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Abstract

Multiple hypotheses testing is concerned with appropriately controlling the rate of false positives, false
negatives or both when testing several hypotheses simultaneously. Nowadays, the common approach to
testing multiple hypotheses calls for controlling the expected proportion of falsely rejected null hypotheses
referred to as the false discovery rate (FDR) or suitable measures based on the positive false discovery rate
(pFDR). In this paper, we consider the problem of determining levels that both false positives and false
negatives can be controlled simultaneously. As our risk function, we use the expected value of the maximum
between the proportions of false positives and false negatives, with the expectation being taken conditional
on the event that at least one hypothesis is rejected and one is accepted, referred to as hybrid error rate
(HER). We then develop, based on HER, an analog of p-value termed as h-value to test the individual
hypotheses. The use of the new procedure is illustrated using the well-known public data set by Golub et
al. [Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,
Science 386 (1999) 531–537] with Affymetrix arrays of patients with acute lymphoic leukemia and acute
myeloid leukemia.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a single-hypothesis testing, suppose we wish to test a null hypothesis H0 against an alternative
Ha based on a test statisticY. For a given rejection region � (the numerical values of the test statistic
for which H0 is rejected), if Y ∈ � we reject H0 and if Y /∈ � we accept H0. Two types of
decision errors occur. These two types of errors traditionally have been given the names, Types
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I and II errors. A Type I error occurs when Y ∈ � but the null hypothesis is true and Type II
error occurs when Y /∈ � but the null hypothesis is false. To choose a rejection region �, the most
common approach is to consider all rejection regions that have a Type I error less than or equal
to �. Then, among all these rejection regions select the one which has the lowest Type II error. Of
course, this can be done if the alternative hypothesis is simple or uniformly most powerful (UMP)
test exists.

Multiple testing has emerged as a statistical area of both practical and theoretical importance.
The problem arises in many areas including neuroimaging, genomics, and astronomy. When
testing multiple hypotheses, the situation becomes more complicated. Because for each test we
have Types I and II errors and it becomes unclear how one should measure and control the overall
error rate. In this paper, our goal is to present a measure of overall error rate. For simplicity
of exposition, we use genomics terminology. We emphasize that our proposed measure can be
applied to other areas as well.

Suppose we have microarray experiments which produce expression data on m, m�2 genes
(variables) for n samples (corresponding to individual microarray experiments). Let the data be
arrayed as m × n matrix X = (xij ), i = 1, 2, . . . , m, j = 1, . . . , n, with rows corresponding
to genes and columns to individual microarray experiments. A typical microarray experiment
measures several thousand genes simultaneously across different conditions. When testing for
potential differential expression across those conditions, each gene is considered independently
from one another. In other words, a t-test, ANOVA test or any other test is performed on each
gene separately. The incidence of false positives (genes falsely called differentially expressed
when they are not) or false negatives (genes falsely called not differentially expressed when they
are) are dependent on the number of tests performed and the critical significance level (p-value
cutoff).

Specifically, consider the problem of simultaneously testing m null hypotheses Hi, i=1, . . . , m.
Let Hi = 0 when the null hypothesis Hi is true, and Hi = 1 when the null hypothesis Hi is false.
Here Hi is a statement made regarding gene i, i = 1, . . . , m, and all m hypotheses are assumed
to be known in advance.

For each gene, a null hypothesis is tested against the alternative hypothesis. Let S0 and S1
be the set of indices 1, . . . , m corresponding to true and false null hypotheses, respectively, i.e.,
S0 = {i : Hi = 0} and S1 = {i : Hi = 1}. Also, let m0 = |S0| and m1 = |S1| = m − m0
be the number of true and false null hypotheses, respectively. Here both S0 and S1 are unknown
parameters. We can categorize the m tests in Table 1.

Putting V
R

= 0 when R = 0 and T
m−R

= 0 when R = m, we define the false discovery rate
(FDR) and the false nondiscovery rate (FNR) by

FDR = E

[
V

R
I (0 < R�m)

]
= E

[
V

R

∣∣∣∣ 0 < R�m

]
P(0 < R�m), (1.1)

Table 1
Summary table for the multiple testing problem

H0 not rejected H0 rejected Total

H0 true U V m0

H0 false T S m1

Total m − R R m
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and

FNR = E

[
T

m − R
I (0�R < m)

]
= E

[
T

m − R

∣∣∣∣ 0�R < m

]
P(0�R < m), (1.2)

respectively. The FDR is the expected proportion of falsely rejected null hypotheses, and the
FNR is the expected proportion of non-rejected null hypotheses that are incorrect. It should
be mentioned that in Table 1, the number R of the rejected null hypotheses is an observable
random variable, while U, V, T and S are unobservable random variables. When m0 = m, then
FDR = P(0 < V �m0) = P(V > 0). Note that in general P(V > 0) is commonly referred
to as familywise error rate (FWER), see Hochberg and Tamhane [12]. See also Benjamim and
Hochberg [1] and Benjamin andYekutieli [2] for more details about FNR and FDR. If the interest
is to control Types I and II errors simultaneously, one can use the risk function of the form
bFNR + FDR, b�0, see Genovese and Wasserman [8,9].

Suppose we are interested in obtaining an error rate when positive (negative) findings have
occurred, then the positive FDR, pFDR and positive FNR, pFNR are appropriate. Here,

pFDR = E

[
V

R

∣∣∣ 0 < R�m

]
(1.3)

and

pFNR = E

[
T

m − R

∣∣∣ 0�R < m

]
, (1.4)

see Storey [17,18].
In this work we propose an alternative way to measure error rate on the problem of multiple

hypotheses testing. Our proposed loss function simply combines false discovery and false non-
discovery rates committed in such problems and use a suitable measure of this combination
termed as HER. The HER risk function is a non-linear function of pFNR and pFDR and is
more conservative in the sense that our procedure accepts more than pFDR. However, it is less
conservative in the sense that it rejects more than the risk function FDR+bFNR for many choices
of b. Note that HER is always greater than or equal to both pFNR and pFDR.

Step-up and Step-down procedures represent extremely popular approaches to multiple testing.
These procedures are based on different risk functions including FWER, FDR, FNR, pFDR and
pFNR. We refer you to Dudoit et al. [6], Ge et al. [7], Sarkar [15], Delongchamp et al. [5], Cohen
and Sackrowitz [3,4] and many references cited there for more details. In this paper we propose
a procedure based on HER, an analog of p-value to multiple testing.

After some preliminaries, in Section 3 we present a formal definition of our risk function, HER
and focus on the theoretical development under the independence assumption and under that all
test statistics of the non-null are identically distributed. The emphasis in this measure is on both
error rates. Thus, an immediate but important consequence of controlling HER is that it controls
both expected false discovery and expected false non-discovery rates. Imitating the definition of
q-value which is derived from pFDR, the new quantity called the h-value derived from HER is
introduced and investigated in Section 3. An algorithm is also provided for computing h-value.
In Section 4, we illustrate h-value in an example and compare it with q-value via simulation. We
make concluding remarks in Section 5. Throughout the paper we take 0

0 = 0. Here “decreasing”
means non-increasing and “increasing” means non-decreasing.
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2. Preliminary result

In this section we give the result that is used in Section 3.

Lemma 1.
(a) Suppose X is Binomial (n, p) and Y is Binomial (n, p∗). If p�p∗, then [X|a�X�b] �

st[Y |a�Y �b] wherever a�b. (In general, for any two random variables X and Y,
[X|a�X�b] is stochastically smaller than [Y |a�Y �b] (denoted by [X|a�X�b] �

st

[Y |a�Y �b]) if and only if P(X>x)
P (a �X�b)

� P(Y>x)
P (a �Y �b)

for all x.)

(b) Suppose X is Binomial (n, p). Then E(X|1�X�n − 1) = np(1−pn−1)
1−pn−(1−p)n

.

Proof. (a) From Lehmann [14], we know that X �
lr

Y . (In general, X is said to be smaller thanY in

the likelihood ratio order (denoted by X �
lr

Y ) if P(X=x)
P (Y=x)

decreases over the union of the supports of

X and Y.) Now, the part (a) easily follows from Theorem 1.C.2. of Shaked and Shanthikumar [16].
(b) It is clear that

E(X|1�X�n − 1) =
∑n−1

x=1 x n!
x!(n−x)!p

x(1 − p)n−x

1 − pn − (1 − p)n
= np(1 − pn−1)

1 − pn − (1 − p)n
. �

3. New way of defining error rate

In this section we propose an alternative quantity to the pFDR and pFNR, which we call hybrid
error rate or simply HER.

When both positive and negative findings have occurred, then one way to control both false
discovery and false non-discovery rates is to consider the maximum of these two error rates and
define HER to be

HER = E

[
max

(
V

R
,

T

m − R

)∣∣∣∣ 0 < R < m

]
. (3.1)

Although our proposed measure is more conservative than pFDR and pFNR, an advantage is
that by controlling HER we automatically control both pFNR and pFDR. Two properties of the
risk function HER are easily shown, yet are very important.

(a) Using the facts that max
(

V
R

, T
m−R

)
�
st

V
R

and max
(

V
R

, T
m−R

)
�
st

T
m−R

we get that

HER � max

[
E

(
V

R

∣∣∣∣ 0 < R < m

)
, E

(
T

m − R

∣∣∣∣ 0 < R < m

)]

= max
[
pFDR, pFNR

]
.

Therefore, control of HER implies control of both pFDR and pFNR.As a result, any procedure
that controls this measure also controls the pFDR and pFNR.

(b) In Table 1, if m0 = m, then HER = E
[

V
R

∣∣ 0 < R < m
] = 1 and if m = m1, then HER =

E
[

T
m−R

∣∣∣ 0 < R < m
]

= 1.
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Remark 1. If P(R = m) = 1, then we will simply take HER = pFDR. Also, if P(R = 0) = 1,
then we will take HER = pFNR.

3.1. Computing HER

Suppose we wish to perform m identical hypothesis tests H1, . . . , Hm based on the independent
and identically distributed test statistics Y1, . . . , Ym and significance region �. More specifically,

assume that Yi |Hi
i.i.d.∼ (1 − Hi)F0 + HiF1 and Hi

i.i.d.∼ Bernoulli(1 − �0) for i = 1, . . . , m and
some null distribution F0 and alternative distribution F1. Here, �0 is a prior probability that the
null hypothesis Hi is true and �1(�1 = 1 − �0) is the probability that Hi is false. That is, Hi is
Bernoulli random variable with P(Hi = 0) = �0 and P(Hi = 1) = �1, i = 1, . . . , m.

For a given common abstract rejection region �, define HER(�) as we defined in (3.1):

HER(�) = E

[
max

[
V (�)

R(�)
,

T (�)

m − R(�)

]∣∣∣∣ 0 < R(�) < m

]
, (3.2)

where V (�) = the number {null Yi : Yi ∈ �}, R(�) = the number {Yi : Yi ∈ �}, T (�) = the
number {alternative Yi : Yi /∈ �}. In expression (3.2), when m = m0 or m = m1, HER(�) = 1.

Let �1(�) = pFDR(�) and �2(�) = pFNR(�). Then, �1(�) = E
(

V (�)
R(�)

|0 < R(�)�m
)

=∑m
k=1 E

(
V (�)
R(�)

|R(�) = k
)

× P (R(�) = k|0 < R(�)�m) = ∑m
k=1

1
k
E (V (�)|R(�) = k)

P (R(�) = k|0 < R(�)�m). Since the statistics are independent and identically distributed, it
follows that V (�)|R(�) = k is a binomial random variable with probability of success P(H =
0|Y ∈ �). Thus, �1(�) = ∑m

k=1 k (P (H = 0|Y ∈ �)) × 1
k
P (R(�) = k|0 < R(�)�m) =

P(H = 0|Y ∈ �). Similar arguments can be used to show that �2(�)=E
(

T (�)
m−R(�)

|0�R

(�)<m) = P(H = 1|Y ∈ �).
Define,

p1(�) = P (null hypothesis is true and it is rejected),
p2(�) = P (null hypothesis is true and it is not rejected),
p3(�) = P (null hypothesis is false and it is rejected), and
p4(�) = P (null hypothesis is false and it is not rejected).

Then, it is clear that p1(�)
p1(�)+p3(�)

= P(H=0|Y ∈ �)=�1(�) and p2(�)
p2(�)+p4(�)

=P(H=1|Y /∈ �) =
�2(�).

Now, one can prove the following lemma:

Lemma 2. Conditional on R(�) = k, for any k and m − k bigger than or equal to one, (a)
V (�) and T (�) are independent, (b) V (�) is Binomial (k, �1(�)) and (c) T (�) is Binomial
(m − k, �2(�)).

Proof. From Table 1,

P(V (�) = v, T (�) = t |R(�) = k)

= P(V (�) = v, T (�) = t, R(�) = k)

P (R(�) = k)
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= P(V (�) = v, T (�) = t, S(�) = k − v, U(�) = m − k − t)

P (R(�) = k)

=
m!

v!t !(k−v)!(m−k−t)!p
v
1(�) pt

2(�)pk−v
3 (�)pm−k−t

4 (�)

m!
k!(m−k)! (p1(�) + p3(�))k(p2(�) + p4(�))m−k

=
(

k

v

) (
p1(�)

p1(�) + p3(�)

)v (
p3(�)

p1(�) + p3(�)

)k−v (
m − k

t

) (
p2(�)

p2(�) + p4(�)

)t

×
(

p4(�)

p2(�) + p4(�)

)m−k−t

= P(V (�) = v|R(�) = k)P (T (�) = t |R(�) = k).

This completes the proof of part (a). Parts (b) and (c) follow easily from the fourth equation in
the proof of part (a). �

From Eq. (3.2), one can write

HER(�) =
[

m−1∑
k=1

E

{
max

(
V (�)

k
,

T (�)

m − k

)∣∣∣∣ R(�) = k

}
P(R(�) = k)

]

×(P (1�R(�)�m − 1))−1.

Using Lemma 2 and the fact that max(a, b) = a+b+|a−b|
2 we get

HER(�) = 1

2
(�1(�) + �2(�)) + 1

2

{
m−1∑
k=1

{
k∑

v=0

m−k∑
t=0

∣∣∣∣vk − t

m − k

∣∣∣∣ b1(v, �1(�), k)

× b2(t, �2(�), m − k)

}
P(R(�) = k)

}
(P (1�R(�)�m − 1))−1, (3.3)

where b1(v, �1(�), k)= k!
v!(k−v)! (�1(�))v(1−�1(�))k−v, b2(t, �2(�), m−k)= (m−k)!

t !(m−k−t)! (�2(�))t

(1−�2(�))m−k−t . Note thatR(�)has Binomial distribution with parameters m andp1(�)+p3(�).
To simplify Eq. (3.3), we can write

k∑
v=0

m−k∑
t=0

∣∣∣∣vk − t

m − k

∣∣∣∣ b1(v, �1(�), k)b2(t, �2(�), m − k)

=
k∑

v=0

[ m−k
k

v]∑
t=0

(
v

k
− t

m − k

)
b1(v, �1(�), k)b2(t, �2(�), m − k)

−
k∑

v=0

m−k∑
t=[ m−k

k
v]+1

(
v

k
− t

m − k

)
b1(v, �1(�), k)b2(t, �2(�), m − k)

= �1(�)

k−1∑
v=0

b1(v, �1(�), k − 1)B2

([
m − k

k
(v + 1)

]
, �2(�), m − k

)
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−�2(�)

k∑
v=0

b1(v, �1(�), k)B2

([
m − k

k
v

]
− 1, �2(�), m − k − 1

)

−�1(�)

k−1∑
v=0

b1(v, �1(�), k − 1)

(
1 − B2

([
m − k

k
(v + 1)

]
, �2(�), m − k

))

+�2(�)

k∑
v=0

b1(v, �1(�), k)

(
1 − B2

([
m − k

k
v

]
− 1, �2(�), m − k − 1

))

= −2�2(�)

k∑
v=0

b1(v, �1(�), k)B2

([
m − k

k
v

]
− 1, �2(�), m − k − 1

)

+2�1(�)

k−1∑
v=0

b1(v, �1(�), k − 1)B2

([
m − k

k
(v + 1)

]
, �2(�), m − k

)

−�1(�) + �2(�), (3.4)

where B2(x, �2(�), m − k) = ∑x
y=0 b2(y, �2(�), m − k) and [x] is the largest integer less than

or equal to x. Note that for x < 0, B2(x, �2(�), m − k) = 0.
Now, using Eq. (3.4), (3.3) reduces to

HER(�) = �2(�) + �1(�)

{
m−1∑
k=1

{
k−1∑
v=0

b1(v, �1(�), k − 1)

× B2

([
m−k

k
(v+1)

]
, �2(�), m−k

)}
P(R(�)=k)

}
(P (1�R(�)�m−1))−1

−�2(�)

{
m−1∑
k=1

{
k∑

v=0

b1(v, �1(�), k)B2

([
m − k

k
v

]
− 1, �2(�), m − k − 1

)}

× P(R(�) = k)

}
(P (1�R(�)�m − 1))−1. (3.5)

Note that HER(�) in (3.5) is an expected risk or a Bayes risk with respect to the prior �0. As an
application of Eq. (3.5), for m = 2, HER(�) = �1(�) + �2(�) − �1(�)�2(�).

Remark 2. One can also write HER(�) in Eq. (3.5) as

HER(�) = �1(�) + �2(�)

{
m−1∑
k=1

{
m−k−1∑

t=0

b2(t, �2(�), m − k − 1)

× B1

([
k

m − k
(t+1)

]
, �1(�), k

)}
P(R(�)=k)

}
(P (1�R(�)�m−1))−1

−�1(�)

{
m−1∑
k=1

{
m−k∑
t=0

b2(t, �2(�), m − k)B1

([
k

m − k
t

]
− 2, �1(�), k − 1

)}

× P(R(�) = k)

}
(P (0�R(�)�m − 1))−1 .



444 N. Ebrahimi / Journal of Multivariate Analysis 99 (2008) 437–450

Here [x] means the smallest integer greater than or equal to x and B1(x, �1(�), k) = ∑x
y=0 b1

(y, �1(�), k). Note that B1(x, �1(�), k) = 0 for x < 0.

It is clear that HER(�) in (3.5) is a non-linear function of pFDR((�)) and pFNR((�)).
Now, assume that F0 and F1 are continuous distributions with common support, with respective

densities f0 and f1. Define the set of rejection regions {��} by

�� =
{
x : �0f0(x)

�0f0(x) + �1f1(x)
��

}
, (3.6)

where 0���1 and �1 = (1 − �0). Let,

�∗ = arg
�

min[HER(��)]. (3.7)

We have the following result which is very useful for obtaining minimum of HER(�) over all
rejection regions �.

Theorem 1. If for any �, E
(

max
(

V (��)

k
,

T (��)

m−k

)∣∣∣ R(��) = k
)

is decreasing in k, then given

�0, HER(��∗) minimizes HER(�) among all measurable �.

Proof. Recall that by the Neyman–Pearson Lemma, the {��} form a set of MP (most powerful)

rejection regions. For each 0���1, there exists a �� such that P(Y ∈ ��

∣∣∣H = 0) = � (see

[14]). Now consider any measurable �. Then, there exists a �� such that P(Y ∈ �
∣∣∣H = 0) =

P(Y ∈ ��

∣∣∣H = 0). Since {��} are MP, it follows that P(Y ∈ �|H = 1)�P(Y ∈ ��|H = 1)

and P(Y /∈ ��

∣∣∣H = 1) + P(Y ∈ ��

∣∣∣H = 0)�1. Consequently,

�1(�) =
�0P(Y ∈ �

∣∣∣H = 0)

�0P(Y ∈ �
∣∣∣H = 0) + �1P(Y ∈ �

∣∣∣H = 1)

�
�0P(Y ∈ ��

∣∣∣H = 0)

�0P(Y ∈ ��

∣∣∣H = 0) + �1P(Y ∈ ��

∣∣∣H = 1)
= �1(��)

and

�2(�) =
�1P(Y /∈ �

∣∣∣H = 1)

�1P(Y /∈ �
∣∣∣H = 1) + �0P(Y /∈ �

∣∣∣H = 0)

�
�1P(Y /∈ ��

∣∣∣H = 1)

�1P(Y /∈ ��

∣∣∣H = 1) + �0P(Y /∈ ��

∣∣∣H = 0)
= �2(��)

and �1(��) + �2(��)�1.
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Now, since [V (�)

∣∣∣R(�) = k] ∼ Binomial (k, �1(�)), from Lemma 1, part (a) it follows that

[V (�)

∣∣∣R(��) = k] is stochastically larger than [V (��)

∣∣∣R(��) = k]. Similarly, since [T (�)

∣∣∣R(�)

= k] ∼ Binomial (m − k, �2(�)), it follows that [T (�)

∣∣∣R(�) = k] is stochastically larger

than [T (��)

∣∣∣R(��) = k]. Also, R(�) ∼ Binomial (m, �0� + �1P(Y ∈ �
∣∣∣H = 1)) and �0� +

�1P(Y ∈ �
∣∣∣H = 1)��0� + �1P(Y ∈ ��

∣∣∣H = 1). Thus, from Lemma 1, part (a), we get that

[R(�)

∣∣∣1�R(�)�m − 1] is stochastically less than [R(��)

∣∣∣1�R(��)�m − 1].
Under our assumptions, using these properties and the fact that �1(��) + �2(��)�1,

HER(�) =
m−1∑
k=1

[
E

(
max

(
V (�)

k
,

T (�)

m − k

) ∣∣∣R(�) = k

)]
P(R(�) = k)

P (1�R(�)�m − 1)

�
m−1∑
k=1

[
E

(
max

(
V (��)

k
,
T (��)

m − k

) ∣∣∣R(��) = k

)]
P(R(�) = k)

P (1�R(�)�m − 1)

�
m−1∑
k=1

[
E

(
max

(
V (��)

k
,
T (��)

m − k

) ∣∣∣R(��) = k

)]
P

(
R(��) = k

)
P(1�R(��)�m − 1)

= HER(��).

This completes the proof. �

The following example gives an application of Theorem 1.

Example 1. Suppose Yi

∣∣∣Hi
i.i.d.∼ (1 −Hi) ·N(0, 1)+Hi ·N(2, 1) and Hi

i.i.d.∼ Bernoulli(0.2), i =
1, 2, 3. Also suppose we want to minimize HER(�) over all measures �. By Theorem 1 since

E

(
max

(
V (��)

k
,
T (��)

m − k

) ∣∣R(��) = k

)
= �1(��) + �2(��) − 2�1(��)�2(��) for k = 1, 2 we

only have to consider rejection regions of the form

�� =
{
x : 0.8�(x)

0.8�(x) + 0.2�(x − 2)
��

}
.

By calculating HER(��) using Eq. (3.5) and minimizing it with respect to � we get �∗ ≈ 0.38
which implies �0.38 = {Y �2.96}. Therefore, min�(HER(�)) = HER(�0.38) = 0.101 and this
occurs at � = �0.38 = {Y �2.96}.

3.2. The h-value

Imitating the definition of q-value derived from pFDR, see Storey [17], in this section, we

propose h-value which is obtained from HER. Recall that Yi |Hi
i.i.d∼ (1 − Hi)F0 + HiF1, i =

1, . . . , m, Hi ∼ Bernoulli(1 − �0), i = 1, . . . , m, and F0 and F1 have a common
support.

First, consider the test of a single hypothesis, say Hi , with nested level � rejection regions ��
such that ��′ ⊂ �� for 0��′ ���1 and P(Yi ∈ ��|Hi = 0)��, for 0���1. Suppose we are
interested in using the test statistic Yi to carry out a two-tailed test. Then p-value and h-value can
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also be defined more generally. Nested rejection regions �� = [−∞, −c�] ∪ [c�, ∞] are such

that P(|Yi | > c�

∣∣∣H = 0) = �. The p-value for the observed value Yi = yi is (see [14]),

p-value(yi) = min
{��:yi∈��}

P(|Yi | > c�

∣∣∣H = 0) = P(|Yi | > yi

∣∣∣H = 0). (3.8)

The p-value (yi) in Eq. (3.8) gives a measure of strength of the observed statistic with respect
to making Type I error. More specifically, the p-value (yi) is the minimum Type I error over all
possible rejection regions �� containing the observed value Yi = yi .

We define an analogous quantity in terms of HER.

Definition 1. For m hypothesis, m�2 given that we observe the random variables Y1, . . . , Ym to
be Y1 = y1, . . . , Ym = ym, we define the h-value of yi to be

h-value(yi) = min
{�� : yi∈��}

HER(��), (3.9)

where HER(��) is obtained from Eq. (3.5) using the facts that �1(��) = P(H = 0
∣∣∣|Yi | > c�) and

�2(��) = P(H = 1
∣∣∣|Yi |�c�). The following remarks are in order with regard to the definition

of h-value:

(1) It is known that pFDR is stochastically an increasing function of � and the definition of q-
value will force this monotonicity. However, with pFDR being an increasing function of �
and pFNR being a decreasing function of � (both in stochastic sense), one can expect that
HER is a function like a parabola curve. This is similar to the sum of Types I and II error rates
as a function of � for a single hypothesis testing problem.

(2) h-value is more conservative than q-value because h-value controls both errors. To make the
h-value less conservative, in practical applications, one can take h-value to be large compared
to the q-value. (See Section 4.)

In this paper we limit ourselves to the case where we reject the null hypothesis on the basis of
m independent observed p-values, p1, . . . , pm. As shown by Storey [18], for rejections based on
p-values all the rejection regions are of the form [0, �] for some 0���1. The nested rejection
region �� = [0, �], abbreviated by � leads to h-value (pi) = min{��pi } HER(�).

3.3. Estimating HER and h-value

Suppose P is the random p-value resulting from any test. Then, under independence the p-values
are exchangeable and P(P �c|H0) = c and P(P �c|H1) = G(c). That is, G is the cumulative
distribution function of P under the alternative hypothesis. Now, in terms of p-value we write Eq.
(3.5) as

HER(�) = �2(�) + �1(�)

{
m−1∑
k=1

{
k−1∑
v=0

b1(v, �1(�), k − 1)

× B2

([
m−k

k
(v + 1)

]
, �2(�), m−k

)}
b3(m, k)

}
(1−b3(m, 0)−b3(m, m)

)−1

−�2(�)

{
m−1∑
k=1

{
k∑

v=0

b1(v, �1(�), k)B2

([
m−k

k
v

]
−1, �2(�), m−k−1

)}
b3(m, k)

}
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×(1 − b3(m, 0), b3(m, m))−1 , (3.10)

where b3(m, k) = m!
k!(m−k)! (�0� + �1G(�))k (1 − �0� − �1G(�))m−k , �1 = 1 − �0,

�1(�) = �0�

�0� + �1G(�)
, (3.11)

and

�2(�) = �1(1 − G(�))

1 − �0� − �1G(�)
. (3.12)

Now, we need to estimate the right-hand side of Eq. (3.10). Following Storey and Tibshirani
[19], a conservative estimate of �0 and consequently �1 is

�̂0(�) = #{pi > �}
(1 − �)m

for some well chosen �, where p1, . . . , pm are the observed p-value. See also the algorithm below
for more details. A natural estimate of P(P ��) = �0� + �1G(�) is

P̂ (P ��) = #{pi ��}
m

.

By plugging these quantities into the right side of Eqs. (3.11) and (3.12), �1(�) and �2(�) are
estimated by

�̂1(�) = �̂0�m

#{pi ��} ,

�̂2(�) = �̂1(1 − G(�))

#{pi > �} .

Replacing �1(�) and �2(�), with �̂1(�) and �̂2(�), respectively, and �0� + �1G(�) by 1
m

∑m
i=1

I (pi ��) in Eq. (3.10) we obtain ˆHER(�) which is an estimate of HER(�). Generally speaking,
since p-values of truly alternative hypotheses will tend to be close to zero, a natural choice for
G(u) is a non-decreasing concave function with G(0) = 0 and G(1) = 1.

Now we can estimate the h-value of feature i by simply plugging ˆHER(�) into Eq. (3.9),

ĥ(pi) = min
��pi

ˆHER(�). (3.13)

The following is general algorithm for estimating h-values from the list of p-values.

1. Let p(1)�p(2)� · · · �p(m) be the ordered p-values for the m hypothesis tests. This also
denotes the ordering of the features in terms of their evidence against the null hypothesis.

2. For a range of �, say � = 0, .01, . . . , .95 calculate

�̂0(�) = #{pi > �}
m(1 − �)

.

3. There are many approaches for estimating a density function at a boundary, see Hall and Park
[11]. In this paper we follow the method proposed by Storey and Tibshirani [19]. Let f̂ be the
natural cubic spline with 3 df of �̂0(�) on �. Set the estimate of �0 to be

�̂0 = f̂ (1).
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4. Noting that for P(R = m) = 1, HER(�) = pFDR(�) a natural estimate of h at p(m) is
ĥ(p(m)) = q̂(p(m)), where q̂(p(m)) is the estimate of q-value at p(m).

5. Calculate, for i = 1, . . . , m − 1, ĥ(p(i)) = min( ˆHERp(i)��<p(i+1)(�), ĥ(p(i + 1))).

4. Example and simulation study

In this section we first apply our method to an example. We then compare our procedure with
Storey’s procedure.

4.1. Example

A common goal in DNA microarray experiments is to detect genes that show differential ex-
pression across two or more biological conditions. In this scenario, the “features” are the genes,
and they are tested against the null hypothesis that there is no differential gene expression. One of
the goals of Golub et al. [10] was to identify genes that are differentially expressed in patients with
two types of leukemia, acute lymphoblastic leukemia (ALL, Class 1) and acute myeloid leukemia
(AML, Class 2). Gene expression levels were measured using Affymetrix high density oligonu-
cleotide arrays containing m = 6817 human genes. The learning set comprises n = 38 samples,
27 ALL cases and 11 AML patients. (Data available at http://www.genome.wi.mit.edu/MPR.) We
eliminated some of the genes by truncating very high and very low expression levels and removing
genes whose truncated expression showed no variation. This left m = 3051 genes. There were no
missing values. The data were summarized by a 3051 × 38 matrix X = (xij ), where xij denotes
the expression level for gene i in mRNA sample j.

This data set was used here to illustrate an application of our proposed procedure. We tested
each gene for differential expression between ALL and AML patients by using Welch two-sample
t-statistic. The two-sample t-statistic for the gene i, allowing for the possibility that two classes
have different variances, is then computed for i = 1, . . . , 3051. We next calculated null ver-
sion of t1, t2, . . . , t3051 when there is no differential gene expression. Because it is not clearly
valid to assume that ti follow t-distribution, we calculated them by a permutation method. More
specifically, we consider all possible ways to assign n = 38 arrays to n1 = 27 arrays from
ALL and n2 = 11 arrays from AML. Under the null hypothesis there is no differential gene
expression and therefore, t-statistic should have the same distribution regardless of how we make
these assignments. The labels on the arrays are randomly scrambled, and the t-statistic are re-
computed. Therefore, for B = 1000 permutations of the array labels we get a set of null statistics
t0b
1 , . . . , t0b

3051, b = 1, . . . , 1000. The p-value for gene i, i = 1, . . . , 3051 was calculated by

pi =
∑B

b=1 #{
∣∣∣t0b

j

∣∣∣ > |ti |, j = 1, . . . , 3051}
(3051)B

.

We estimated the h1, . . . , h3051 for differential gene expression between ALL and AML by using
the algorithm presented in Section 3. Take, for instance, G(u) = 1−�

(
�−1(u) − √

n w
)
, where

� is the cumulative distribution of standard normal distribution and n = n1n2
n1+n2

= (27)(11)
38 = 7.8,

see Hung et al. [13]. We have decided to declare a gene to be differentially expressed if its raw
p-value is less than 5% and its h-value is less than 15%. As we mentioned in the previous section,
to make our procedure less conservative we work with slightly larger h-value. We found 143
genes to have their p-values being less than 5%, and out of these 143 genes, 82 genes had their
h-values being less then 15% when w = .4, .2 and .01. That is, our declared significant genes did

http://www.genome.wi.mit.edu/MPR
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Table 2
Estimated pFDR, pFNR and pHER

Using q Using h

n1 = n2 = 10 pFD̂R = .123 pFD̂R =.108
pFN̂R = .128 pFN̂R = .109
pHÊR = .132 pHÊR = .115

n1 = n2 = 20 pFD̂R = .081 pFD̂R = .083
pFN̂R = .095 pFN̂R = .092
pHÊR = .111 pHÊR = .105

n1 = n2 = 50 pFD̂R = .073 pFD̂R = .076
pFN̂R = .078 pFN̂R = .074
pHÊR = .091 pHÊR = .090

not change for different values of w. Also, out of these 143 genes, 98 had their q-values less than
.10. If the cutoff point for q is .10, then the declared significant genes using q is more than our
procedure.

4.2. A simulation study

In this section we carry out a simulation study to compare our method with Storey’s method.
We consider two groups and the problem of simultaneously testing m = 1000 independent tests
H1, . . . , H1000 for these two groups. In each case the null hypothesis is either true (Hi = 0)

or not (Hi = 1). (One can think of m = 1000 as 1000 genes and Hi = 0 means that the ith
gene is not differentially expressed between two groups.) For a given i, n1 observations were
generated from N(	i , 2) (Group 1) and n2 observations were generated from N(	∗

i , 2) (Group
2), i = 1, . . . , 1000. We assume that 	i = 	∗

i for i = 1, . . . , 900 and 	∗
i − 	i = .2, 	i = 2 for

i = 901, . . . , 950. We also take 	∗
i − 	i = 1.4 and 	i = 2 for i = 951, . . . , 1000. Thus the total

number of hypotheses tested is 1000 of which the null hypothesis is true m0 = 900 times and
the alternative is true m1 = 100 times. For a given i, i = 1, . . . , 1000, we test for equality of
two means 	i and 	∗

i by using two-sample t-test. It gives us p-value for each of the hypotheses.
Call these p1, . . . , p1000, evidence in these 1000 tests. Then, we estimated h1, . . . , h1000 and
q1, . . . , q1000 based on p(1), . . . , p(m). To declare hypotheses to be null or alternative, we use
cutoff points of .05, .1 and .07 for raw p-values, h-values and q-values, respectively. We repeat this
1000 times and estimate pFDR, pFNR and HER using both q and h. Table 2 gives the estimates
for different values of n1 and n2. It seems that both q and h work very well for large and moderate
sample sizes. However, for small sample size it seems that our procedure does a better job.

5. Conclusion

In this paper we have proposed HER as a measure of error rate in multiple hypothesis testing
and studied its properties. Its advantage to commonly used measures is that it considers both
FDR and false non-discovery rate simultaneously. We have also developed, based on the risk
function HER, an analog of p-value termed as h-value for testing multiple hypothesis. Based on
our limited simulation study, since for small sample size h-value does a better job than q-value,
we recommend using this measure. For large to moderate sample sizes we recommend using
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both measures. The h-value is more conservative than q-value in the sense that it accepts the null
hypothesis more than q-value. In practice, however, to make this measure less conservative, one
can reject the null hypothesis using larger h-values, that is, a larger cutoff point for h-value than
for q-value. A question which remains unanswered yet is how to specify cutoff points for q-value
and h-value.
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