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Abstract

Let G be a graph. For u, v ∈ V (G) with distG(u, v) = 2, denote JG(u, v) = {w ∈ NG(u) ∩ NG(v)|NG(w) ⊆ NG(u) ∪ NG(v) ∪
{u, v}}. A graph G is called quasi claw-free if JG(u, v) �= ∅ for any u, v ∈ V (G) with distG(u, v) = 2. In 1986, Thomassen
conjectured that every 4-connected line graph is hamiltonian. In this paper we show that every 4-connected line graph of a quasi
claw-free graph is hamiltonian connected.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We use [1] for terminology and notations not defined here, and consider loopless finite simple graphs only. Let G
be a graph. The degree and neighborhood of a vertex x of G are, respectively, denoted by dG(x) and NG(x). Denote
NG[x] = NG(x) ∪ {x}. A graph G is essentially k-edge-connected if |E(G)|�k + 1 and if for every E0 ⊆ E(G)

with |E0| < k, G − E0 has exactly one component H with E(H) �= ∅. For any two distinct vertices x and y in G,
denote distG(x, y) the distance in G from x to y. For u, v ∈ V (G) with distG(u, v) = 2, denote JG(u, v) = {w ∈
NG(u) ∩ NG(v)|NG(w) ⊆ NG[u] ∪ NG[v]}. A graph G is claw-free if it contains no induced subgraph isomorphic to
K1,3. A graph G is called quasi claw-free if JG(u, v) �= ∅ for any u, v ∈ V (G) with distG(u, v) = 2. Clearly, every
claw-free graph is quasi claw-free.

Let G be a graph and let X ⊆ E(G) be an edge subset. The contraction G/X is the graph obtained from G by
identifying the two ends of each edge in X and deleting the resulting loops. For convenience, if H is a subgraph of G,
we write G/H for G/E(H).

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent
if and only if the corresponding edges in G are adjacent.

A graph G is hamiltonian connected if for every pair of vertices u, v ∈ V (G), G has a spanning (u, v)-path (a path
starting from u and ending at v). In [12], Thomassen conjectured that every 4-connected line graph is hamiltonian.
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By [11], this conjecture is equivalent to the conjecture of Matthews and Sumner stating that every 4-connected claw-free
graph is hamiltonian [10].

So far it is known that every 7-connected line graph is hamiltonian connected [14], and that every line graph of a
4-edge-connected graph is hamiltonian connected [13], and that every 4-connected line graph of a claw-free graph is
hamiltonian connected [6]. Thomassen’s conjecture has also been proved to be true for 4-connected line graphs of planar
simple graphs [7]. Here we consider the hamiltonicity of the line graph of a quasi claw-free graph and have the following.

Theorem 1.1. Every 4-connected line graph of a quasi claw-free graph is hamiltonian connected.

2. Preliminaries

A subgraph H of a graph G is dominating if G − V (H) is edgeless. Let v0, vk ∈ V (G). A (v0, vk)-trail of G is a
vertex-edge alternating sequence

v0, e1, v1, e2, . . . , ek, vk

such that all the ei’s are distinct and such that for each i = 1, 2, . . . , k, ei is incident with both vi−1 and vi . With the
notation above, this (v0, vk)-trial is also called an (e1, ek)-trail. All the vertices in v1, v2, . . . , vk−1 are internal vertices
of trail. A dominating (e1, ek)-trail T of G is an (e1, ek)-trail such that every edge of G is incident with an internal vertex
of T. A spanning (e1, ek)-trail of G is a dominating (e1, ek)-trail such that V (T ) = V (G). There is a close relationship
between dominating eulerian subgraphs in graphs and hamiltonian cycles in L(G).

Theorem 2.1 (Harary and Nash-Williams [5]). Let G be a graph with |E(G)|�3. Then L(G) is hamiltonian if and
only if G has a dominating eulerian subgraph.

With a similar argument in the proof of Theorem 2.1, one can obtain a theorem for hamiltonian connected line
graphs.

Proposition 2.2. Let G be a graph with |E(G)|�3. Then L(G) is hamiltonian connected if and only if for any pair of
edges e1, e2 ∈ E(G), G has a dominating (e1, e2)-trail.

We say that an edge e ∈ E(G) is subdivided when it is replaced by a path of length 2 whose internal vertex, denote
v(e), has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the length 2 path is called
subdividing e. For a graph G and edges e1, e2 ∈ E(G), let G(e1) denote the graph obtained from G by subdividing e1,
and let G(e1, e2) denote the graph obtained from G by subdividing both e1 and e2. Thus

V (G(e1, e2)) − V (G) = {v(e1), v(e2)}.
From the definitions, one immediately has the following observation.

Proposition 2.3. Let G be a graph and e1, e2 ∈ E(G). If G(e1, e2) has a dominating (v(e1), v(e2))-trail, then G has
a dominating (e1, e2)-trail.

In [3] Catlin defined collapsible graphs. For R ⊆ V (G), a subgraph � of G is called an R-subgraph if G − E(�)

is connected and R is the set of all vertices of � with odd degrees. A graph is collapsible if G has an R-subgraph for
every even set R ⊆ V (G). A graph G is contracted to a graph G′ if G contains pairwise vertex-disjoint connected
subgraphs H1, H2, . . . , Hk with

⋃k
i=1V (Hi) = V (G) such that G′ is obtained from G by successively contracting

H1, H2, . . . , Hk .

Theorem 2.4. (i) Catlin [3]. Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is
collapsible.

(ii) Catlin [3]. Let H1 and H2 be subgraphs of H such that H1 ∪ H2 = H and V (H1) ∩ V (H2) �= ∅. If H1 and H2
are collapsible, then so is H.

(iii) Lai et al. [9]. If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a spanning (u, v)-trail.
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Fig. 1.

We define F(G) be the minimum number of additional edges that must be added to G so that the resulting graph
has two edge-disjoint spanning trees. The edge arboricity a1(G) of G is the minimum number of edge-disjoint forests
whose union equals G.

Theorem 2.5. Let G be a graph. Each of the following statements holds:

(i) Catlin [3]. If F(G)�1 and if G is connected, then G is collapsible if and only if G cannot be contracted to a K2.
(ii) Catlin et al. [4]. If F(G)�2 and if G is connected, then G is collapsible if and only if G cannot be contracted to

a K2 or a K2,t for some integer t �1.
(iii) Catlin [2]. If a1(G)�2, then F(G) = 2|V (G)| − |E(G)| − 2.

Let si �1 (i = 1, 2, 3) be integers. Denote K4(s1, s2, s3), T (s1, s2), C3(s1, s2), S(s1, s2) and K2,3(s1, s2) to be the
graphs depicted in Fig. 1, where the si (i = 1, 2, 3) vertices and the two vertices connected by the two lines shown in
each of the graphs forms a K2,si graph. Denote

F1 = {K4(s1, s2, s3), T (s1, s2), C3(s1, s2), S(s1, s2), K2,3(s1, s2) | si �1 (i = 1, 2, 3) is an integer}
and F = F1 ∪ {K2,t | t �2}.

Theorem 2.6 (Lai et al. [8]). Let G be a 2-edge-connected planar graph. If F(G)�3, then G is collapsible if and
only if G cannot be contracted to a graph in F.

Theorem 2.7 (Lai et al. [9]). Let G be a graph with �′(G)�3. If every 3-edge-cut of G has at least one edge in a
2-cycle or 3-cycle of G, then the graph G(e′, e′′) is collapsible for any e′, e′′ ∈ E(G).

3. Proof of Theorem 1.1

In this section, we assume that G is a quasi claw-free graph with �(L(G))�4. Note that then G is essentially 4-
edge-connected. The core of the graph G, denoted by G0, is the graph obtained from G by deleting all degree 1 vertices
and contracting exactly one edge xy or yz for each path xyz with dG(y) = 2. Denote G∗

1 the graph obtained from G by
deleting all degree 1 vertices.

Lemma 3.1 (Lai et al. [9]). Let G be a graph and G0 the core of G. If G0(e
′, e′′) has a spanning (v(e′), v(e′′))-trail

for any e′, e′′ ∈ E(G0), then G(e′, e′′) has a dominating (v(e′), v(e′′))-trail.

Lemma 3.2. Let G be a quasi claw-free graph. Then G∗
1 is also quasi claw-free.

Proof. Let u, v ∈ V (G∗
1) with distG∗

1
(u, v) = 2. Then distG(u, v) = 2 and JG(u, v) �= ∅. For x ∈ JG(u, v), since

NG∗
1
(x) ⊆ NG(x), we have x ∈ JG∗

1
(u, v), and hence G∗

1 is quasi claw-free. �

Lemma 3.3. Let x ∈ V (G0) with dG0(x) = 3. Then exactly one of the following holds.

(i) G0[N [x]] contains a triangle.
(ii) G0 contains the graph B, or C, or D in Fig. 2 as the induced subgraph.
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Fig. 2.

Fig. 3.

Proof. Let NG0(x) = {u1, u2, u3}. If uiuj ∈ E(G0) for some {i, j} ⊆ {1, 2, 3}, then (i) holds. So we may assume
that G0[{x, u1, u2, u3}] is a claw in G0. Since G is essentially 4-edge-connected, x, u1, u2, u3 ∈ V (G), dG(x) = 3
and dG(ui)�3(i = 1, 2, 3). Thus x, u1, u2, u3 ∈ V (G∗

1). So G∗
1[{x, u1, u2, u3}] is a claw in G∗

1. By Lemma 3.2,
there exists uij ∈ JG∗

1
(ui, uj ) in G∗

1, where 1� i < j �3. By the definition of a quasi claw-free graph, NG∗
1
(uij ) ⊆

NG∗
1
[ui]∪NG∗

1
[uj ]. Since G∗

1[{x, u1, u2, u3}] is a claw in G∗
1, the vertices u11, u12, u23 are different, x /∈ {u12, u13, u23}

and uk /∈ NG∗
1
(uij ). Let H = G∗

1[{xu1, xu2, xu3, u12u1, u12u2, u13u1, u13u3, u23u2, u23u3}] (see Fig. 3).

Since dG∗
1
(x) = 3, xuij /∈ E(G∗

1) for all {i, j} ⊆ {1, 2, 3}. Let t = |E(G∗
1[{u12, u13, u23}])|. If t �1, without

loss of generality, we assume that u12u13, u23u13 /∈ E(G∗
1). Since distG∗

1
(x, u13) = 2, there exists a ∈ JG∗

1
(x, u13).

Since NG∗
1
(x) = {u1, u2, u3} and u2u13 /∈ E(G∗

1), we have either a = u1 or u3. But u1u12, u3u23 ∈ E(G∗
1) and

xu12, xu23, u13u12, u13u23 /∈ E(G∗
1), a contradiction. So t �2. Hence u12, u23, u13 ∈ V (G0), and H is the subgraph of

G0. So (ii) holds. �
Let x ∈ V (G0) with dG0(x) = 3. By Lemma 3.3, denote Hx the induced subgraph in G0 shown in Fig. 2. Clearly,

Hx is a 2-edge-connected planar graph, and a1(Hx)�2. By Theorem 2.5(iii),

F(Hx) = 2|V (Hx)| − |E(Hx)| − 2 =
{2 · 3 − 3 − 2 = 1 if Hx is a triangle,

2 · 7 − 11 − 2 = 1 if Hx the graph B or C in Fig. 2,

2 · 7 − 12 − 2 = 0 if Hx the graph D in Fig. 2.

Denote H = {Hx | dG0(x) = 3}, H0 = {Hx ∈ H|Hx is not a triangle}.

Lemma 3.4. Let Hx ∈ H0 and Hd
x be the graph obtained from Hx by subdividing at most two edges of Hx . Then Hd

x

is collapsible.

Proof. Clearly, Hx ∈ H0 is 3-edge-connected with F(Hx)�1. By Theorem 2.5(i), Hx is collapsible.

Let e′ ∈ E(Hx). Then a1(Hx(e
′))�2. Note that F(Hx)�1. By Theorem 2.5(iii), F(Hx(e

′))=F(Hx)+1�2. Since
Hx is 3-edge-connected, and v(e′) is the only degree 2 vertex in Hx(e

′), Hx(e
′) is collapsible by Theorem 2.5(ii).

Let e′, e′′ ∈ E(Hx). Then a1(Hx(e
′, e′′))�2. Note that F(Hx)�1. By Theorem 2.5(iii), F(Hx(e

′, e′′)) = F(Hx) +
2�3. Since Hx is a 3-edge-connected planar graph, and v(e′), v(e′′) are only two degree 2 vertices in Hx(e

′, e′′),
Hx(e

′, e′′) is collapsible by Theorem 2.6. �
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Lemma 3.5. Let E0 = ⋃
Hx∈H0

E(Hx), and H0 = G0[E0]. Let Hd
0 be the graph obtained from H0 by subdividing at

most two edges of H0. Then Hd
0 is the union of vertex-disjoint collapsible subgraphs.

Proof. It holds directly by Lemma 3.4 and Theorem 2.4(ii). �

Lemma 3.6. Let G′ be the graph obtained from G0 by contracting each Hx in H0. Then every 3-edge-cut of G′ has
at least one edge in a 2-cycle or 3-cycle of G′.

Proof. Let v1, v2, . . . , vs be the new vertices in G′ by contracting all Hx ∈ H0 in G. Since G is essentially 4-edge-
connected, dG′(vi)�4 (i = 1, 2, . . . , s), and every 3-edge-cut of G′ must be the 3-edge-cut of G0. Therefore these
three edges are adjacent to some vertex x0 in G0 with dG0(x0)= 3. Let Hx0 be the subgraph induced by NG0 [x0]. Since
Hx0 /∈H0, NG′ [x0] contains a triangle by Lemma 3.3. Hence every 3-edge-cut of G′ has at least one edge in a 2-cycle
or 3-cycle of G′. �

Theorem 3.7. For every pair of edges e′, e′′ of G0, G0(e
′, e′′) is collapsible.

Proof. Let E0 = ⋃
Hx∈H0

E(Hx), and H0 = G0[E0]. Then H0 is the union of some collapsible subgraphs of G0 by
Lemma 3.4.

If e′, e′′ /∈ E0, let G
 be the graph obtained from G0 by contracting H0. By Lemma 3.6, every 3-edge-cut of G
 has
at least one edge in a 2-cycle or 3-cycle of G
. Thus G
(e′, e′′) is collapsible by Theorem 2.7. By Lemma 3.5, H0 is
the union of vertex-disjoint collapsible subgraphs. Thus G0(e

′, e′′) is collapsible by Theorem 2.4(i).
If exactly one of {e′, e′′} is in E0, without loss of generality, we assume that e′ ∈ E0 and e′′ /∈ E0. Let G
 be the

graph obtained from G0 by contracting H0(e
′). Note that G0/H0 = G0/H0(e

′). By Lemma 3.6, every 3-edge-cut of
G
 has at least one edge in a 2-cycle or 3-cycle of G
. Thus G
(e′′) is collapsible by Theorem 2.7. By Lemma 3.5,
H0(e

′) is the union of vertex-disjoint collapsible subgraphs. Thus G0(e
′, e′′) is collapsible by Theorem 2.4(i).

If e′, e′′ ∈ E0, let G
 be the graph obtained from G0 by contracting H0(e
′, e′′). Note that G0/H0 = G0/H0(e

′, e′′).
By Lemma 3.6, every 3-edge-cut of G
 has at least one edge in a 2-cycle or 3-cycle of G
. Thus G
 is collapsible
by Theorem 2.7. By Lemma 3.5, H0(e

′, e′′) is the union of vertex-disjoint collapsible subgraphs. Thus G0(e
′, e′′) is

collapsible by Theorem 2.4(i). �

Proof of Theorem 1.1. Let G be a quasi claw-free graph with �(L(G))�4. By Theorem 3.7, G0(e
′, e′′) is collapsible

for any e′, e′′ ∈ E(G0). By Theorem 2.4(iii), G0(e
′, e′′) has a spanning (v(e′), v(e′′))-trail . By Lemma 3.1, G(e′, e′′)

has a dominating (v(e′), v(e′′))-trail for any e′, e′′ ∈ E(G). By Propositions 2.2 and 2.3, Theorem 1.1 holds. �
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