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Abstract 

Kopperman, R.D., Which topologies are quasimetrizable?, Topology and its Applications 52 

(1993) 99-107. 

A characterization of quasimetrizable spaces is given; they are those whose topologies arise from 

a o-self-cocushioned pairbase whose dual is a-self-cocushioned. 

This is closely related to the known characterization of -r-spaces as those whose topologies 

arise from a u-self-cocushioned pairbase (with no dual condition). 

The last section of the paper discusses to what extent this is a topological characterization of 

quasimetrizability, and notes the absence of a “Bing-style” characterization. 
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1. Introduction and notation 

The question of which topologies arise from a quasimetric has been open since 

Wilson’s publication of the first paper on quasimetrics, [251, in 1931. In its Section 

7, Wilson explored relations between quasimetric and topological spaces, and 

proved that second countable topological spaces are quasimetrizable. Study of this 

question was spurred by discovery of the best-known characterizations of metriz- 

able spaces in 1950-l by Bing [l], Smirnov [24], and Nagata [18]. Sufficient 

conditions for quasimetrizability of topologies were given in the 1960’s by Doitchi- 

nov, Nedev [19], Norman [20], and Sion and Zelmer [231, and in the early 1970’s by 

Fletcher and Lindgren 121; none of the conditions they considered was necessary. 
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More recently the last authors devoted the beginning of the last chapter of their 

1982 monograph, [3], to a summary of the state of the question. 

Results leading toward a characterization of quasimetrizability for bitopological 

spaces began in the early 1960’s with the first papers in the field, by Kelly [9], and 

Lane [16]. Unlike the search for a characterization of quasimetrizable topological 

spaces, this one came to a conclusion. The first satisfactory characterization was 

due to Fox in [4]; this paper also includes more of the history of these related 

subjects. The author wishes to thank Ivan Reilly for bringing to his attention the 

key Fox and Wilson references and Peter Collins for several useful discussions. 

We now state Fox’s result. Some key definitions are given later. 

Theorem 1.1. A biotopological space ZYB = (X, Y”, 7’) is quasimetrizable iff for 
each i E 0, 1, Yi has a a-T’-’ -cushioned, a-Y’-cocushioned pairbase. 

The following definitions and notations differ from Fox’s as indicated: 

Definition 1.2. A quasimetric on X is a q : XXX - [0, CQ) such that whenever 

x, y, z EX, q(x, z) =Z q(x, y) + q(y, z), and q(x, x) = 0. Most authors, including 

Fox, follow Wilson in also assuming an axiom we call (c,): q(x, y) = 0 3 x = y. We 

also call a quasimetric (c,) if q(x, y) + q(y, x) = 0 *x = y. 
Given a quasimetric q: its conjugate is the quasimetric q* : XxX+ [0, m> 

defined by q*(x, y) = q(y, x) (Fox uses the notation 4 here), B, = {(x, y): 

q(x, y) < r), N, = 1(x, y): q(x, y) <r), the topology arising from q, 9(q), is 

defined by: P E Y(q) a for each x E P there is an r > 0 such that B,(x) z P (e 
if x E P there is an r > 0 such that N,.(x) c P), the bitopological space arising from 
q is ZB(q) = (X, Y(q), Y(q*)). A topology 7 on X is quasimetrizable if there is 

a quasimetric q on X such that Y= Y(q); a bitopological space SYB is 

quasimetrizable if there is a quasimetric q on X such that ZB = Z?r&q). 

It is shown in [14] that 9(q) is T, iff q satisfies (c,), for i = 0, 1 (the proofs are 

straightforward). Thus each quasimetrization result given below holds in three 

forms: one with no separation assumptions, one assuming T,, and one assuming 

T,. Below, Definition 1.3 helps in defining pairbase, Definition 1.4 defines the 

remaining terms in Fox’s result: 

Definition 1.3. Given an R CX X 2 x, Y(R) is the topology {P: if x E P then for 

some finite F G R(x), n F &PI, and R is basic if whenever x E P E T(R) there is 

an A E R(x) such that A c P. (R is basic if whenever B, C E R(x) there is an 

A E R(x) such that A c B n C; the converse fails.) 

Definition 1.4. A set relation on X is a relation on the power set of X, and such a 

relation G is enclosing if (A, B) E G *A LB. For an enclosing G and a topology 
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Y on X: dG = {(x, A): x EA E Dam(G)}, rG = ((x, B): 3(A, B) E G, x EA}(= 

G 0 dG), the topoZogy arising from G is 9(dG) (notice that this is the topology 

generated by Dam(G)). G is 

l a pairgenerator (for 7) if 9(dG) = Y(rG)(= 93, 
l a pairbase (for 7) if a pairgenerator (for 7) and dG, rG are basic, 

l Y-cushioned if Cl( U Dam(H)) c U Rg(H) whenever H G G, 

l Y-cocushioned if n Dam(H) z Int( ll Rg(H)) whenever H c G, 

l a-.!7-(co)cushioned if it is a countable union of .Y-(co)cushioned sets, 

U ..,G(n). 
G is a-self-(co)cushioned if it is a-Y(dG)-(co)cushioned. In this case G(n) is a 

(seEf-)( ) h’ g co cus tonin sequence (for G). G(n) is increasing if n <p * G(n) L G(p). 

In his corresponding definitions, Fox did not require G to be enclosing, but 

cushioned or cocushioned set relations are enclosing, and this requirement simpli- 

fies our work below. 

Lemma 1.5. (a) Zf G is an enclosing set on X , then Y(rG) c Y(dG). 
(b) An enclosing G on X is a pairbase iff (A’, B’), (A”, I?“) E G and x EA’ n 

A” *for some (A, B) E G, x E A and B c A’ n A”. It is a pairgenerator iff for each 
finite F c G, if x E n Dam(F), there is a finite F’ c G such that x E n Dom(F’) and 
nRgtF’) 5. nDom(F). 

(c) If G’ and G” are (co)cushioned, then so is G U G’. 

A sequence of set relations G(n) on X is a self-cocushioning sequence for a 
pairbase G iff for each m, whenever x E nDom(H), H c U n<,G(n), there is an 
(A, B) E G such that x EA and B L nRg(H). 

(d) If G’, G” are enclosing, we use the following notations: G’QG” = {(A’ n 
A”, B’ u B”): (A’, B’) E G’, (A”, B”) E G”}, G’ 8 G” = {(A’ n A”, B’ n B”): 

(A’, B’) E G’, (A”, B”) E G”), G’ @ G” = {(A’ u A”, B’ u B”): (A’, B’) E G’, 

(A”, B”) E G”). If either G’ or G” is (co)cushioned, then so is G’oG”; if both are 
then so are G’ @ G” and G’ @ G”. 

(e) Zf G is a a-Y-cocushioned, a-Y’-cushioned pairgenerator, then there is an 
increasing sequence of enclosing set relations {H(n)} such that H = U n ~ OH(n) is a 
pairbase for Y(dG), and each H(n) is .7-cocushioned and T-‘-cushioned. 

Proof. (a) If x E P E .Y(rG), then for some finite F c G, x E nDom(F) and 

flRg(F) c P; since G is enclosing, x E nDom(F) cP, so P E Y(dG). 
(b) We show the assertion about pairbases and leave pairgenerators to the 

reader. Let x E P E Y(dG) and assume our condition; then for some finite F c G, 

x E flDom(F) cP. By induction, there is an (A, B) E G such that x EA and 

B c nDom(F), so x EA, B L P. This shows that 9(dG) c Y(rG), thus by (a) 

9TdG) = 9TrG); it also shows dG, rG to be basic. Conversely, if (A’, B’), 
(A”, B”) E G, then A’ nA” E F(dG), so if x EA’ f-d”, rG is basic, and F(dG) 
= 9TrG) then for some (A, B) E G, x EA and B &A’ n A". 

(cl We show the cocushioned case; the other is similar. Thus suppose H c G’ u 

G”, XE nDom(H). Let H’=G’nH, H”=G”nH; then H=H’uH”, so the 
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following completes the proof: n Dam(H) = (n Dom(H’)) n (n Dom(H”)) G 

Int(flRg(H’N n Int(flRg(H”II = Int((flRg(H’N n (flRRg(H”IN = Int(nRg(H)). 

For the other assertion here, if G(n) is a self-cocushioning sequence for the 

pairbase G then U n _G(n) is Y(dG)- cocushioned. Thus if H L U n < ,G(n), 

x E nDom(H) then for some (A, B) E G, x EA and B L nRg(H). Conversely if 

this condition holds, the special cases in which H has two elements show G to be 

a pairbase and each G(n) is Y((dG)-cocushioned because each A E Dam(G) is in 

9-CdG). 
(d) We show the cushioned case for 0. By the commutativity of O, it will do to 

assume G’ is cushioned. If H c G’aG” and (A, B) E H, choose (A’, B’) E G’, 

(A”, B”) E G” such that (A, B) = (A’ nA”, B’ u B”> and let H’ = {(A’, B'): 
(A, BIEH); Cl(UDom(H))~Cl(UDom(H’))~ URg(H’)c URg(H). The re- 

maining assertions are proved similarly. 

(e) Suppose G = U n 2oG(n) = U n ~ ,G’(n), where G(n) is Y-cocushioned, 

G’(n) is P-‘-cushioned. Replacing G(n) by U ,,,G(m) U 1(X, X)} if necessary 

(and using (c)j, we can assume that the G(n) and similarly, the G’(n) contain 

(X, X) and are increasing. Let H(O) = @, H(n + 1) = (H(n) U (G(Tz)DG’(E))) @I 

(H(n) u (G(n) oG’bz)N, H = U nE,H(n). Since(X, X)EK-K~K@K, (H(n)} 
is increasing; by a slight variant of the proof used to show this, if F c H(n) has at 

most 2k elements, then (nDom(F), nRg(F)) E H(n + k). Since (X, X) E G(n), 

G’(n), we have Dom(G(n)), Dom(G’(n1) L Dom(G(nlOG’(n1) G Dom(H(n + 1)) 

2 RdH). By induction Dom(H(n)) L YCdG), thus 9?dG) = YCdH). Induction 

using (c), (d) shows that the H(n) are 7-cocushioned and 7’-cushioned. 

To see that H is a pairbase, let x E P E YCdH) = YCdG); since G(n), G’(n) 

are increasing, find some n and some F c G(n), F’ c G’(n), finite, with x E 

nDom(F), nDom(F’), nRg(F), nRg(F’1 LP. Thus F”=FoF’ is a finite 

subset of H(n + l), so for some m, (nDom(F”I, flRg(F”)) E H(m), x E 
(nDom(F)) n (nDom(F’)) = nDom(F”), and by distributivity, nRg(F”) = 

(nRg(FN U (nMF’I1 cP. •I 

There have been subsequent characterizations of quasimetrizable bitopological 

spaces (e.g., see Raghavan and Reilly [21]). Below we use Fox’s result to obtain a 

topological characterization of quasimetrizable spaces. 

2. From bitopologies to topologies 

A straightforward method of showing the existence of a quasimetric from which 

a given topology arises is to actually construct one. Each quasimetric gives rise to 

two topologies, F(q) and Y(q*); thus the construction of a second topology is 

implicit in such a proof. Fox’s result makes it reasonable to reverse the logic here: 

first construct the second topology in a way to give a bitopological space satisfying 
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Fox’s conditions, then use his result. Thus the key question here is how we get the 

second topology: 

In [I.51 we constructed two topologies from a single set S of subsets of X: yY 

generated by S, and S,, generated by the complements of the sets in S. This 

technique appears earlier in the proof in [17] that if Y is a T, topology on X, then 

(X, 7, 9) is a pairwise completely regular, 9 the discrete topology on X. The 

bitopological spaces which so arise are the pairwise O-dimensional spaces, (see 

[6,7,22]). The topology of computer graphics (see [lo] or [12]), like other topologies 

on finite spaces, are Alexundroff: arbitrary intersections of open sets are open. A 

topology is clearly Alexandroff iff the closed sets form a topology, Z?‘, and again 

(X, 7, g’> is pairwise O-dimensional. 

But bitopological spaces which arise from quasimetrics are merely pa&vise 

regular (see [SD: if x E P E Y7’ then for some Q E Y’, x E Q and CllPiQ z P. The 

following allows application of the above idea of obtaining the second topology 

using complements: 

Definition 2.1. The conjugate of an enclosing set relation G on X is G* = {(X - 

B, X-A): (A, B) E G). 

The reader should check the motivating fact that the pairwise regular bitopolog- 

ical spaces are those for which there is a pairbase G for 7 such that G* is a 

pairbase for Y* (in fact, G = {(A, Cl*(A)): A E 77) U {(X- Cl(B), X-B): B E 
Y*] works in the pairwise regular case). 

Certainly G = G * *, and for a topology 7 on X if H c G, then 0 Dom( H * ) = 
X - U Rg(H), and X - Cl( lJ Dom( HI) = Int( ll Rg( H * >I. Thus, an enclosing G 

on X is Y-cocushioned iff G” is Y-cushioned, and G (G”) is u-Y-cushioned 

(a-Y-cocushioned) iff G * (G) is a-Y-cocushioned (a-Y-cushioned). 

A fact not used below is that, applying complementation to the characterization 

of self-cocushioning sequences of Lemma 1.5(c), G* is a self-cocushioning se- 

quence iff whenever x @ lJ Rg(H), H c U n < ,G(n), there is an (A, B) E G such 

that x P B and UDom(H) CA. 

Theorem 2.2. Let _Z be a (T) topological space (X, F) or a bitopological space SYB 
(with each topology Ti). The following are equivalent: 

(a) Z is quasimetrizable (with (c,) quasimetric), 
(b) there is an enclosing set relation G on X such that Z arises from G and both 

G and G * are a-self-cocushioned pairbases, 
(c) there is an enclosing set relation G on X such that 2” arises from G and both 

G and G * are a-self-cocushioned pairgenerators. 

Proof. The topological and bitopological cases are similar. For (a) * (b): Given a 

quasimetric q, recall that for r > 0, B,[Pl = 12: for some y E P, q(y, 2) < r] and 

notice that B,[P]cQmBP[X-Q],X-P. Let G(q, n)={(P, Q>: PET(q), 
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X- Q E Y(q*), and B,,,[Pl c Q), and notice that G(q, n) is S(q)-cocushioned 

because if H 2 G(q, n) then rl Dam(H) cB,[ ll Dom(H)l c Int( fl Rg[H]). By du- 

ality, G(q *, n) is S(q*)-cocushioned and since G(q*, n) = G(q, n)*, G(q, n) is 

Y(q * )-cushioned. Let G = U n E ,G(q, n); G is then cr-9(q)-cocushioned and G* 

is a-Y(q*)-cocushioned. Further, G is a pairbase for (X, Y(q), Y(q*)), for if 

x E P E Y(q), there is some r > 0 such that B,(x) &P; choosing II such that 

2/n < r, we have x E B,,,(x), N2,,Jx) of’, and (B,,,(x), N,,,(x)) E G(q, n) 
(check (or see in [153) that each N,(x) is Y(q*)-closed); dually, the same holds for 

Y(q *). The last needed assertions, that G and G* are a-self-cocushioned, now 

result from the fact that Y(G) = Y(q) and Y(G*) = 9(q*). 
Clearly, (b) =. (c); further (c) * (b) by Lemma 1.5(e). 

Proof of (b) * (a) using Fox’s result (Theorem 1.1): From our hypotheses and 

the comments after Definition 2.1, it is clear (in both the topological and bitopo- 

logical cases) that for the bitopological space (X, Y(G), 9(G*)), G is a U- 

Y(G*)-cushioned, a-Y(G)-cocushioned pairbase for Y(G), and G” is a u- 

Y(G)-cushioned, a-Y(G * )-cocushioned pairbase for Y(G * ). By Theorem 1.1 

there is a quasimetric q such that (X, Y(G), Y(G*)) = (X, Y(q), Y(q*)). 0 

Corollary 2.3. A topology 7 is pseudometrizable (a TO topology 7 is metrizable) iff 
there is a self-conjugate enclosing set relation G from which 9 arises, and which 
additionaZfy satisfies (i) and (ii): 

(i) G is a-self-cocushioned or a-self-cushioned, 
(ii) G is a pairbase or pairgenerator. 

Proof. By Theorem 2.2, ~7 is pseudometrizable iff: 

(a) there is an enclosing set relation H such that H and H * are a-self-cocush- 

ioned and Y= Y(H) = Y(H*). 
Further, (a) surely holds if H is a self-conjugate, a-self-cocushioned pairbase. 

But if (a), set G(n) = H(n) u H(n)*, where {H(n)} is an increasing cocushioning 

sequence for H. Then G is a self-conjugate pairbase which is both a-self-cocush- 

ioned and cT-self-cushioned, and ~7 arises from G. 0 

3. Local quasiuniformities 

Since [4] is not easily accessible, we give an alternative proof of Theorem 2.2, 

(b) =z. (a) using local quasiuniformities. 

Definition 3.1. A local quasiuniformity on X is a filter L of reflexive relations on 

X such that if U E L, x EX then for some I/EL, (V 0 V)(x) c U(x). A quasiuni- 
formity is a local quasiuniformity also satisfying: if U E L then for some V E L, 
VOVCU. 
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If G is an enclosing relation on X, then NG = {(x, y): x EA, y EX and 

(A, B) E G 3 y E B) (a reflexive relation on X1. 

For a filter L: 
A base is a collection B c L such that if U E L then I/G U for some I/E B. 

The inverse of L is L-’ = {I/-‘: V/ELI. 
The topology induced by L is Y[Ll={P: xEP_for some VEL, V(X)CP} 

(= Y({(x, V(x)): x E x, I/E L})). 

Theorem 3.2. A topology arises from a quasiuniformity with countable base iff it 
arises from a local quasiuniformity with countable base whose inverse is a local 
quasiuniformity. 

This is Theorem 7.15 of [3] (from [4]), and its proof is sketched on p. 162 of [3]. 

Applying Kelley’s metrization lemma [8, p. 1851, we have a result, stated in the 

T,-case in [3]: 

Theorem 3.3. A topology which arises from a local quasiuniformity with countable 
base, whose inverse is a local quasiuniformity, is quasimetrizable. 

Lemma 3.4. Let {G(n): n E w} be an increasing cocushioning sequence for the 
a-self-cocushioned pairbase G. Then the filter generated by iNo( n E w) is a local 
quasiuniformity L which gives rise to the topology 97dG). 

Proof. First notice that if G cH, G, H enclosing sets, then NH G N,; thus 

L = {VCXXX: for some n, N GCnj c V} is a filter of reflexive sets. Now suppose 

P E F[ L], VE L, x EX. For some n, NcC,, z I/, so No(,,(x) c V(x) c P. Since 

G(n) is cocushioned, NcC,,( > x is a Y(dG) neighborhood of x, so P E Y(dG). For 

the reverse inclusion, if x E P E YCdG), find m, (A, B) E G(m), such that x E A 
and B cP. But then N,(,,(x) c B LP, so P E 9[ L]. To see that L is a local 

quasiuniformity, let x EX, VE L. Then for some n, NoCn, G I/; since N,(,,(x) is a 

neighborhood of x, we can find some m and (A, B) E G(m) such that x EA and 

B c No(,,(x). But since A is also a neighborhood of x, there is a p and an 

(A’, B’) E G(p) such that x’ EA’ and B’ CA. Since the G(k) are increasing, we 

may also assume m, n <p. If z E NGCPj 0 NcCP,(x) then for some y, (x, y>, 

(Y, z) E NGCPj. But then y E B’, so y EA; thus z E NcCP,(y) c B c NGCnj(~) c V(x), 
completing the proof. q 

Alternative proof of Theorem 2.2, (b) * (a): Suppose G is enclosing on X, 7 is 

the topology arising from G and both G and G* are c+-self-cocushioned pairbases. 

By the comment following Definition 2.1, we write G = lJ n E,G’(n> = 

U ntwG”(n), where the G’(n), G”(n) are increasing, each G’(n) is YCdG)- 
cocushioned, and each G”(n) is 9?dG*)-cushioned. By Lemma 1.5(e) there is an 

increasing pairbase {H(n)} for 9(dG) which is both YCdG)-cocushioned and 

YCdG*)-cushioned. Similarly obtain J(n) from G*, and let G(n) = H(n) U J(n)*. 
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G(n) is increasing and YCdG)-cocushioned by Lemma 1.5(c), and by the comment 
following Definition 2.1, G(n)* is YCdG*)-cocushioned. Thus the filters of 
subsets of XXX generated by {NoC,J and INo*(,,J are local quasiuniformities with 
countable bases, and YCdG) arises from the first, Y(dG*) from the second. Our 
proof is completed by showing that for each enclosing set H, NH* = N;l, so these 
two local quasiuniformities are inverse to each other. For this, simply note that if 
(x,y)~N~and(A,B)~H*,y~A,then(X-B,X-A)~HandypX-A,so 
xEX-B, DEB, thus(y, x>=NH*. 

4. Discussion and open questions 

A key question about the above characterization is whether it is topological. In 
particular, three issues arise: 

(a> it gives rise not to one topology, but to a bitopological space, 
(bl it uses pairs of neighborhoods, rather than single ones, much like a marked 

ruler rather than unmarked straightedge, 
Cc> it explicitly uses duality. 
I felt at one time that the first of these comments was definitive. However, the 

following, which is usually taken to be a purely topological characterization (see 
[31), also gives rise to a bitopological space: 

A topology arises from a quasimetric which is nonarchimedean (Vx, y, z, 
d(x, z> < max{d(x, y>, d(y, z)}) iff it arises from a a-interior-preserving base (a 
base which is a countable union of interior-preserving collections; sets with the 
property that arbitrary intersections from them are open). 

Notice first that a topology arises from a a-interior-preserving base iff it is 
a-Alexandroff, that is, the join of a countable set of Alexandroff topologies. ([13], 
in which this characterization of cT-interior-preserving base was introduced, also 
discusses an open problem to which our characterization of quasimetrizable spaces 
may be applicable.) Thus g = V g where gn is the collection of closed sets of TLEW n, 
Yn (a topology, since Yn is Alexandroff), is itself a a-Alexandroff topology 
uniquely determined by that base. 

Of course, this %C is not uniquely determined by the fact that 7 is a-Alexandroff, 
since 9 may be expressed many ways as a countable join of Alexandroff topolo- 
gies, but similarly, neither is the Y(G*) of the proof of Theorem 2.2. 

Issue (b) above is equally raised by the characterization of y-spaces (in [2]) as 
those arising from a a-cocushioned pairbase (with no dual condition). But issue (cl 
seems unique to the present characterization of quasimetrizability, and seems at 
the heart of bitopology. Whether our characterization of quasimetrizability is 
eventually seen as bitopological or topological, the following remains a key open 
question: 

In light of the usefulness of the Bing and Nagata-Smirnov characterizations of 
metrizability , find an appropriate weakening of their conditions which characterizes 
quasimetrizability (i.e., a “Bing-style” characterization of quasimetrizability 1. 



Which topologies are quasimetrizable? 107 

References 

[l] R.H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951) 175-186. 

[Z] P. Fletcher and W.F. Lindgren, Transitive quasi-uniformities, J. Math. Anal. Appl. 39 (1972) 

363-367. 
[3] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces (Marcel Dekker, New York, 1982). 

[4] R. Fox, On metrizability and quasi-metrizability, Manuscript. 

[5] G. Gruenhage, Generalized metric spaces, in: K. Kunen and J.E. Vaughan, eds., Handbook of 

Set-Theoretic Topology (North-Holland, Amsterdam, 1983) 423-501. 

[6] M. Henriksen and R. Kopperman, Bitopological spaces of ideals, in: General Topology and 

Applications (Marcel Dekker, New York, 1990) 133-141. 

[7] M. Henriksen and R. Kopperman, A general theory of structure spaces with applications to spaces 

of prime ideals, Algebra Universalis 28 (1991) 349-376. 

[8] J.K. Kelley, General Topology (Van Nostrand Reinhold, New York, 1955). 

[9] J.C. Kelly, Bitopological spaces, Proc. London Math. Sot. 13 (1963) 71-89. 
[lo] E. Khalimsky, R. Kopperman and P.R. Meyer, Computer graphics and connected topologies on 

finite ordered sets, Topology Appl. 36 (1990) 1-17. 

[ll] T.Y. Kong and E. Khalimsky, Polyhedral analogues of locally finite topological spaces, in: Genera1 

Topology and Applications (Marcel Dekker, New York, 1990) 153-164. 

[12] T.Y. Kong, R. Kopperman and P.R. Meyer, A topological approach to digital topology, Amer. 

Math. Monthly 98 (1991) 901-917. 

[13] T.Y. Kong, R. Kopperman and P.R. Meyer, Which spaces have metric analogs?, in: General 
Topology and Applications, Lecture Notes in Pure and Applied Mathematics 134 (Marcel Dekker, 

New York, 1991) 209-216. 

[14] R. Kopperman, First-order topological axioms, J. Symbolic Logic 46 (1981) 475-489. 
[15] R. Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988) 

89-97. 

[16] E.P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Sot. 17 (1967) 

241-256. 

[17] M.G. Murdeshwar and S.A. Naimpally, Quasi-Uniform Topological Spaces (Noordhoff, Gronin- 

gen, 1966). 

[18] J. Nagata, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City 

Univ. 1 (1950) 93-100. 

[19] S. Nedev, On generalized-metrizable spaces, C.R. Acad. Bulgare Sci. 20 (1967) 513-516. 

[20] L.J. Norman, A sufficient condition for quasi-metrizability of a topological space, Portugal Math. 

26 (1967) 207-211. 

[21] T.G. Raghavan and I.L. Reilly, Characterizations of quasi-metrizable bitopological spaces, J. 

Austral. Math. Sot. Ser. A 44 (1988) 271-274. 

[22] I. Reilly, Zero-dimensional bitopological spaces, Indag. Math. 35 (1973) 127-131. 

[23] M. Sion and G. Zelmer, On quasi-metrizability, Canad. J. Math. 19 (1967) 299-306. 

[24] Y.M. Smirnov, A necessary and sufficient condition for metrizability of a topological space, Dokl. 

Akad. Nauk SSSR N.S. 77 (1951) 197-200. 

[25] W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931) 675-684. 


