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UV radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The
migration of dermal mast cells from the skin to the draining lymph nodes has a prominent role in activating
systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast
cell migration, in part by upregulating the expression of CXCR4 on the surface of mast cells. Others have
indicated that epigenetic mechanisms regulate CXCR4 expression; therefore, we asked whether PAF activates
epigenetic mechanisms in mast cells. Human mast cells were treated with PAF, and the effect on DNA
methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT)
1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of
histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin
immunoprecipitation assays indicated that PAF treatment activated the acetylation of the CXCR4 promoter.
Finally, inhibiting histone acetylation blocked p300 upregulation and suppressed PAF-induced surface expression
of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We
suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with
the epigenome.
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INTRODUCTION
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-
3-phosphocholine) is a naturally occurring phospholipid
mediator of inflammation (Prescott et al., 2000). PAF is
produced by epidermal keratinocytes in response to UVB
irradiation (Marathe et al., 2005; Travers et al., 2010) and is
linked to UVB-induced systemic immune suppression
(Walterscheid et al., 2002), a major risk factor for skin
cancer induction (Yoshikawa et al., 1990). Because most UVB
radiation is absorbed within the upper layers of the skin,
indirect mechanisms must be involved in transmitting the

suppressive signal from the skin to the immune system.
Migration of mast cells from the irradiated skin to the draining
lymph nodes has a critical role (Byrne et al., 2008). Mast
cell–deficient mice are resistant to the immunosuppressive
effects of UV radiation (Hart et al., 1998), and inhibiting mast
cell migration in UVB-irradiated mice treated with a CXCR4
antagonist blocks the induction of immune suppression
(Byrne et al., 2008). PAF activates the upregulation of the
chemokine CXCR4 on the mast cell surface and promotes
the migration of mast cells from the skin to the lymph nodes
(Chacón-Salinas et al., 2014). PAF also upregulates the
expression of the CXCR4 ligand (CXCL12) on lymph node
cells (Byrne et al., 2008), thus setting the chemokine gradient
for directing mast cell migration from the skin to the draining
lymph node, where they secrete IL-10 and suppress the
immune response (Chacón-Salinas et al., 2011). In addition
to skin cancer (Sreevidya et al., 2008; Sahu et al., 2012),
PAF is involved in other types of cancer (Bussolati et al., 2000;
Denizot et al., 2005; Denizot et al., 2006; Aponte et al.,
2008), and likely has an important role in inflammation-
related carcinogenesis. Hence, a better understanding of the
mechanism(s) by which inflammatory mediators such as
PAF contribute to inflammation, carcinogenesis and immune
suppression is needed.
Evidence suggests that epigenetic mechanisms may be

involved in modulating the expression of pro-inflammatory
signals (Shuto et al., 2006; Adcock et al., 2007; Sullivan et al.,
2007; Medzhitov and Horng, 2009). Epigenetic alterations
have also been linked to tumor development, including skin
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cancer (Counts and Goodman, 1995; Jones, 2002; Jones
and Baylin, 2007). The upregulation of CXCR4 expression on
melanoma cells treated with DNA-demethylating agents
suggests that epigenetic mechanisms regulate the expression
of CXCR4 (Mori et al., 2005). Sato et al. (2005) reported
hyperacetylation of the CXCR4 promoter in pancreatic
cancer. Similarly, epigenetic regulation of CXCR4 in
cutaneous and uveal melanoma has been reported (Mori
et al., 2005; Li et al., 2013). Furthermore, the absence of
methylation on the CXCR4 promoter is associated with poorer
overall survival in breast cancer patients (Ramos et al., 2011).
Inhibition of histone deacetylase by valproic acid increased
CXCR4 expression in hematopoietic stem/progenitor cells
(Gul et al., 2009). These studies support the concept that
CXCR4 may be regulated at the transcriptional level by both
DNA methylation and chromatin remodeling.
It is now recognized that environmental stimuli can modify

the epigenetic profile of a gene, and some suggest that
epigenetic mechanisms connect the genome with the external
environment (Suarez-Alvarez et al., 2013). Chromatin
structure is unraveled by the acetylation of lysine tails of the
nucleosomal core histones H3- and H4-activating gene
expression, whereas histone deacetylation is associated with
gene silencing (Pazin and Kadonaga, 1997; Cheung et al.,
2000). Gene silencing may also be controlled by DNA
methylation in which the addition of cytosines to the
promoter region of target genes is mediated by DNA
methyltransferase enzymes (Rhee et al., 2002). Because PAF
is an important inducer of CXCR4 on mast cells, we asked
whether PAF activates epigenetic mechanisms that affect the
expression of CXCR4.

RESULTS
PAF upregulates CXCR4 expression on human mast cells
Because all of our previous data demonstrating that PAF
upregulates CXCR4 expression were obtained with murine
mast cells, we asked whether PAF similarly affects human mast
cells. We used the human mast cell line HMC-1 (Butterfield
et al., 1988; Juremalm et al., 2000; Ma et al., 2013). On the
basis of previous studies, we used concentrations of PAF that
activated significant physiological changes in vitro (Pei et al.,
1998; Dy et al., 1999; Walterscheid et al., 2002; Feuerherm
et al., 2013; Chacón-Salinas et al., 2014), without affecting cell
viability (Puebla-Osorio et al., 2015). The metabolically stable
PAF analog carbamyl-PAF (cPAF) was used. Immunoblotting
demonstrated the upregulation of CXCR4 in HMC-1 cells 24,
36 and 48 hours after cPAF treatment (Figure 1a). Using flow
cytometry we confirmed that cPAF induced the expression of
CXCR4 on the surface of HMC-1 cells (Figure 1b), and real-
time quantitative polymerase chain reaction (RT–qPCR) was
used to document that cPAF induced close to a 3-fold increase
in CXCR4 mRNA expression (Figure 1c). These results
demonstrate that cPAF upregulates human mast cell CXCR4
expression.

PAF depresses DNA methyltrasferase expression in HMC-1 cells
To determine whether PAF affected methylation patterns in
mast cells, we first addressed its effect on common DNA

methyltransferases. cPAF induced a concentration- and time-
dependent reduction of DNMT1 in HMC-1 cells (Figure 2a).
cPAF induced a reduction in DNMT1 as early as 6 hours, and
a dramatic decrease in DNMT1 expression was observed
24 hours after the cPAF treatment (Figure 2b). The effect was
sustained for up to 48 hours post exposure. To confirm
the effect on DNMT1 expression was attributed to cPAF
binding to its receptor on mast cells, we used a PAF receptor
antagonist ABT-491 (Albert et al., 1997). Failure to see a
downregulation of DNMT1 expression in cells treated with
the PAF receptor antagonist indicates that the cPAF-induced
reduction in DNMT1 is via cPAF binding to its receptor
(Figure 2c). Next, we assessed the effect of cPAF on DNMT3b
expression and observed a similar effect. cPAF induced a
decrease in DNMT3b protein expression 36 and 48 hours post
treatment (Figure 2d). These results were confirmed using
RT–qPCR, which indicated that cPAF induced a significant
reduction in mRNA levels, including a 5-fold decrease in
DNMT3b and a 3-fold decrease in DNMT1 (Figure 2e).
However, when we measured the methylation pattern of
CpG islands on the promoter region of CXCR4, by bisulfite
modification coupled with pyrosequencing, we found no
statistical differences between the control group and the
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Figure 1. CXCR4 expression in platelet-activating factor (PAF)-treated
HMC-1 cells. (a) Immunoblotting analysis of CXCR4 protein expression 6–
24 hours after carbamyl-PAF (cPAF; 10 μM) treatment. p84 was the loading
control. (b) Flow cytometry was used to measure CXCR4 surface expression
24 hours post-cPAF treatment. (c) CXCR4 mRNA levels were increased
24 hours post-cPAF treatment. Data represent the mean± SEM (N= 3).
*Po0.05 vs. control (Student’s t-test).
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cPAF-treated group (Supplementary Figure 1 online). This
observation led us to focus on the effects of cPAF on histone
acetylation.

PAF effects acetylation of the CXCR4 promoter
First we asked whether cPAF affected the expression of known
acetylating and deacetylating enzymes, which could be
indicators of active gene expression (Gong and Miller,
2013). cPAF induced a time-dependent increase in the
expression of p300, which has an intrinsic histone acetyl-
transferase activity (Counts and Goodman, 1995). Increased
protein expression of p300 was observed starting at
12 hours and high expression continued for the duration of
the experiment (Figure 3a). This coincided with decreased
expression of the deacetylating enzyme, HDAC2 (Figure 3b).
Next, we determined whether cPAF affected the protein

expression of acetylated H3 (H3K9/14/18/23/27) and H4
(H4K5/8/12/16; Figure 4). As shown in Figure 4a, the protein
expression of acetyl-H3 was increased by cPAF. On the other
hand, we were unable to reproducibly document acetylation
of H4 (data not shown).

To confirm that an increase in acetyl-H3 expression
affected the acetylation status of the CXCR4 promoter, we
performed chromatin immunoprecipitation assay (ChIP).
Our results showed that cPAF induced an almost 3-fold
increase in the acetylation status of H3 (H3K9/14/18/23/27)
on the promoter region of the CXCR4 gene (Figure 4b).
Next, we tested whether cPAF had a similar effect on non-

transformed cells. We isolated buffy coat mast cells, as
described previously (Puebla-Osorio et al., 2015), and treated
them with different concentrations of cPAF. Our results
indicate that cPAF upregulates the expression of Acetyl-H3
(H3K9/14/18/23/27) in non-transformed mast cells, in a
concentration dependent manner (Figure 4c), similar to that
found in HMC-1 cells.

Inhibiting acetylation blocks cPAF-induced upregulation of
CXCR4
Because our findings to this point indicate that cPAF upregu-
lates mast cell surface expression of CXCR4 and histone
acetylation of the CXCR4 promoter, we wanted to determine
whether the cPAF-induced upregulation of mast cell CXCR4
surface expression was linked to increased acetylation. We
used curcumin, a specific inhibitor of histone acetylation
(Balasubramanyam et al., 2004) to block acetylation in
cPAF-treated cells. The data presented in Figure 5a indicate
that curcumin effectively reduced mast cell expression of
CXCR4. Furthermore, curcumin depressed cPAF-induced
upregulation of p300 (Figure 5b). These data support the
hypothesis that cPAF upregulates CXCR4 expression on mast
cells by activating epigenetic mechanisms.

DISCUSSION
Here we show that CXCR4 expression is upregulated in
human mast cells by cPAF and that this is associated with
changes in epigenetic marks. As mentioned above, the dose
of cPAF used here was chosen on the basis of studies in
the literature in which cPAF was used to activate cells
in vitro (Feuerherm et al., 2013; Puebla-Osorio et al., 2015).
Generally, tissue concentrations of PAF are reported to be in
the picomolar range (Marathe et al., 2005; Travers et al.,
2010); however, under certain conditions, such as inflamma-
tion and cancer, serum levels as high as 10-7 molar, which

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Control PAF Control PAF

DNMT1 DNMT3b

F
ol

d 
ex

pr
es

si
on

e

*
*

DNMT1

p84

– + – + – + – + – +
6 12 24 36 48

DNMT1

p84

PAF
ABT-491–

–
–

–+
+ +

+

p84

DNMT1
0

Time (hours)
PAF

d

a PAF(µM)2.5 5 7.5 10

4824 36
– + – + – + PAF

Time (hours)

DNMT3b

p84

b

c

Figure 2. Platelet-activating factor (PAF) decreases the expression of
DNMT1 and 3b. (a) DNMT1 protein expression in carbamyl-PAF (cPAF)-
treated HMC-1 cells was analyzed by immunoblotting; p84 is the loading
control. (b) Time course of cPAF (10 μM)-induced DNMT1 depression.
(c) Treating the cells with a PAF receptor antagonist (AMT-491) blocks the
cPAF-induced depression of DNMT1. (d) Time course of cPAF-induced
depression of DNMT3b expression. (e) Effect of cPAF on DNMT1 and 3b
mRNA expression as measured with real-time quantitative polymerase chain
reaction (RT–qPCR). Data represent the mean± SEM (N=3). *Po0.05 vs.
control (Student’s t-test).
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with 10-μM carbamyl-PAF (cPAF). p84 is the loading control. (b) HDAC2
expression was depressed 24 hours post-cPAF (10 μM) treatment. Data from
three independent experiments are shown.
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approach the concentrations used here, have been reported
(Pitton et al., 1989; Lehr et al., 1997). One must also keep in
mind that PAF in the serum has a limited half-life (minutes)
because of the action of PAF acetylhydrolase (Stafforini et al.,
1996). Furthermore, platelets and endothelial cells are known
to produce PAF but not secrete it, rather the cell-associated
form of PAF is active (Lorant et al., 1991). This suggests that
the local concentration of PAF may be very high in inflammed
tissues.
The downregulation of DNA methyltransferase DNMT1

and DNMT3b is suggestive of reduced promoter methylation,
which is associated with gene reactivation. These results are
in line with the findings of Przybylski et al. (2010) who
showed that the reduction of both DNMT1 and DNMT3b
results in an increased demethylation of the CXCR4 promoter,
leading to an increased expression of CXCR4. Although our
results on the methylation status, as assessed by bisulphite
sequencing, showed no significant difference between cPAF-
treated and the control samples, we showed that DNMTs are
downregulated upon PAF exposure. Because cPAF promotes
rather than depresses the expression of CXCR4, rather than
pursuing methylation, we focused our attention on acetyla-
tion. We observed a significant upregulation of the acetyla-
tion of H3 (H3K9/14/18/23/27) on the promoter region of
CXCR4 in cPAF-treated mast cells. Further, we observed
increased expression of p300 acetyltransferase, which pro-
motes chromatin relaxation on transcriptionally active
genes (Liu et al., 2008), and a decrease in HDAC2 histone
deacetylase, a key factor in deacetylation of lysine residues on
core histones. These changes are generally associated with
gene activation (Hildmann et al., 2007). Moreover, when we
inhibited acetylation in cPAF-treated cells with curcumin, we
were able to decrease both the expression of p300 and the
cPAF-induced expression of CXCR4 on the surface of mast
cells. These findings demonstrate that cPAF-induced expres-
sion of CXCR4 is associated with increased acetylation of
the promoter region of CXCR4, which presumably activates
its transcription. cPAF also upregulated histone acetylation
in normal mast cells, suggesting that its effect was not
exclusive to transformed cells. Interestingly, these findings are

supported by the work of Conte et al. (2014) who recently
reported that HDAC2 reduces gene expression by repressing
areas of chromatin that do not allow p300 binding
and consequent acetylation, whereas silencing of HDAC2
activates p300 recruitment and H3K9-14 acetylation. Others
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have suggested that there is synergy between demethylation
and histone deacetylase inhibition in re-expression of genes
(Cameron et al., 1999; Gray and Teh, 2001). In this respect,
cPAF appears to share similarities in its action with both
HDAC inhibitors and methylation inhibitors used in the
development of drugs that target epigenetic regulators, such
as Trichostatin A and 5-Aza 2-deoxycytidine (Mori et al.,
2005; Przybylski et al., 2010; Ramos et al., 2011; Li et al.,
2013).
Our findings provide evidence for a novel molecular

mechanism for PAF, in which it may affect physiological
and pathological processes via epigenetic modifications in
human mast cells, and likely other cell types. Our findings
allow us to speculate that a possible mechanism by which
PAF mediates photoimmune suppression is through epi-
genetic modulation of the CXCR4 gene. Therefore, PAF may
serve as a critical molecular mediator that links the environ-
ment (UVB radiation) with the epigenome.

MATERIALS AND METHODS
Antibodies and reagents
cPAF, a non-hydrolyzable bioactive analog of PAF, was obtained
from Sigma-Aldrich (St Louis, MO). A 10-mM stock solution was
prepared in water, aliquoted, and stored at − 20 °C until use. The PAF
receptor antagonist, ABT-491, was purchased from Sigma-Aldrich
and prepared as a 24-mM stock solution in water. Antibodies specific
for DNMT1 (sc-135886) and HDAC2 (sc-9959) were purchased from
Santa Cruz Biotechnology (Dallas, TX). Antibodies specific for
DNMT3b (ab13604), CXCR4 (ab2074), Acetyl-H3 (ab47915), and
Total H3 (ab1791) were purchased from Abcam (Cambridge, MA).
Anti-p84 (GTX70220) was purchased from Genetex (Kennesaw, GA).
Anti-mouse (7076S), anti-rabbit horseradish peroxidase (7074S) and
anti-p300 (K1499) were obtained from Cell Signaling Technology
(Danvers, MA). Anti-rabbit Alexa488 was purchased from Molecular
Probes (Eugene, OR). All other chemicals were purchased from
Sigma-Aldrich.

Cell cultures
The human mast cell line, HMC-1 (kindly provided by Dr J.H.
Butterfield, May Clinic, Rochester, MN; Butterfield et al., 1988), was
cultured in complete RPMI-1640 medium containing 10% heat-
inactivated fetal calf serum under standard culture conditions (37 °C,
5% CO2, humidified atmosphere). The cells were passaged every
3–4 days. Normal mast cells were isolated from a buffy coat obtained
from an undisclosed healthy donor from the Gulf Coast Regional
Blood Center (MDACC IRB LAB-03-0390), as described previously
(Puebla-Osorio et al., 2015). Briefly, CD34+ cells were cultured in
complete medium with human IL-6, IL-3, and recombinant human
Stem Cell factor. After 4–6 weeks in culture all the viable cells stained
positive for CD117 (cKit), tryptase, and toluidine blue.

Treatment with cPAF
HMC-1 cells were seeded at a density of 5× 105 cells ml−1 in
60×15-mm Petri dishes and treated with 10 μM cPAF for various time
points (6-48 hours). When the PAF receptor antagonist was used the
cells were pre-treated with 100 μM ABT-491, 1 hour before treatment
with cPAF.

Western blot analysis
Cells were harvested, centrifuged, and washed with cold PBS, and
the cell pellet was then lysed with 200 μl RIPA buffer. Protein
concentration was determined using the Pierce BCA Protein Assay Kit
(Thermo Scientific, Rockford, IL). The proteins were separated on
6, 8, or 15% SDS-PAGE gels. Proteins were transferred onto
polyvinylidene difluoride membranes overnight at 4 °C. Nonspecific
binding sites were blocked in 5% non-fat dry milk/Superblock
blocking buffer in PBS (Thermo Scientific) for 1 hour at room
temperature, followed by 2-hour incubation at room temperature
with primary antibodies, appropriately diluted, against DNMT1
(1:300), DNMT3b (1:300), CXCR4 (1:300), HDAC2 (1:250), p300
(1:250), Acetyl-H3 (1:800), Total H3 (1:2,000), and p84 (1:1,000).
After washing in PBS/0.1% Tween 20, the membranes were
incubated with horseradish peroxidase–conjugated secondary
antibody (mouse, 1:3,000; rabbit 1:1,000) for 1 hour at room
temperature. Band detection was carried out using an enhanced
chemiluminescent substrate (Supersignal West Dura; Thermo
Scientific) and captured on X-ray films. p84 was used as the loading
control because it is contained in the nucleus where most of the
proteins that were assessed in this study reside, and it is not affected
by cPAF treatment.

Quantitative real-time PCR
Cells were harvested, washed with cold PBS, and 500 μl of Trizol
reagent (Invitrogen, Grand Island, NY) was added to the resulting
pellet. Total RNA was extracted according to the manufacturer’s
instructions for Trizol reagent and stored at − 80 °C. The concentra-
tion and purity of RNA obtained was determined by UV spectro-
photometry, and 0.2 μg from each sample was then reverse-
transcribed using iScript Reverse Transcription Supermix (Bio-Rad,
Hercules, CA) according to the manufacturer’s instructions. All
complementary DNA samples were diluted five times, and 3 μl of
each dilution was used as template in RT–qPCR reactions (total
volume 15 μl). Manufacturer-supplied standardized primer pairs from
Bio-Rad were used to measure DNMT1 and DNMT3b while the
following primer pairs for CXCR4 amplification were used: 5′-GGAA
GCTGTTGGCTGAAAAG-3′ (forward) and 5′-CTCACTGACGTTGGC
AAAGA-3′ (reverse). As an internal reference, beta-2-microglobulin
was used to normalize the amount of mRNA in each qPCR reaction,
using the following primers: 5′-CATTCCTGAAGCTGACAGCATTC
-3′ (forward), 5′-TGCTGGATGACGTGAGTAAACC-3′ (reverse). The
reactions were run on a CFX96 Real-Time PCR Detection System
(Bio-Rad) under the following PCR conditions: 95 °C for 2 minutes,
40 cycles at 95 °C for 5 seconds, and 60 °C for 30 seconds. The
results obtained were analyzed using the CFX Manager Software
(Bio-Rad). The fold changes in relative mRNA expression levels were
normalized to the expression level of the beta-2-microglobulin
mRNA in each sample using the cycle threshold (Ct) method and
using the 2-ΔΔCt formula according to Arya et al. (2005).

Flow cytometry analysis
Cells were harvested, washed twice with PBS, and maintained in
1ml Superblock blocking buffer in PBS (Thermo Scientific) for
20minutes. Cells were then incubated with anti-human CXCR4-
specific antibody diluted to 1:200 in PBS/0.2% FBS for
45minutes at room temperature. Cells were washed twice with
PBS and incubated with anti-rabbit Alexa488 antibody diluted to
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1:750 in PBS/0.2% FBS for 45 minutes at room temperature. Cells
were then washed twice with PBS, fixed in 2% paraformaldehyde for
10minutes at room temperature in the dark, washed twice with PBS,
resuspended in 0.2 ml PBS, and fluorescence measured using an
LSRII (Becton Dickinson, San Jose, CA). The data were analyzed
using the FlowJo Software (Ashland, OR).

Chromatin immunoprecipitation
ChIP was conducted according to the manufacturer’s protocol (EMD
Millipore, Billerica, MA). After a 24-hour incubation with 10 μM
cPAF, the treated mast cells were exposed to 1% formaldehyde for
10minutes at room temperature to crosslink chromatin. Cells were
harvested and washed twice with ice-cold PBS. The cell pellet was
resuspended in SDS lysis buffer on ice for 10 minutes and then
sonicated five times for 10 seconds, each followed by centrifugation
for 10 minutes at 4 °C. Before immunoprecipitation, the supernatants
were diluted 10× with ChIP dilution buffer and precleared by the
addition of protein A agarose/salmon sperm DNA (50% slurry) for
2 hours at 4 °C. After centrifugation, the precleared chromatin
supernatant fraction was immunoprecipitated overnight at 4 °C with
15 μl of specific antibodies or with control rabbit-IgG. After
immunoprecipitation, protein A agarose/salmon sperm DNA (50%
slurry) was added and the samples were incubated for 1 hour at 4 °C
to collect the antibody/histone complex. After centrifugation, the
precipitates were washed sequentially before elution by 15-minute
incubation in 250 μl of freshly prepared elution buffer (1% SDS,
0.1M NaHCO3). Eluates were heated at 65 °C for 6 hours in the
presence of 5M NaCl to reverse crosslinking. The samples were then
treated with proteinase K (10mgml− 1) for 1 hour at 45 °C before
purification using the QIAquick PCR purification kit (QIAGEN,
Valencia, CA) and collected in 50 μl of elution buffer (10 mM Tris-
HCl, pH 8.5). Purified DNA was subjected to RT–qPCR analysis with
appropriate primer pairs for human CXCR4 promoter region, which
spanned from 812 to 898 bp: 5′-GAGAGACGCGTTCCTAGCC-3′
(forward) and 5′-GGACCTCCCAGAGGCATTTC-3′ (reverse). The
primer sequences used in our experiments were blasted against the
human genome database and generated a 100% alignment with the
promoter region of CXCR4. The reactions were run and analyzed as
reported above using the input samples for normalization.

Statistical analysis
Each experiment was repeated three times, with the exception of the
data generated with normal mast cells, which was repeated twice.
Statistical differences between the control and experimental groups
were analyzed using either the Mann–Whitney U-test or the Student’s
t-test (GraphPad Prism, La Jolla, CA). Significant differences were
defined as Po0.05.
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