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Abstract

We study and generalize the duplication model of Pastor-Satorras et al. [Evolving protein interaction networks through gene
duplication, J. Theor. Biol. 222 (2003) 199–210]. This model generates a graph by iteratively “duplicating” a randomly chosen node
as follows: we start at t0 with a fixed graph G(t0) of size t0. At each step t > t0 a new node vt is added. The node vt selects an
existing node u from V (G(t − 1)) = {v1, . . . , vt−1} uniformly at random (uar). The node vt then connects to each neighbor of the
node u in G(t − 1) independently with probability p. Additionally, vt connects uar to every node of V (G(t − 1)) independently
with probability r/t , and parallel edges are merged. Unlike other copy-based models, the degree of the node vt in this model is not
fixed in advance; rather it depends strongly on the degree of the original node u it selected.

Our main contributions are as follows: we show that (1) the duplication model of Pastor-Satorras et al. does not generate a truncated
power-law degree distribution as stated in Pastor-Satorras et al. [Evolving protein interaction networks through gene duplication,
J. Theor. Biol. 222 (2003) 199–210]. (2) The special case where r=0 does not give a power-law degree distribution as stated in Chung
et al. [Duplication models for biological networks, J. Comput. Biol. 10 (2003) 677–687]. (3) We generalize the Pastor-Satorras et al.
duplication process to ensure (if required) that the minimum degree of all vertices is positive. We prove that this generalized model
has a power-law degree distribution.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A proteome network of an organism is a graph in which each node represents a protein and each edge represents an
interaction between a pair of proteins. Recent studies on the proteome network of the yeast Saccharomyces Cerevisiae
[28,33] suggests that the degree distribution is in the form of a power-law [19,30]. Power-law degree distributions
have previously been observed in a number of naturally occurring graphs such as the internet graph, the web graph,
peer-to-peer networks, etc. [1,5,11,13,17,21,22].
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The classical random graph models studied by Erdös and Rényi [16] (in which edges between pairs of nodes
are determined independently) do not have a power-law degree distribution. However, there are a number of recently
developed alternative random graph models which do generate power-law degree distributions; see for example Barabási
and Albert [5], Bollobás et al. [11], Watts [31], or Aiello et al. [1,2]. (See also the surveys by Albert and Barabási [4],
Bollobás and Riordan [9], Hayes [18], and Mitzenmacher [23] for more models and details.)

Among these models, many [11,8,13,21,22] are based on an iterative random graph generation process which adds
new nodes and/or edges to the graph in each iteration. The new node is connected to � of the existing nodes where � is
a fixed constant or an independent random variable. The way the number and the endpoints of these � edges are chosen
determines the specific graph generation model. For example, in the preferential attachment model the probability that
an existing node is connected to the newly created node increases with the degree of the node. Another example is
the uniform model in which the newly created node is connected to other nodes that are simply picked uniformly at
random.

The preferential attachment model dates back to Yule [34] and Simon [27]. It was proposed as a random graph
model for the web by Barabási and Albert [5], and their description was elaborated by Bollobás and Riordan [10] who
showed that with high probability the diameter of a graph constructed in this way was ∼ log t/ log log t—here t stands
for the time step and thus (is approximately) the number of nodes. Subsequently, Bollobás et al. [11] proved that the
degree sequence of such graphs does follow a power-law distribution. Attention has also been given to models where
the attractiveness of vertices fades over time, for example [14]. More recently Cooper and Frieze [13] gave a general
analysis of random graph processes revealing that many graphs generated by preferential attachment exhibit power-law
degree distributions. This analysis, and those of [3,15,22]; obtained graphs with a power-law parameter larger than 2
but smaller than 3 by using a graph generation model that allows edge insertion between existing nodes.

In a number of naturally occurring graphs with power-law degree distributions such as proteome networks, peer-
to-peer networks and in a limited way the web graph, the mechanism underlying the growth process seems to be
different from that in preferential attachment models. Rather, these networks seem to grow via node duplications. For
example, Ohno’s theory [24] of genome evolution states that the main driving force behind proteome growth is gene
duplication followed by point mutations. 1 In peer-to-peer networks, a new user typically chooses the servers used by
an existing node; similarly, new web pages tend to share content with related web pages. Possibly the first analysis of a
duplication-based random graph model is given in [22]; this model generates directed graphs with constant outdegree.
A more general version of this directed model was later analyzed in [13]. In both of these models the (out)degree of
the newly generated node is bounded by a constant and does not depend on the degree of the duplicated node.

A less constrained duplication-based random graph model where the degree of the newly generated node is not
bounded by a constant was recently introduced in [6,25,29]. In this model, at each iteration t , one existing node is
chosen uniformly at random and is “duplicated” with all its edges. Then, in a “divergence” move, (i) each existing edge
of the new node is deleted with probability q and (ii) a new edge is generated between the new node and every other
node with probability r/t . This last step is referred to as “mutation” by some authors (e.g. [20]).

The first analytical work on the above model was by Pastor-Satorras et al. [25] (henceforth the Pastor-Satorras
et al. duplication model) which suggested that its degree distribution is a “power law with exponential cut-off”. This
means that fk , the fraction of nodes with degree k among all nodes, is independent of time and is approximated by
fk = ck−b · a−k; here a, b, c are constants. However, the analysis in [25] makes a number of simplifying assumptions
in to get this result. For instance, it approximates the probability of generating a node with degree k by the probability
of duplicating a node with degree k + 1 only and subsequently deleting one of its edges.

An analysis of the degree distribution of the Pastor-Satorras et al. duplication model, for the special case that r = 0,
is given by Chung et al. [12]. Following [12], we will refer to this special case as the pure duplication model. This
model creates many singleton nodes, i.e. nodes that are not connected to any other node of the graph. Since a node
can get a new edge only if one of its neighbors is duplicated, a singleton will remain a singleton during the whole
graph generation process. The pure duplication model creates a network in which all non-singleton nodes form a single
connected component. In contrast to [25], Chung et al. suggest that the fraction of nodes with degree k is independent

1 There are graph generation models which are not based on node duplications that seem to better capture certain other properties of the yeast
proteome network; e.g. geometric graph generators [26] seem to better approximate the distribution of subgraphs with �5 nodes. The focus of
this paper is the degree distribution of the yeast proteome network and we only consider duplication-based network generators that aim to emulate
Ohno’s model of genome evolution.



G. Bebek et al. / Theoretical Computer Science 369 (2006) 234–249 241

of time and is a power-law distribution of the form fk = ck−b; here b is a function of q given by Eq. (1); values of
b�2 are possible for some q.

A general limiting analysis of the Pastor-Satorras et al. duplication model using generating functions is given by
Kim et al. [20]. This paper derives (1) and obtains the expected number of edges (Lemma 7). It also studies the
mean component size and threshold value of r for a giant component in the limit as q → 1. It finds that a giant
component exists for r > 1

4 and predicts a power-law component size distribution for the subcritical case r < 1
4 . The

precise power-law parameter is � = 1 + 2/(1 − √
1 − 4r).

1.1. Summary of our contributions

(1) We show that the degree distribution of the Pastor-Satorras et al. duplication model cannot be a power law with
exponential cut-off as stated in [25]; rather, it is a (regular) power law, provided r > 0 and 1 − q �0.58. (2) We show
that, for the pure duplication model (r = 0) the fraction of nodes with degree k cannot be independent of time and
cannot be a power-law distribution of the form fk = ck−b as stated in [12]. This is due to the fact that the fraction of
singletons increases with time in the pure duplication model. (3) We finally show that it is possible to slightly modify
the pure duplication model so that it does not generate any singletons and achieves a power-law degree distribution
consistent with the work of [12]. These are first results that establish power-law degree distributions for graph models
where the degree of a copied node is determined strongly by the degree of the original node.

1.2. Details of our results and the organization of the paper

We first show in Section 3 that the (expected) fraction of singletons generated by the pure duplication model (r = 0)

grows in time. In fact, the only limiting (time independent) solution is f0 = 1 and fk = 0 for all k > 0. Note that for
the case q = 0.5 the average degree of nodes in the pure duplication model does not change over time (see Lemma 1).
Together with the fact that the fraction of singletons increases in time, this implies that (i) the average degree of non-
singletons must increase in time and (ii) there is a single connected component of size o(t) with increasing average
degree. It is quite possible that this connected component of the network generated by the pure duplication model
exhibits a power law with parameter b�2, however this is difficult to establish.

In the rest of Section 3, we show that the degree distribution of the generalized duplication model (in fact, any
random model based on duplications) is not a “power law with exponential cut-off” as stated in [25]. We achieve this
by showing a bound for the maximum degree of the generalized duplication model and contrasting it with that of a
network which exhibits power law with exponential cut-off.

We also generalize the Pastor-Satorras et al. duplication model (in Section 2) so that each iteration has an additional
(optional) edge generation step. For this generalized duplication model we show in Section 4 that: (i) not too many
singletons are generated; (ii) the degree distribution of the nodes exhibit a power law, i.e. is of the form fk = ck−b.

Here, for p = 1 − q, the power-law parameter b is given by

1 = bp − p + pb−1. (1)

This equation holds irrespective of the model variant or the value of r . Similar results (with varying notation) are given
in [12] for the pure duplication model, and in [20] for the Pastor-Satorras et al. model. The equation is problematic,
in that b = 1 is always a solution, and for p�p∗ ∼ 0.58 it is the only solution [12]. We interpret this to mean that a
power-law degree distribution no longer applies for p�p∗. For p < p∗ there are two other solutions b1 > 1, b2 < 1.
Choosing the larger value b1, the power laws predicted by (1) take values less than 3 for p >

√
2 − 1 and less than 2

for 1
2 < p < p∗.

1.3. Summary of notation

We use t for the discrete time step, G(t) for the graph at step t , and C(t) for the largest component (where appropriate).
The vertex set V (t) is of size t , and vt the vertex added at step t . We use k for vertex degree, and fk for the expected
limiting proportion of vertices of degree k. The power-law parameter is b. The probability that an edge is retained on
duplication is p (i.e. (1 − �) in the Pastor-Satorras et al. model [25]) and q = 1 − p. The parameter r is from r/t , the
probability that a vertex of G(t) is chosen uniformly at random (uar) at step t + 1.
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2. Formal description of the duplication models

The focus of this paper is the duplication model considered in [12, 25], which grow iteratively in discrete time steps.
The model starts with an arbitrary connected network G(t0), of size t0. For t > t0, let G(t − 1) be the network at the
end of time step t − 1. At iteration t , exactly one new node, denoted as vt , is added to G(t − 1) as follows:

A node w is picked uniformly at random from G(t − 1), and w is “duplicated” to create the new node vt which is
initially connected to all the neighbors Nt−1(w) of w, but not to w itself. The edges initially incident to vt are then
updated in the following way:

Step 1. Duplication: Each edge e = (vt , u), u ∈ Nt−1(w) is independently deleted with probability q or retained
with probability p = 1 − q.

Step 2. Uar edge addition: Each node u of G(t − 1) is independently connected to vt with probability r/(t − 1),
where r is a non-negative constant of the process, and any parallel edges created are merged.

In the Pastor-Satorras et al. model, iteration t is completed at this point. In this paper we consider a possible further
uar edge addition step. The purpose of this step is to maintain connectivity of G(t), and optionally, to restrict the number
of the edges added during the uar step (put r = 0).

Version 1: Step 3. If vt has become a singleton at the end of the duplication move, it is connected to a1 �1 uniformly
chosen random nodes.

Version 2: Step 3. The vertex vt is connected to a2 �1 additional nodes chosen uniformly at random. This occurs
even if vt did not become a singleton at the end of the duplication move.

Thus in either version i = 1, 2, the minimum degree is at least ai . We remark that these additional edge insertions
(Step 3) are made after duplication (Step 1) and (in the case that r > 0) without regard to the number of edges inserted
by uar edge addition (Step 2). This allows us to choose the parameter r = 0 if we so wish, and yet maintain connectivity
of the graph G(t). Let �i , i = 1, 2 be the indicator for model Version i. We refer to the special case r + �1 + �2 = 0
as the pure duplication model, and the case where r + �1 + �2 > 0 as a generalized duplication model.

We now give a number of definitions relating to vertex degree which we use in our analysis. For the node vs , added
at step s, denote its degree (or expected degree if the context is clear) at time step t �s by ds(t). Let Fk(t) denote
the number of nodes of degree k at the end of step t and let F(t) = (F0(t), F1(t), . . .) be the degree sequence. Also
let Fk(t) = EFk(t) be the expected value, and fk(t) = Fk(t)/t the expected fraction of nodes of degree k. We say
a model has a power law degree sequence if we can find constants b, c > 0 such that fk(t) → fk as t → ∞ where
fk = (1 + O(1/k))ck−b. Finally let e(t) = |E(G(t))| be the number of edges in G(t) and e(t) = Ee(t).

3. A discussion on the properties of the Pastor-Satorras et al. duplication model

In what follows we assume that fk(t) → fk as t → ∞, i.e. there is a meaningful limiting distribution of the
proportional degree sequence. Given this assumption there are two further possibilities namely

∑
fk = 1 and

∑
fk < 1.

The second case, corresponds to the case where the limiting distribution is defective (f∞ > 0) which is usually identified
with the existence of a giant component. This occurs for example when p = 1 where the minimum vertex degree grows
linearly with t . It is easily shown (see Lemma 1) that the expected average degree in (e.g.) the pure duplication model
is of order t2p−1, so it is certainly the case that the solution is not defective for p < 1

2 . It is unknown at what value of
p the limiting distribution becomes defective.

We start by showing in Section 3.1 that the fraction of singletons in the pure duplication model grows with time in
such a way that fk(t) → 0 for k�1 and thus f0(t) → 1, is the only limiting solution compatible with

∑
k fk = 1.

For the particularly interesting case that p = q = 1
2 , we show that the expected number of non-singletons at time step

t is between O(
√

t) and O(t/ log log t). Thus, without some modification, the pure duplication model cannot have a
power-law degree distribution in the form Fk(t) ∼ ctk−b for any constants c, b.

Section 3.2 is on the analysis Pastor-Satorras et al. model. In [25], it is stated that the generalized duplication model
has a degree distribution following a “power law with exponential cut-off”; i.e. there exists constants a, b, c such that,
as t → ∞, we have fk(t) ∼ ck−ba−k for k → ∞. We show that this cannot be true by demonstrating that the
expected maximum degree of a graph with degree distribution in the form of a power law with exponential cut-off is
O(log t), whereas the generalized duplication model has an expected maximum degree of �(tp) for any combination
of r + �1 + �2 > 0.
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Fig. 1. Percentage of singletons in the pure duplication model as function of time (each curve is for a different value of p).
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Fig. 2. Average degree of non-singleton nodes in the pure duplication model as function of time (each curve is for a different value of p).

3.1. Properties of the pure duplication model

Let 0 < p < 1 be fixed. Assuming that the initial subgraph G(t0) is connected, then G(t) consists of a unique
connected component C(t), and isolated vertices (singletons). Initially, C(t0) = G(t0). Inductively, at step t , either
vt is a singleton; or, if vertex vt retains at least one edge during duplication, it will have chosen a vertex in C(t − 1)

to duplicate, and hence be connected to that component. The central question for this model are does f0(t) tend to 1,
i.e. does |C(t)|/t → 0, and if so, for which values of p?

As an illustration of the behavior of this model we first give some simulation results. In both cases below, the model
was run until 1,000,000 non-singleton nodes were created. It can be seen that convergence to the steady state is very
slow (if at all). The figures described below are at the end of the paper.

Fig. 1 shows the percentage of the singletons in the network over the time for different values of p. The plot uses a
linear scale on the y-axis (percentage of singletons) and a logarithmic scale on the x-axis (running time).

Fig. 2 depicts the average degree over time for different values of p. The average degree of the network increases
with time, and the larger the value of p, the larger is the increase.

We first prove a lemma giving the expected number of edges in the pure duplication model.
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Lemma 1. The expected total number of edges at step t satisfies

e(t) ∼ e(0)t2p.

Proof. The number of edges at time t + 1 in terms of the number of edges at time t is

E(e(t + 1) | e(t)) = e(t) + 1

t

∑
s � t

pds(t).

The second term is obtained by considering the possibility that each given node vs is duplicated at time t ; then pds(t)

would be the expected number of its edges retained. Because the sum of the degrees of all nodes is twice the number
of edges, we have, taking expectations again, that

e(t + 1) =
(

1 + 2
p

t

)
e(t)

which has a solution e(t) ∼ e(0)t2p on iterating the recurrence. �

Lemma 2. In the pure duplication model, the expected proportion of singletons, f0(t), is a non-decreasing function
of t and tends to a limit f0 �1. For all k�1, constant, if fk(t) tends to a limit fk , then fk = 0.

Proof. We have the following recurrence for singletons in the pure duplication model:

F0(t + 1) = F0(t) + ∑
k �0

Fk(t)q
k

t
.

Thus, writing Fk(t) = tfk(t) we have

(t + 1)(f0(t + 1) − f0(t)) = ∑
k �1

fk(t)q
k �0, (2)

and we see that f0(t + 1)�f0(t). As f0(t)�1 it follows that f0(t) → f0 �1 from below as t → ∞.
Suppose next that for some k�1, constant, fk(t) → fk > 0. Then

∑
j �1 fjq

j �fkq
k = c > 0. Thus there exists T

such that for t �T ,
∑

k �1 fk(t)q
k �c/2 > 0 and using (2)

f0(t + 1)�f0(t) + c

2(t + 1)
.

Iterating this we get

f0(t)�
c

2
log t/T + O(1/T ) + f0(T ),

i.e. f0(t) > 1 for t large enough, which is impossible. �

For k�1 constant, or tending to infinity more slowly than (log log t/ log(1/q)), this lemma preludes the existence
of power-law solutions fk ∼ ck−b, as suggested in [12]; or indeed any limiting solution other than fk = 0. We cannot
exclude non-limiting degree distributions by this argument. For example, it is possible that for some values of p > 1

2 the
connected component C(t) is a giant component of order t whose minimum degree kmin → ∞, or that the proportion
of vertices of any fixed degree 1�k� t tends to 0. From Lemma 1, the expected number of edges in G(t) is of order
t2p. Suppose that for some p > 1

2 , |C(t)| is of order t . Then the average degree of the connected component C(t) is
t2p−1 → ∞.

For p < 1
2 on the other hand the average degree of the connected component C(t) is t2p−1 → 0. Combining this

with the previous lemma, it is clear that f0(t) → 1.
For the interesting case that p = 1

2 , it is possible to obtain a tighter estimate on |C(t)|, and thus the proportion of
singletons in G(t). Let F+(t) = |C(t)| be the number of non-singleton nodes at time t and let F+ = EF+.

Lemma 3. For p = 1
2 , there are constants c1, c2 > 0 such that c1

√
t �F+(t)�c2t/ log log t .
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Proof. We have the following recurrence:

F+(t + 1) = F+(t) + 1

t

∑
k �0

Fk(t)(1 − (1/2)k). (3)

Thus

F+(t + 1) = F+(t) + F+(t)

t
− F+(t)

t

∑
k �1

Fk(t)

F+(t)

1

2k
. (4)

As F1(t)�F+(t), one can easily check F+(t)�F+(0)
√

t giving the lower bound.
Now let g(k) = 1/2k , which is convex and thus for any set of �k for which

∑
�k = 1, we must have

∑
�kg(k)�

g(
∑

k�k). Now pick �k = Fk(t)/F
+(t). We have

∑
kFk(t) = 2e(t) = 2e(0)t . Thus

∑
k �1

Fk(t)

F+(t)

(
1

2

)k

�
(

1

2

)2e(t)/F+(t)

. (5)

By substituting (3) into (2) and using e(t) = e(0)t we get

F+(t + 1)�F+(t) + F+(t)

t

(
1 −

(
1

2

)2e(0)t/F+(t)
)

.

This is only satisfied if F+(t)�c2t/ log log t . This can be verified as follows. Let c2 = 4e(0) log 2. Either F+(t)�
c2t/ log log t or if not we can substitute this lower bound into the exponent on the right-hand side and iterate the
recurrence on t to obtain a contradiction. �

As previously mentioned, Lemma 1 proves that the expected number of edges e(t) is e(t) = ct2p and consequently
the expected average degree e(t)/t = 2ct2p−1. Thus, for p < 0.5 the average degree decreases over time and for
p > 0.5 it increases. Only for p = 0.5 the average degree remains constant; however, the proportion of singletons is
�1 − O(1/ log log t) by Lemma 3.

Observation 1. The power-law exponent b in (1) is given by the solution of 1 = bp − p + pb−1 and has the value 2
when p = 1

2 . A power-law degree sequence with parameter b = 2 is incompatible with e(t) = e(0)t .

Under the assumption of a power-law degree distribution at p = 1
2 , we have Fk(t) ∼ ck−2t and

e(t) = ct

2

∑
k �1

(
1 + O

(
1

k

))
k−1,

which diverges unless the maximum degree k∗ is a constant, contradicting the assumption of a power-law degree
sequence.

It is however possible that a power law with exponent b = 2 holds for the connected component C(t) when p = 1
2 .

We see that
∑t

k=1 k−1 = O(log t) which is compatible with e(t) = e(0)t provided |C(t)| = O(t/ log t), which is in
general accordance with the results of Lemma 3. It is plausible therefore that for p > 1

2 the results of [12] hold for the
component C(t), although we cannot establish this at present.

3.2. Properties of the Pastor-Satorras et al. duplication model

We next consider the degree sequence of the Pastor-Satorras et al. duplication model [25]. A definition of this model
is given in Section 2 (Steps 1,2). The next lemma shows that the degree sequence of this model cannot be a power law
with exponential cut-off as was suggested in [25].

Lemma 4. Let a, b, c > 0 be constants. The degree distribution of the Pastor-Satorras et al. duplication model cannot
be in the form Fk(t) ∼ ctk−ba−k as stated in [25].
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Proof. Denote by kmax, the expected maximum degree in G(t). Assume an exponential cut-off i.e. Fk(t) ∼ tck−ba−k .
Then

∑
k �k0

Fk(t) = o(1) for k0 > log t/ log a, and so kmax = O(log t/ log a).
On the other hand, consider the expected degree of the node vs at time t +1, which is a non-decreasing function of t .

Even in the worst case situation (r = 0) we have

ds(t + 1) = ds(t) + ds(t)

t
p (6)

as the degree of vs can only increase if one of its neighbors is picked at time t and the edge is retained. Thus

ds(t + 1) = ds(t)
(

1 + p

t

)
= ds(s)

(
1 + p

s

)
·
(

1 + p

s + 1

)
. . .
(

1 + p

t

)
.

Since log(1 + x) = x − O(x2) we have

exp

(
t∑

�=s

log(1 + p/�)

)
∼ exp

(
p

t∑
�=s

1/�

)
= ep log(t/s)

which implies that ds(t + 1) = �(ds(s)(t/s)
p) and that kmax = �(tp) contradicting the claim. �

The question of the correct power-law degree distribution for the Pastor-Satorras et al. model is resolved in Section 4
of this paper. Before considering this further, we need to prove that for r > 0 there are no degenerate limiting solutions
of the form f0 = 1, fk = 0, k�1 for the Pastor-Satorras et al. model.

Lemma 5. Assuming
∑

fk = 1, for any r > 0 constant, the Pastor-Satorras et al. model does not have a degenerate
limiting solution of the form f0 = 1, fk = 0, k�1.

Proof. We have the following recurrence for the expected number of singletons:

F0(t + 1) = F0(t) + ∑
k �0

Fk(t)

t
qk
(

1 − r

t

)t − r

t
F0(t).

Assuming the existence of a limiting solution Fk(t) = fkt (after taking limits) and noting that 1 + r − e−r > 0 for
r > 0, we have

f0 = e−r

1 + r − e−r

∑
k �1

fkq
k,

and thus f0 > 0. If f0 = 1 then
∑

k �1 fkq
k = 0, giving a contradiction. �

4. The degree distribution of the generalized duplication model

In this section we show that the degree distribution of the generalized duplication model is a power law. We start
with stating the expected maximum degree in the generalized duplication model.

Lemma 6. The expected maximum degree of generalized duplication model at time t is �(tp).

It was proved in Lemma 4 that the expected maximum degree in the pure model is �(tp). The maximum degree in the
generalized model stochastically dominates the maximum degree in the pure duplication model. The formal coupling is
to separate the edges E1(v), E2(v) at any node v into those derived entirely by duplication, and those arising generally
in the graph by a u.a.r. (uniform at random) edge addition (possibly at some ancestor node). The expected maximum
degree for E1(v) is that of the pure duplication model, which is �(tp).

We start with the recurrence relation that governs the degree distribution in the pure duplication model.

Fk(t + 1) =
(

Fk(t) − pkFk(t)

t

)
+ p(k − 1)Fk−1(t)

t
+ ∑

j �k

Fj (t)

t

(
j

k

)
pkqj−k. (7)
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The first term stands for the expected number of nodes with degree k at time t which still have degree k at time t + 1.
The second term stands for those nodes with degree k − 1 at time t which will have degree k in time t + 1 due to the
duplication of one of the neighbors. The third term gives the probability that the degree of the duplicated node is k.

The standard analysis of these models in e.g. [12, 20] writes Fk(t) = fk(t)t and assumes that fk(t) → fk , the
limiting solution. This is problematic as we cannot offer a formal proof that such convergence occurs. However, on the
assumption that the limit exists we provide an analysis.

The generalized duplication model fixes the problem in pure duplication model, that the proportion of singletons
f0(t) can tend to 1. This is achieved by inserting a random edge to each new node which becomes a singleton after
the deletion process. Indeed we now obtain the required power-law degree sequence. The Pastor-Satorras et al. model
obtains similar results by choosing r > 0 to ensure that f0 < 1 (see Lemma 5).

Theorem 1. Provided r + �1 + �2 > 0, the generalized duplication model has a solution fk, k�1 of the form fk =
(1 + O(1/k))ck−b. The power-law parameter b is the largest solution of 1 = pb − p + pb−1. It is independent of the
value of r, �1, �2 in the model.

Proof. Let �i be the indicator for version i = 1, 2 (the enhanced versions of our model), so that, as r + �1 + �2 > 0 we
have �1 + �2 �1 for r > 0 and �1 + �2 = 1 for r = 0. Let ai �1 be the number of uar edges added in version i = 1, 2.
Let B(t, r/t; j) = (

t
j

)
(r/t)j (1 − r/t)t−j . The recurrence for Fk(t) can be written as follows:

Fk(t + 1) = Fk(t) + p(k − 1)

t
Fk−1(t) − pk

t
Fk(t) +

(
r

t
+ a2�2

t

)
(Fk−1(t) − Fk(t))

+a1�1

t
(Fk−1(t) − Fk(t))

∑
j �1

Fj (t)

t
qj + ∑

L�k−j−a2�2

∑
j �0

FL(t)

t

(
L

k − j − a2�2

)

×pk−j−a2�2qL−(k−j−a2�2)B(t, r/t; j).

The first line of this recurrence equation is identical to the first few terms of the recurrence Eq. (7) for the pure duplication
model. The second line gives the expected changes deriving from u.a.r. edge insertion. This occurs with probability
r/t at each node in the generalized duplication model. Similarly, the expected number of edges at a node is a2�2/t in
Version 2. The third line is for Version 1, and the fourth line is the degree of the duplicated node. The number of u.a.r.
edges at the new node arising from the r/t effect is B(t, r/t; j).

Replacing Fk(t) by fkt , writing � = ∑
j �1 fjq

j we find

0 = fk(−1 − kp − r − a1�1� − a2�2) + fk−1((k − 1)p + r + a1�1� + a2�2)

+ ∑
L�k−j−a2�2

∑
j �0

fL

(
L

k − j − a2�2

)
pk−j−a2�2qL−(k−j−a2�2)B(t, r/t; j).

Substituting fj = (1 + O(1/j))cj−b, multiplying through by kb we obtain

0 = (−1 − kp − r − a1�1� − a2�2) + kb

(k − 1)b
((k − 1)p + r + a1�1� + a2�2) + O(1/k) (8)

+ ∑
L�k−j−a2�2

∑
j �0

kb

Lb

(
L

k − j − a2�2

)
pk−j−a2�2qL−(k−j−a2�2)B(t, r/t; j). (9)

Note first that(
k

k − 1

)b

= 1 + b

k
+ O

(
1

k2

)
,

so that the right-hand side of (8) evaluates to −1 − p + bp + O(1/k).
For any constant b > 0, and any J, K we have(

J

J − K

)(
K

J

)b

=
(

1 + O

(
1

K + 1

))(
J − b

J − K

)
,
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see e.g. [12] for details. Thus(
k

L

)b (
L

k − j − a2�2

)
=
(

k

k − j − a2�2

)b (
k − j − a2�2

L

)b (
L

L − (k − j − �2)

)

=
(

1 + O

(
j

k

)
+ O

(
1

k − j − a2�2 + 1

))(
L − b

L − (k − j − a2�2)

)
.

Fix k − j − a2�2 �0, and let l = L − (k − j − a2�2). Thus

∑
l �0

(
l + k − j − a2�2 − b

l

)
ql = 1

(1 − q)k−j−a2�2−b+1
.

Summing over j �0 we have
∑

B(t, r/t; j) = 1 so the term (9) is (1 + O(1/k))pb−1 and we find that b is the
solution of

bp − p + pb−1 = 1. �

The theorem is true irrespective of the version selected (if either) and the value of r, �1, �2 provided that r +
�1 + �2 > 0. We remark that choosing r > 0, �1, �2 = 0 gives the degree distribution for the Pastor-Satorras et al.
duplication model, and that this is independent of the value of r . This result was obtained in [20], as was the equation
bp − p + pb−1 = 1 for b.

The next lemma gives the expected number of edges in the generalized duplication model. It is similar to Lemma 1
for the pure duplication model for p > 1

2 but differs for p� 1
2 as the uar step of the process ensures that the expected

number of vertices with positive degree is linear. As usual, the results for the Pastor-Satorras et al. duplication model
are obtained as a special case (set �1, �2 = 0).

Lemma 7. Let e(t) be the expected number of edges at step t . Let � = r + a1�1� + a2�2, then provided � > 0

e(t) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�

1 − 2p
t, p < 1/2,

� t log t, p = 1/2,(
e(0) + �

2p − 1

)
t2p, p > 1/2.

Proof. We have

e(t + 1) = e(t) + r + a1�1� + a2�2 +∑
k

pkFk(t)

t
,

where
∑

kFk(t) = 2e(t). The simplest approach is to approximate the recurrence by the differential equation e′(t) =
2pe(t)/t + �, obtain the solution, and then check the validity by direct substitution. �
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