Every 4-connected line graph of a quasi claw-free graph is hamiltonian connected

Hong-Jian Lai ${ }^{\text {a }}$, Yehong Shao ${ }^{\text {b }}$, Mingquan Zhan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Ohio University Southern Campus, Ironton, OH 45638, USA
${ }^{\mathrm{c}}$ Department of Mathematics, Millersville University, Millersville, PA 17551, USA

Received 23 January 2007; received in revised form 16 September 2007; accepted 18 September 2007 Available online 7 November 2007

Abstract

Let G be a graph. For $u, v \in V(G)$ with $\operatorname{dist}_{G}(u, v)=2$, denote $J_{G}(u, v)=\left\{w \in N_{G}(u) \cap N_{G}(v) \mid N_{G}(w) \subseteq N_{G}(u) \cup N_{G}(v) \cup\right.$ $\{u, v\}\}$. A graph G is called quasi claw-free if $J_{G}(u, v) \neq \emptyset$ for any $u, v \in V(G)$ with $\operatorname{dist}_{G}(u, v)=2$. In 1986, Thomassen conjectured that every 4 -connected line graph is hamiltonian. In this paper we show that every 4 -connected line graph of a quasi claw-free graph is hamiltonian connected. © 2007 Elsevier B.V. All rights reserved.

Keywords: Hamiltonian connected graph; Collapsible graph; Quasi claw-free graph; Line graph

1. Introduction

We use [1] for terminology and notations not defined here, and consider loopless finite simple graphs only. Let G be a graph. The degree and neighborhood of a vertex x of G are, respectively, denoted by $d_{G}(x)$ and $N_{G}(x)$. Denote $N_{G}[x]=N_{G}(x) \cup\{x\}$. A graph G is essentially k-edge-connected if $|E(G)| \geqslant k+1$ and if for every $E_{0} \subseteq E(G)$ with $\left|E_{0}\right|<k, G-E_{0}$ has exactly one component H with $E(H) \neq \emptyset$. For any two distinct vertices x and y in G, denote $\operatorname{dist}_{G}(x, y)$ the distance in G from x to y. For $u, v \in V(G)$ with $\operatorname{dist}_{G}(u, v)=2$, denote $J_{G}(u, v)=\{w \in$ $\left.N_{G}(u) \cap N_{G}(v) \mid N_{G}(w) \subseteq N_{G}[u] \cup N_{G}[v]\right\}$. A graph G is claw-free if it contains no induced subgraph isomorphic to $K_{1,3}$. A graph G is called quasi claw-free if $J_{G}(u, v) \neq \emptyset$ for any $u, v \in V(G)$ with $\operatorname{dist}_{G}(u, v)=2$. Clearly, every claw-free graph is quasi claw-free.

Let G be a graph and let $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and deleting the resulting loops. For convenience, if H is a subgraph of G, we write G / H for $G / E(H)$.
The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent.

A graph G is hamiltonian connected if for every pair of vertices $u, v \in V(G), G$ has a spanning (u, v)-path (a path starting from u and ending at v). In [12], Thomassen conjectured that every 4-connected line graph is hamiltonian.

[^0]By [11], this conjecture is equivalent to the conjecture of Matthews and Sumner stating that every 4-connected claw-free graph is hamiltonian [10].

So far it is known that every 7-connected line graph is hamiltonian connected [14], and that every line graph of a 4-edge-connected graph is hamiltonian connected [13], and that every 4-connected line graph of a claw-free graph is hamiltonian connected [6]. Thomassen's conjecture has also been proved to be true for 4-connected line graphs of planar simple graphs [7]. Here we consider the hamiltonicity of the line graph of a quasi claw-free graph and have the following.

Theorem 1.1. Every 4-connected line graph of a quasi claw-free graph is hamiltonian connected.

2. Preliminaries

A subgraph H of a graph G is dominating if $G-V(H)$ is edgeless. Let $v_{0}, v_{k} \in V(G)$. A $\left(v_{0}, v_{k}\right)$-trail of G is a vertex-edge alternating sequence

$$
v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{k}, v_{k}
$$

such that all the e_{i} 's are distinct and such that for each $i=1,2, \ldots, k, e_{i}$ is incident with both v_{i-1} and v_{i}. With the notation above, this $\left(v_{0}, v_{k}\right)$-trial is also called an $\left(e_{1}, e_{k}\right)$-trail. All the vertices in $v_{1}, v_{2}, \ldots, v_{k-1}$ are internal vertices of trail. A dominating $\left(e_{1}, e_{k}\right)$-trail T of G is an $\left(e_{1}, e_{k}\right)$-trail such that every edge of G is incident with an internal vertex of T. A spanning $\left(e_{1}, e_{k}\right)$-trail of G is a dominating $\left(e_{1}, e_{k}\right)$-trail such that $V(T)=V(G)$. There is a close relationship between dominating eulerian subgraphs in graphs and hamiltonian cycles in $L(G)$.

Theorem 2.1 (Harary and Nash-Williams [5]). Let G be a graph with $|E(G)| \geqslant 3$. Then $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.

With a similar argument in the proof of Theorem 2.1, one can obtain a theorem for hamiltonian connected line graphs.

Proposition 2.2. Let G be a graph with $|E(G)| \geqslant 3$. Then $L(G)$ is hamiltonian connected if and only if for any pair of edges $e_{1}, e_{2} \in E(G), G$ has a dominating $\left(e_{1}, e_{2}\right)$-trail.

We say that an edge $e \in E(G)$ is subdivided when it is replaced by a path of length 2 whose internal vertex, denote $v(e)$, has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the length 2 path is called subdividing e. For a graph G and edges $e_{1}, e_{2} \in E(G)$, let $G\left(e_{1}\right)$ denote the graph obtained from G by subdividing e_{1}, and let $G\left(e_{1}, e_{2}\right)$ denote the graph obtained from G by subdividing both e_{1} and e_{2}. Thus

$$
V\left(G\left(e_{1}, e_{2}\right)\right)-V(G)=\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\}
$$

From the definitions, one immediately has the following observation.

Proposition 2.3. Let G be a graph and $e_{1}, e_{2} \in E(G)$. If $G\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, then G has a dominating $\left(e_{1}, e_{2}\right)$-trail.

In [3] Catlin defined collapsible graphs. For $R \subseteq V(G)$, a subgraph Γ of G is called an R-subgraph if $G-E(\Gamma)$ is connected and R is the set of all vertices of Γ with odd degrees. A graph is collapsible if G has an R-subgraph for every even set $R \subseteq V(G)$. A graph G is contracted to a graph G^{\prime} if G contains pairwise vertex-disjoint connected subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ with $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$ such that G^{\prime} is obtained from G by successively contracting $H_{1}, H_{2}, \ldots, H_{k}$.

Theorem 2.4. (i) Catlin [3]. Let H be a collapsible subgraph of G. Then G is collapsible if and only if G / H is collapsible.
(ii) Catlin [3]. Let H_{1} and H_{2} be subgraphs of H such that $H_{1} \cup H_{2}=H$ and $V\left(H_{1}\right) \cap V\left(H_{2}\right) \neq \emptyset$. If H_{1} and H_{2} are collapsible, then so is H.
(iii) Lai et al. [9]. If G is collapsible, then for any pair of vertices $u, v \in V(G), G$ has a spanning (u,v)-trail.

Fig. 1.
We define $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The edge arboricity $a_{1}(G)$ of G is the minimum number of edge-disjoint forests whose union equals G.

Theorem 2.5. Let G be a graph. Each of the following statements holds:
(i) Catlin [3]. If $F(G) \leqslant 1$ and if G is connected, then G is collapsible if and only if G cannot be contracted to a K_{2}.
(ii) Catlin et al. [4]. If $F(G) \leqslant 2$ and if G is connected, then G is collapsible if and only if G cannot be contracted to a K_{2} or a $K_{2, t}$ for some integer $t \geqslant 1$.
(iii) Catlin [2]. If $a_{1}(G) \leqslant 2$, then $F(G)=2|V(G)|-|E(G)|-2$.

Let $s_{i} \geqslant 1(i=1,2,3)$ be integers. Denote $K_{4}\left(s_{1}, s_{2}, s_{3}\right), T\left(s_{1}, s_{2}\right), C_{3}\left(s_{1}, s_{2}\right), S\left(s_{1}, s_{2}\right)$ and $K_{2,3}\left(s_{1}, s_{2}\right)$ to be the graphs depicted in Fig. 1, where the $s_{i}(i=1,2,3)$ vertices and the two vertices connected by the two lines shown in each of the graphs forms a $K_{2, s_{i}}$ graph. Denote

$$
\mathscr{F}_{1}=\left\{K_{4}\left(s_{1}, s_{2}, s_{3}\right), T\left(s_{1}, s_{2}\right), C_{3}\left(s_{1}, s_{2}\right), S\left(s_{1}, s_{2}\right), K_{2,3}\left(s_{1}, s_{2}\right) \mid s_{i} \geqslant 1(i=1,2,3) \text { is an integer }\right\}
$$

and $\mathscr{F}=\mathscr{F}_{1} \cup\left\{K_{2, t} \mid t \geqslant 2\right\}$.
Theorem 2.6 (Lai et al. [8]). Let G be a 2-edge-connected planar graph. If $F(G) \leqslant 3$, then G is collapsible if and only if G cannot be contracted to a graph in \mathscr{F}.

Theorem 2.7 (Lai et al. [9]). Let G be a graph with $\kappa^{\prime}(G) \geqslant 3$. If every 3-edge-cut of G has at least one edge in a 2 -cycle or 3-cycle of G, then the graph $G\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible for any $e^{\prime}, e^{\prime \prime} \in E(G)$.

3. Proof of Theorem 1.1

In this section, we assume that G is a quasi claw-free graph with $\kappa(L(G)) \geqslant 4$. Note that then G is essentially 4-edge-connected. The core of the graph G, denoted by G_{0}, is the graph obtained from G by deleting all degree 1 vertices and contracting exactly one edge $x y$ or $y z$ for each path $x y z$ with $d_{G}(y)=2$. Denote G_{1}^{*} the graph obtained from G by deleting all degree 1 vertices.

Lemma 3.1 (Lai et al. [9]). Let G be a graph and G_{0} the core of G. If $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ has a spanning (v($\left.\left.e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail for any $e^{\prime}, e^{\prime \prime} \in E\left(G_{0}\right)$, then $G\left(e^{\prime}, e^{\prime \prime}\right)$ has a dominating $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail.

Lemma 3.2. Let G be a quasi claw-free graph. Then G_{1}^{*} is also quasi claw-free.
Proof. Let $u, v \in V\left(G_{1}^{*}\right)$ with $\operatorname{dist}_{G_{1}^{*}}(u, v)=2$. Then $\operatorname{dist}_{G}(u, v)=2$ and $J_{G}(u, v) \neq \emptyset$. For $x \in J_{G}(u, v)$, since $N_{G_{1}^{*}}(x) \subseteq N_{G}(x)$, we have $x \in J_{G_{1}^{*}}(u, v)$, and hence G_{1}^{*} is quasi claw-free.

Lemma 3.3. Let $x \in V\left(G_{0}\right)$ with $d_{G_{0}}(x)=3$. Then exactly one of the following holds.
(i) $G_{0}[N[x]]$ contains a triangle.
(ii) G_{0} contains the graph B, or C, or D in Fig. 2 as the induced subgraph.

Fig. 2.

Fig. 3.

Proof. Let $N_{G_{0}}(x)=\left\{u_{1}, u_{2}, u_{3}\right\}$. If $u_{i} u_{j} \in E\left(G_{0}\right)$ for some $\{i, j\} \subseteq\{1,2,3\}$, then (i) holds. So we may assume that $G_{0}\left[\left\{x, u_{1}, u_{2}, u_{3}\right\}\right]$ is a claw in G_{0}. Since G is essentially 4-edge-connected, $x, u_{1}, u_{2}, u_{3} \in V(G), d_{G}(x)=3$ and $d_{G}\left(u_{i}\right) \geqslant 3(i=1,2,3)$. Thus $x, u_{1}, u_{2}, u_{3} \in V\left(G_{1}^{*}\right)$. So $G_{1}^{*}\left[\left\{x, u_{1}, u_{2}, u_{3}\right\}\right]$ is a claw in G_{1}^{*}. By Lemma 3.2, there exists $u_{i j} \in J_{G_{1}^{*}}\left(u_{i}, u_{j}\right)$ in G_{1}^{*}, where $1 \leqslant i<j \leqslant 3$. By the definition of a quasi claw-free graph, $N_{G_{1}^{*}}\left(u_{i j}\right) \subseteq$ $N_{G_{1}^{*}}\left[u_{i}\right] \cup N_{G_{1}^{*}}\left[u_{j}\right]$. Since $G_{1}^{*}\left[\left\{x, u_{1}, u_{2}, u_{3}\right\}\right]$ is a claw in G_{1}^{*}, the vertices u_{11}, u_{12}, u_{23} are different, $x \notin\left\{u_{12}, u_{13}, u_{23}\right\}$ and $u_{k} \notin N_{G_{1}^{*}}\left(u_{i j}\right)$. Let $H=G_{1}^{*}\left[\left\{x u_{1}, x u_{2}, x u_{3}, u_{12} u_{1}, u_{12} u_{2}, u_{13} u_{1}, u_{13} u_{3}, u_{23} u_{2}, u_{23} u_{3}\right\}\right]$ (see Fig. 3).

Since $d_{G_{1}^{*}}(x)=3, x u_{i j} \notin E\left(G_{1}^{*}\right)$ for all $\{i, j\} \subseteq\{1,2,3\}$. Let $t=\left|E\left(G_{1}^{*}\left[\left\{u_{12}, u_{13}, u_{23}\right\}\right]\right)\right|$. If $t \leqslant 1$, without loss of generality, we assume that $u_{12} u_{13}, u_{23} u_{13} \notin E\left(G_{1}^{*}\right)$. Since $\operatorname{dist}_{G_{1}^{*}}\left(x, u_{13}\right)=2$, there exists $a \in J_{G_{1}^{*}}\left(x, u_{13}\right)$. Since $N_{G_{1}^{*}}(x)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $u_{2} u_{13} \notin E\left(G_{1}^{*}\right)$, we have either $a=u_{1}$ or u_{3}. But $u_{1} u_{12}, u_{3} u_{23} \in E\left(G_{1}^{*}\right)$ and $x u_{12}, x u_{23}, u_{13} u_{12}, u_{13} u_{23} \notin E\left(G_{1}^{*}\right)$, a contradiction. So $t \geqslant 2$. Hence $u_{12}, u_{23}, u_{13} \in V\left(G_{0}\right)$, and H is the subgraph of G_{0}. So (ii) holds.

Let $x \in V\left(G_{0}\right)$ with $d_{G_{0}}(x)=3$. By Lemma 3.3, denote H_{x} the induced subgraph in G_{0} shown in Fig. 2. Clearly, H_{x} is a 2-edge-connected planar graph, and $a_{1}\left(H_{x}\right) \leqslant 2$. By Theorem $2.5(\mathrm{iii})$,

$$
F\left(H_{x}\right)=2\left|V\left(H_{x}\right)\right|-\left|E\left(H_{x}\right)\right|-2= \begin{cases}2 \cdot 3-3-2=1 & \text { if } H_{x} \text { is a triangle, } \\ 2 \cdot 7-11-2=1 & \text { if } H_{x} \text { the graph B or C in Fig. 2, } \\ 2 \cdot 7-12-2=0 & \text { if } H_{x} \text { the graph D in Fig. 2. }\end{cases}
$$

Denote $\mathscr{H}=\left\{H_{x} \mid d_{G_{0}}(x)=3\right\}, \mathscr{H}_{0}=\left\{H_{x} \in \mathscr{H} \mid H_{x}\right.$ is not a triangle $\}$.
Lemma 3.4. Let $H_{x} \in \mathscr{H}_{0}$ and H_{x}^{d} be the graph obtained from H_{x} by subdividing at most two edges of H_{x}. Then H_{x}^{d} is collapsible.

Proof. Clearly, $H_{x} \in \mathscr{H}_{0}$ is 3-edge-connected with $F\left(H_{x}\right) \leqslant 1$. By Theorem 2.5(i), H_{x} is collapsible.
Let $e^{\prime} \in E\left(H_{x}\right)$. Then $a_{1}\left(H_{x}\left(e^{\prime}\right)\right) \leqslant 2$. Note that $F\left(H_{x}\right) \leqslant 1$. By Theorem 2.5(iii), $F\left(H_{x}\left(e^{\prime}\right)\right)=F\left(H_{x}\right)+1 \leqslant 2$. Since H_{x} is 3-edge-connected, and $v\left(e^{\prime}\right)$ is the only degree 2 vertex in $H_{x}\left(e^{\prime}\right), H_{x}\left(e^{\prime}\right)$ is collapsible by Theorem 2.5(ii).

Let $e^{\prime}, e^{\prime \prime} \in E\left(H_{x}\right)$. Then $a_{1}\left(H_{x}\left(e^{\prime}, e^{\prime \prime}\right)\right) \leqslant 2$. Note that $F\left(H_{x}\right) \leqslant 1$. By Theorem 2.5(iii), $F\left(H_{x}\left(e^{\prime}, e^{\prime \prime}\right)\right)=F\left(H_{x}\right)+$ $2 \leqslant 3$. Since H_{x} is a 3-edge-connected planar graph, and $v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)$ are only two degree 2 vertices in $H_{x}\left(e^{\prime}, e^{\prime \prime}\right)$, $H_{x}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible by Theorem 2.6.

Lemma 3.5. Let $E_{0}=\bigcup_{H_{x} \in \mathscr{H}}^{0}$ $E\left(H_{x}\right)$, and $H_{0}=G_{0}\left[E_{0}\right]$. Let H_{0}^{d} be the graph obtained from H_{0} by subdividing at most two edges of H_{0}. Then H_{0}^{d} is the union of vertex-disjoint collapsible subgraphs.

Proof. It holds directly by Lemma 3.4 and Theorem 2.4(ii).
Lemma 3.6. Let G^{\prime} be the graph obtained from G_{0} by contracting each H_{x} in \mathscr{H}_{0}. Then every 3-edge-cut of G^{\prime} has at least one edge in a 2-cycle or 3-cycle of G^{\prime}.

Proof. Let $v_{1}, v_{2}, \ldots, v_{s}$ be the new vertices in G^{\prime} by contracting all $H_{x} \in \mathscr{H}_{0}$ in G. Since G is essentially 4-edgeconnected, $d_{G^{\prime}}\left(v_{i}\right) \geqslant 4(i=1,2, \ldots, s)$, and every 3-edge-cut of G^{\prime} must be the 3-edge-cut of G_{0}. Therefore these three edges are adjacent to some vertex x_{0} in G_{0} with $d_{G_{0}}\left(x_{0}\right)=3$. Let $H_{x_{0}}$ be the subgraph induced by $N_{G_{0}}\left[x_{0}\right]$. Since $H_{x_{0}} \notin \mathscr{H}_{0}, N_{G^{\prime}}\left[x_{0}\right]$ contains a triangle by Lemma 3.3. Hence every 3-edge-cut of G^{\prime} has at least one edge in a 2 -cycle or 3-cycle of G^{\prime}.

Theorem 3.7. For every pair of edges $e^{\prime}, e^{\prime \prime}$ of $G_{0}, G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible.
Proof. Let $E_{0}=\bigcup_{H_{x} \in \mathscr{H}_{0}} E\left(H_{x}\right)$, and $H_{0}=G_{0}\left[E_{0}\right]$. Then H_{0} is the union of some collapsible subgraphs of G_{0} by Lemma 3.4.

If $e^{\prime}, e^{\prime \prime} \notin E_{0}$, let G^{Δ} be the graph obtained from G_{0} by contracting H_{0}. By Lemma 3.6, every 3 -edge-cut of G^{\triangle} has at least one edge in a 2-cycle or 3-cycle of G^{Δ}. Thus $G^{\triangle}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible by Theorem 2.7. By Lemma 3.5, H_{0} is the union of vertex-disjoint collapsible subgraphs. Thus $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible by Theorem 2.4(i).

If exactly one of $\left\{e^{\prime}, e^{\prime \prime}\right\}$ is in E_{0}, without loss of generality, we assume that $e^{\prime} \in E_{0}$ and $e^{\prime \prime} \notin E_{0}$. Let G^{Δ} be the graph obtained from G_{0} by contracting $H_{0}\left(e^{\prime}\right)$. Note that $G_{0} / H_{0}=G_{0} / H_{0}\left(e^{\prime}\right)$. By Lemma 3.6, every 3-edge-cut of G^{Δ} has at least one edge in a 2 -cycle or 3 -cycle of G^{Δ}. Thus $G^{\Delta}\left(e^{\prime \prime}\right)$ is collapsible by Theorem 2.7. By Lemma 3.5, $H_{0}\left(e^{\prime}\right)$ is the union of vertex-disjoint collapsible subgraphs. Thus $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible by Theorem 2.4(i).

If $e^{\prime}, e^{\prime \prime} \in E_{0}$, let G^{Δ} be the graph obtained from G_{0} by contracting $H_{0}\left(e^{\prime}, e^{\prime \prime}\right)$. Note that $G_{0} / H_{0}=G_{0} / H_{0}\left(e^{\prime}, e^{\prime \prime}\right)$. By Lemma 3.6, every 3-edge-cut of G^{Δ} has at least one edge in a 2 -cycle or 3-cycle of G^{Δ}. Thus G^{Δ} is collapsible by Theorem 2.7. By Lemma 3.5, $H_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is the union of vertex-disjoint collapsible subgraphs. Thus $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible by Theorem 2.4(i).

Proof of Theorem 1.1. Let G be a quasi claw-free graph with $\kappa(L(G)) \geqslant 4$. By Theorem 3.7, $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible for any $e^{\prime}, e^{\prime \prime} \in E\left(G_{0}\right)$. By Theorem 2.4(iii), $G_{0}\left(e^{\prime}, e^{\prime \prime}\right)$ has a spanning $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail . By Lemma 3.1, $G\left(e^{\prime}, e^{\prime \prime}\right)$ has a dominating $\left(v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right)$-trail for any $e^{\prime}, e^{\prime \prime} \in E(G)$. By Propositions 2.2 and 2.3, Theorem 1.1 holds.

References

[^1]
[^0]: E-mail address: Mingquan.Zhan@millersville.edu (M. Zhan).

[^1]: [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.
 [2] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223-246.
 [3] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
 [4] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
 [5] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
 [6] M. Kriesell, All 4-connected line graphs of claw-free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) $306-315$.
 [7] H.-J. Lai, Every 4-connected line graph of a planar graph is hamiltonian, Graphs Combin. 10 (1994) 249-253.
 [8] H.-J. Lai, D. Li, J. Mao, M. Zhan, Supereulerian planar graphs, Ars Combin. LXXV, 2005.
 [9] H.-J. Lai, Y. Shao, G. Yu, M. Zhan, Hamiltonian connectedness in 3-connected line graphs, submitted for publication.
 [10] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
 [11] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
 [12] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
 [13] S. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89-95.
 [14] S. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991) 89-95.

