1, (i.e., A = abt, a, b /= 0) and
A ∈ C0, then LCP(q,A) is processable by Lemke’s algorithm whenever bi = 0 ⇒
ai = 0.

Proof. Suppose rank(A) � 2. From Theorem 2.2 and the proof of Theorem 3.5, it
follows that A is either a PSD matrix or A � 0 or A ∈ C∗

0 . Hence LCP(q,A) is pro-
cessable by Lemke’s algorithm (see [1]). For PSBD ∩ C0 matrices of rank(A) = 1,
i.e., for A = abt, a, b /= 0, such that bi = 0 ⇒ ai = 0. Note that A ∈ C∗

0 by Theo-
rem 2.1. Hence LCP(q,A) with such matrices are processable by Lemke’s algorithm.

�
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Theorem 3.6. Suppose A is a PSBD ∩C0 matrix with rank(A) � 2. Then A ∈ Rn×n

is a sufficient matrix.

Proof. Note that by Theorem 2.2 At is a PSBD ∩ C0 matrix with rank(At) � 2. Now
by Theorem 2.4, A and At are pseudomonotone. Hence A and At are row sufficient
by Theorem 2.5. Therefore A is sufficient. �

The following example shows that in general PSBD matrices need not be a P0
matrix.

Example 3.3. Let

A =
[

0 −1
−1 0

]
.

Then for any x =
[
x1
x2

]
,

xtAx = −2x1x2 < 0

implies x1 and x2 are of same sign. A ∈ PSBD, since Atx =
[−x2−x1

]
implies either

Atx � 0 or Atx � 0 but A �∈ P0.

The following example shows that PSBD matrices need not be a Q0 matrix in
general.

Example 3.4. Let

A =
[

1 0
1 0

]
.

Then for any x =
[
x1
x2

]
,

Atx =
[
x1 + x2

0

]

implies either Atx � 0 or Atx � 0. Hence A ∈ PSBD. Taking q =
[−1

−2

]
we note

that LCP(q,A) is feasible but has no solution. Therefore A is not a Q0 matrix.

The following theorem provides a new sufficient condition to solve LCP(q,A) by
Lemke’s algorithm. (See [1] for a detailed discussion on Lemke’s algorithm.)

Theorem 3.7. Suppose A ∈ Rn×n can be written as M + N, where M ∈ MPSBD ∩
C+

0 , rank(M) � 2 and N ∈ C0. If the system q + Mx − N ty � 0, y � 0, is feasi-
ble, then Lemke’s algorithm for LCP(q,A) with covering vector d > 0 terminates
with a solution.
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Proof. Assume that the feasibility condition of the theorem holds so that there exists
an x0 ∈ Rn and a y0 ∈ Rn+ such that q + Mx0 − N ty0 � 0. First we shall show that
for any x ∈ Rn+, if Ax � 0 and xtAx = 0, then xtq � 0. Note that for given x � 0,
xtAx = 0 ⇒ xt(M + N)x = 0 and since M,N ∈ C0, this implies that xtMx = 0.
As M is a MPSBD matrix xtMx = 0 ⇔ xt(M + M t)x = 0 ⇔ (M + M t)x = 0 ⇔
M tx = 0 ⇔ Mx = 0. See Theorem 2.3. Also since Ax � 0, it follows that Nx � 0
and hence xtN ty0 � 0. Further since q + Mx0 − N ty0 � 0 and x � 0, it follows
that xt(q + Mx0 − N ty0) � 0. This implies that xtq � xtN ty0 � 0.

Now from Corollary 4.4.12 and Theorem 4.4.13 of [1, p. 277] it follows that Lem-
ke’s algorithm for LCP(q,A) with covering vector d > 0 terminates with a solution.

�

The following example shows that the class MPSBD ∩ C+
0 is nonempty.

Example 3.5. Let

M =

2 5 0

1 4 0
0 0 0


 .

Note that xtMx = 2(x1 + x2)(x1 + 2x2). Using this expression it is easy to verify
that xtMx < 0 ⇒ either M tx � 0 or M tx � 0. Also it is easy to see that M ∈ C+

0 .

Remark 3.2. The above theorem cannot be extended to a PSBD matrix. Note that
the class PSBD matrices includes PSD matrices. In the example below, we consider
a matrix A which may be written as M + N , where M ∈ nonsymmetric PSD and
N ∈ C0 and show that Theorem 3.7 does not hold.

Example 3.6. Let

A =
[

1 1
1 0

]
.

Taking q =
[−1

−2

]
we note that LCP(q,A) is feasible but the problem has no solution.

Therefore A is not a Q0 matrix.
Let

M =
[

1 −1
1 0

]
and N =

[
0 2
0 0

]
.

Note that M is a nonsymmetric PSD matrix of rank 2 and N ∈ C0 and it is easy
to check that the system q + Mx − N ty � 0, y � 0, is feasible. Lemke’s algorithm
for LCP(q,A) with covering vector d > 0 (for example d = e, where e is a n di-
mensional column vector of all 1s) terminates with a secondary ray for this q, as
LCP(q,A) has no solution. Thus if M is a nonsymmetric PSD matrix, Theorem 3.7
does not hold. (See also [6] and [7].)
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