
Precise Nanometer Localization Analysis for Individual
Fluorescent Probes

Russell E. Thompson, Daniel R. Larson, and Watt W. Webb
Cornell University, School of Applied and Engineering Physics, Ithaca, New York 14853 USA

ABSTRACT Calculation of the centroid of the images of individual fluorescent particles and molecules allows localization
and tracking in light microscopes to a precision about an order of magnitude greater than the microscope resolution. The
factors that limit the precision of these techniques are examined and a simple equation derived that describes the precision
of localization over a wide range of conditions. In addition, a localization algorithm motivated from least-squares fitting theory
is constructed and tested both on image stacks of 30-nm fluorescent beads and on computer-generated images (Monte Carlo
simulations). Results from the algorithm show good agreement with the derived precision equation for both the simulations
and actual images. The availability of a simple equation to describe localization precision helps investigators both in assessing
the quality of an experimental apparatus and in directing attention to the factors that limit further improvement. The precision
of localization scales as the inverse square root of the number of photons in the spot for the shot noise limited case and as
the inverse of the number of photons for the background noise limited case. The optimal image magnification depends on the
expected number of photons and background noise, but, for most cases of interest, the pixel size should be about equal to
the standard deviation of the point spread function.

INTRODUCTION

The resolution of a visible light microscope is commonly
taken to be about �/2 � 250 nm (James, 1976), with any
sparse objects smaller than this dimension appearing in the
microscope as diffraction-limited spots. Although the de-
tails within a spot are not resolvable, the center of the spot,
and hence the location of the object, can be determined to a
much greater precision. In cases where the image being
viewed consists of a collection of sparse, punctate objects, it
is therefore possible to determine the relative positions of
the objects to a precision much better than the wavelength
of light, and, in a sense, escape limitations on the resolution.

Particle localization and tracking techniques have been
used largely in the study of receptor diffusion on cell
surfaces. Barak and Webb (1981, 1982) pioneered the use of
fluorescent particle tracking in the study of diI-LDL tagged
low-density lipoproteins receptors on internalization-defi-
cient human fibroblast cells. Gross and Webb (1986, 1988)
used similar techniques to analyze the clustering and mo-
bility of low-density lipoprotein receptors. This work was
later enhanced by Ghosh and Webb (1994) by the develop-
ment of automated localization and tracking algorithms and
the extensive application of these methods to molecular
motions on living cell surfaces. In more recent work, par-
ticle tracking was used to observe anomalous diffusion in
major histocompatibility complex class 1 molecules in the
plasma membrane of HeLa cells (Smith et al., 1999), and
extended domains (corrals) were observed restricting the
diffusion of band 3 proteins in erythrocyte ghosts (Tomi-

shige et al. 1998). Single-particle tracking has now been
extended to dye molecules in model membranes (Schutz et
al., 1997; Schmidt et al., 1996) and individual proteins in
solution and in cells (Kubitscheck et al., 2000; Goulian and
Simon, 2000). The development of new techniques, such as
the use of astigmatic optics to study three-dimensional
diffusion (Kao and Verkman, 1994) and the combination of
particle tracking with optical tweezers (Edidin et al., 1991;
Sako et al. 1998; Peters et al., 1999) promises to bring new
insight into the dynamics of cell surface receptors. Reviews
of the field are given by Cherry et al. (1998) and Saxton and
Jacobson (1997). In addition, Cheezum et al. (2001) have
written a comparison of four algorithms used in particle
tracking.

Analysis of the trajectories of individual cell surface
molecules has revealed a general anomalous subdiffusion
phenomenon in which the mean square trajectories of mo-
lecular displacements appear to grow as a power law in time
with an exponent significantly less than unity, the value
expected for conventional Brownian diffusion (Ghosh and
Webb, 1994; Feder et al. 1996). Recent experiments have
suggested that this anomalous subdiffusion may be ubiqui-
tous in biological materials—thus renewing interest in mea-
suring this phenomenon (Schwille et al., 1999; Brown et al.,
1999).

The localization analysis used in particle tracking de-
pends on the fact that, although the size of the observed
object is limited by the resolution of the microscope, the
center of the object can be determined arbitrarily precisely,
given a sufficient number of photons (N) in the spot (Bo-
broff, 1986). The two important categories of noise are the
shot noise of the photons in the spot and the background
noise created by out-of-focus fluorescence, charge coupled
device (CCD) readout noise, dark current, and other factors.
For shot noise, the precision of localization scales as N�1/2,
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whereas, for background noise, the precision scales as N�1.
Thus, at low light levels, it becomes more important to
minimize the background noise. An equation is derived in
this paper that can be used to predict the precision of
localization for a wide range of circumstances. This analysis
also provides the basis for a robust computational algorithm
for single-particle localization.

MATERIALS AND METHODS

All measurements were made using a laser scanning microscope consisting
of a Bio-Rad 1024 confocal scanbox (Bio-Rad, Hercules, CA) attached to
a Zeiss Axiovert 135 microscope (Zeiss, Jena, Germany). A linearly
polarized 488-nm argon laser line was used to excite 30-nm-diameter
orange beads (530/560 excitation/emission, Molecular Probes, Eugene,
OR). The beads adhered to the coverslip and remained immobile through-
out the experiment. The microscope was operated with the confocal iris
fully open (8 mm), because there were no significant out-of-focus sources
of fluorescence. The zoom level of 4, in combination with the 40�
objective (Zeiss Fluar, 1.3 NA oil immersion), resulted in a pixel size of
130 nm. At this zoom setting, the standard deviation of the point spread
function was 1.6 pixels, corresponding to a spot size of 208 nm. Thus the
fluorescent spots were spread over only a small number of pixels.

The microscope was operated in photon-counting mode. The gain
calibration of the microscope was checked by imaging a rhodamine solu-
tion at high zoom and varying the confocal iris to produce images of
different brightness. The variance of the pixel values in each image was
then plotted versus the mean value and fitted with a straight line to find the
calibration factor (pixel value/detected photons). The value found (0.93)
differed little from the expected value of 1 for photon-counting mode.

Sets of single-scan images were acquired (typically 120 images/set),
with each image within a set looking at the same area on the microscope
slide. The images were fit off-line using custom programs written in Rlab
(Ian Searle, http://rlab.sourceforge.net), a matrix programming language
similar to Matlab (The Mathworks, Natick, MA). Although a simplified
theoretical analysis predicts an Airy disk for the point-spread function
(Saxton and Jacobson, 1997), a Gaussian is mathematically more tractable,
and the differences between the two are minor in practice. For this reason,
a Gaussian was used for the point-spread function throughout this paper.

Two fitting algorithms were used. The first was a full least-squares fit
to a Gaussian distribution that incorporated both photon-counting noise
from the particle being measured and a general background noise (see also
Cheezum et al., 2001). Both the position and the number of photons in the
spots were fitted. The second, termed “Gaussian mask,” is a simplified
technique similar to a centroid algorithm. It is equivalent to a least-squares
fit to a Gaussian distribution, incorporating only the background noise and
ignoring photon-counting noise that originates from the particle.

The Gaussian mask fitting algorithm was derived from a simplified
least-squares analysis and is intermediate in complexity between the simple
centroid-based algorithm and a full nonlinear least-squares fit. Consider a
one-dimensional pixel array where i and j are the indices of the pixel, Sij is
the signal value of that pixel, and Nij is the expected value from a Gaussian
distribution with a width s and centered at x0, y0 defined in dimensions of
pixels. Briefly, the �2 sum for a Gaussian fit is minimized, resulting in the
equations,

0 �
d

dx0
� �Sij � Nij�

2 (1)

� � Sij�i � x0�Nij � � �i � x0�Nij
2, (2)

where

Nij � exp��
�i � x0�

2

2s2 �
� j � y0�

2

2s2 �.

The estimated error �i in the �2 expression was taken to be independent of
x0. The second sum in Eq. 2 is approximately equal to zero by odd
symmetry, resulting in the implicit equation,

x0 �
� iSijNij� SijNij

, (3)

for the position of the particle. The form of the above equation is very
similar to the centroid calculation commonly used in particle tracking. The
position x0 is the average of the pixel coordinates weighted by the number
of photons in each pixel, but with a mask Ni that is smooth instead of binary
and equal to the point-spread function of the imaging apparatus. Because
the point-spread function in a pixelated imaging device is not strictly a
Gaussian distribution, but instead a Gaussian distribution integrated over
each pixel, we chose to use a Gaussian integrated over each pixel as the
mask Ni. Because the value of the mask Ni depends on x0, the calculation
for x0 in Eq. 3 was iterated until it either converged or 200 iterations
occurred. After the location of the particle was found, the estimated total
number of photons in the spot N was calculated according to

N �
� SijNij� NijNij

. (4)

In general, if the number of photons N found after the fitting procedure was
less than 25, then the spot was discarded as an artifact.

Candidates for spots were found by first subtracting the mean pixel
value from the image and then finding all pixels greater than a threshold
value (typically 8 standard deviations away from the mean). For each pixel
above threshold, a surrounding region of the image was cut out and passed
to the fitting routine described above. The resulting list of spot locations
was culled to eliminate cases in which the same spot was found twice, as
can happen due to multiple pixels in the spot being above threshold.

The spots found in the images were assembled into trajectories by first
assembling a master list of all found spot locations, culling the list by
removing less bright spots that were within ten pixels of a brighter spot,
computing a distance matrix between the spots in each image and the
master list, and matching spots in the order of proximity. Standard devia-
tions and means of x, y, and N were computed for each trajectory. To
remove trends in the data caused by stage drift or photobleaching, standard
deviations were calculated by taking the standard deviation of the differ-
ences between consecutive points and dividing by 21/2. This procedure for
measuring the localization precision is similar to computing the standard
deviation of the distance between two different spots and dividing by 21/2

(Gelles et al., 1988), but instead uses the distance between the same spot
measured on two separate occasions.

Monte Carlo results for the precision of localization were generated by
computing a large number of images with random positions, fitting each
image, and computing the statistical errors in the fits. Images were formed
by calculating the statistical average intensity of a Gaussian intensity
distribution integrated over a square pixel, replacing the average with a
random number generated from the Poisson distribution of the same
average to simulate photon-counting noise, and adding a Gaussian random
number with standard deviation of b to simulate background noise.

THEORY

In the following calculations, we derive expressions for the
localization precision in two limiting cases based on the
idea of least-squares fitting (Bobroff, 1986). For simplicity,
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the given analysis is limited to one dimension, because the
extension to multiple dimensions is straightforward. As
mentioned earlier, we chose to simplify the analysis by
fitting to a Gaussian over alternatives such as an Airy
function because recorded fluorescence images are rarely
precise enough to distinguish between these two alterna-
tives. The photon shot noise-limited case occurs when the
noise in each pixel is dominated by photons originating
from the particle being localized. The background noise-
limited case occurs when the noise is caused by other
sources. Common sources of background noise include
readout error, dark current noise, extraneous fluorescence in
the microscope (caused for example by dust), and cellular
autofluorescence.

The photon noise-limited case is conceptually simple.
Each photon collected in the image gives a measure of the
position of the object, and the position error of each mea-
surement is the same as the standard deviation of the point-
spread function of the microscope. The best estimate of the
position is then given by the average of the positions of the
individual detected photons, with an error given by the
common statistical formula for the standard error on the
mean,

���x�2	 �
s2

N
, (5)

where �x is the error in localization, s is the standard
deviation of the point-spread function (Gaussian or other-
wise), and N is the number of photons collected.

More complexity is introduced by pixelation noise, or the
increase in error due to the finite size a of the pixels in the
image. Pixelation noise arises from the uncertainty of where
the photon arrived in the pixel. The extra noise adds to the
uncertainty of each individual photon, and hence can be
added in quadrature to yield the equation,

���x�2	 �
s2 � a2/12

N
, (6)

where a is the size of the pixel, and when s 
 a. The factor
a2/12 is the variance of a top-hat distribution of size a.
Pixelation noise thus increases the apparent size of the spot.

Background noise, which occurs when detected photons
do not necessarily originate from the particle, makes the
analysis more complicated. We start from the criterion of
least-squares fitting, that the sum of squared errors,

�2�x� � � �yi � Ni�x��2

�i
2 , (7)

is minimized, where yi are the actual pixel counts measured,
Ni(x) are the expected numbers of counts from a particle
located at x, and �i are the expected uncertainties in the
counts. A subscript i is used to indicate the number of the
pixel. The expected uncertainty �i is given by the sum of the

uncertainties due to photon-counting noise and background
noise b,

�i
2�Ni�x� � b2, (8)

where the variance of the photon-counting noise is equal to
the expected number of photons. Note that this expression
assumes that the background noise is constant across the
region of the spot being localized.

The condition for the minimum, d�2/dx � 0, gives an
equation for the measured position x in terms of the counted
photons in each bin. Expanding Ni(x) around the actual
particle position x0, collecting terms to first order in �x �
x � x0, and assuming that the errors in counted photons are
relatively small, gives the equation,

�x � �

� �yiN�i
�i

2 �1 �
�yi

2�i
2�

� N �i
2

�i
2 �1 �

�yi

�i
2 � (9)

� �

� �yiN�i
�i

2

� N�i
2

�i
2

(10)

where N�I is the derivative of Ni evaluated at x0, and �yi �
Ni(x0) � yi. By squaring Eq. 10 and calculating the expec-
tation value, the mean square error can be shown to be

���x�2	 �
1

� �N�i
2/�i

2�. (11)

This expression can be evaluated in the two limits of photon
noise or background noise by the approximation of

Ni �
N

�2� s
e�i2/2s2, (12)

and the replacement of the sum in Eq. 11 with an integral.
For the case of photon noise, the integral simplifies to Eq. 5
above. For the case of pure background noise, we get

���x�2	 �
4�� s3b2

aN2 , (13)

where the pixel size a has been inserted to make the units
correct. Pixelation noise is not observed in Eq. 13 because
the substitution of a sum with an integral has implicitly
assumed the pixel size to be infinitesimal. However, it will
be shown later that, in practice, the pixel size should be
around the spot size, where the spot size is defined as the
standard deviation of the point-spread function distribution.
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The two expressions for the limiting cases of photon-
counting noise and pixelation noise, and background noise
can be combined into one equation,

���x�2	 �
s2 � a2/12

N
�

4�� s3b2

aN2 , (14)

that is valid at each limit and provides an easy but approx-
imate answer in between these two limits. Numerical inte-
gration of Eq. 11 combined with Eq. 12 shows that the
equation above underestimates the true error by 8% in the
transition region (10% for the two-dimensional case de-
scribed below). It can be seen that the uncertainty falls as
1/N for background noise and as 1/N for photon-counting
noise. This gives rise to a transition point,

Nt �
4�� s3b2

a�s2 � a2/12�
. (15)

The localization of spots with fewer numbers of photons
will be dominated by background noise, whereas the local-
ization of spots with greater numbers of photons will be
dominated by photon-counting noise.

Repeating the above analysis with a derivative taken with
respect to N instead of x, gives an error for the estimated
total number of photons (or the integrated intensity) in the
spot,

���N�2	 � N �
2�� sb2

a
. (16)

The photon-counting noise results in the expected counting
error on the total number of photons, whereas the back-
ground noise produces a floor at low intensities.

The above results were calculated only for one-dimen-
sional localization, but it is straightforward to generalize to
two-dimensional localization. The sum �2 stretches over
two indices, giving a two-dimensional integral to evaluate.
The result is

���x�2	 �
s2 � a2/12

N
�

8�s4b2

a2N2 (17)

for the uncertainty in each dimension, with a transition point
of

Nt �
8�s4b2

a2�s2 � a2/12�
. (18)

The uncertainty in the total number of counts in two dimen-
sions is given by

���N�2	 � N �
4�s2b2

a2 . (19)

RESULTS

Theory

Figure 1 presents the theoretical results for the dependence
of the localization precision in two dimensions on the total
number of detected photons (Eqs. 17 and 19). The localiza-
tion precision and the photon-counting precision are calcu-
lated for a spot size (s) and pixel size (a) of unity. The
background noise values are 0, 1, 2, 5, and 10 detected
photons. The spatial localization precision is shown in Fig.
1 A. As expected, at high photon numbers, the localization
precision approaches Eq. 5 with a 1/N power law, the
limiting value when background noise becomes negligible.
At low photon numbers, the noise is dominated by the
background and begins to approach a 1/N power law. Plots
were terminated at the low signal point, where the peak
intensity of the spot would be twice the background noise,
at which point a spot becomes difficult to observe due to the
noise. The transition between the two regimes occurs when
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FIGURE 1 Theoretical results for the (A) localization precision �xrms

and (B) intensity uncertainty �Nrms are plotted as a function of the total
number of photons detected N for background noise b � 0, 1, 2, 5, 10
photons. Values plotted are the result of a numerical integration of Eq. 11
combined with Eq. 12. The approximation Eq. 14 gives values that are
lower than the numerical integration in the transition region by 10% and
5% for �xrms and �Nrms, respectively. The pixel size a and the spot size s
are both unity.
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the photon-counting noise is roughly equal to the back-
ground noise, or when N � 8�s2b2/a2.

Corresponding results for the uncertainty in the total
number of photons are shown in Fig. 1 B. Again, the result
at high photon numbers is given by the photon-counting
noise N. At low photon numbers, the noise is dominated
by background, and hence the uncertainty approaches a
plateau independent of the number of photons detected.

Gaussian mask fits

The theoretical predictions were compared to the experi-
mental precision obtained by fitting artificially generated
data (Monte Carlo simulations) and actual images of fluo-
rescent beads. Figure 2 shows a set of images of a 30-nm
fluorescent bead that illustrates the changes in image quality
with increasing numbers of photons. Images with different
numbers of photons were created by accumulating, offline,
varying numbers of frames from a time-series stack of a
single bead. The background noise was sufficiently low in
each frame that it remained negligible in the accumulated
images.

Figure 3 A shows the localization precision for the Gauss-
ian mask algorithm plotted versus the total number of pho-
tons in a spot for a Monte Carlo simulation (dashed line),
bead images (circles), and the theoretical precision derived
from Eq. 17 (solid line). Figure 3 B shows the correspond-
ing results for the uncertainty in the total number of photons
for the simulation (dashed line), experimental data (circles),
and the theoretical precision derived from Eq. 19 (solid
line). The theoretical precision and Monte Carlo simulations
used a background noise of b � 0.7 photons, a spot size of
s � 208 nm, and a pixel size of a � 130 nm, which were
chosen to match the values from the bead images.

As can be seen in Fig. 3, A and B, the uncertainty in the
Gaussian mask algorithm is about 30% greater than the
localization uncertainty predicted by the theory, for both the
Monte Carlo simulations and the actual image data.

Figure 4 shows the theoretical (solid line) and Gaussian
mask Monte Carlo results (circles) for the localization error
as a function of the pixel size for a 100-photon spot. The
dashed line parallels the theoretical result with an additional
30% error as observed in Fig. 3 A. Good agreement between
the theory with the added 30% error and the Monte Carlo
results is seen at the smaller pixel sizes, where the signal is
decreased compared to the background noise as a result of
spreading the spot over a larger number of pixels. Note that
our treatment of background noise as a property of the pixel
is appropriate if the background noise is caused, for exam-
ple, by CCD readout noise. For background noise caused by

FIGURE 2 A series of images of a fluorescent bead illustrates the
increase in image quality with larger numbers of photons N in the spot.
Images with larger N were constructed by accumulating off-line either 2, 4,
8, 16, or 32 images. The number of photons N was estimated with the
fitting program as described in Methods.
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FIGURE 3 Results from tracking fluorescent beads (circles) and com-
puter-generated images (dashed line) compare well with the theoretical
prediction of Eqs 17 and 19 (solid line). Bead trajectories were generated
by passing a time series stack of 120 images through the fitting program.
To compensate for drift in the microscope, the uncertainties (A) �xrms and
(B) �Nrms were calculated as the standard deviation of the difference series.
This difference series is then divided by 2 to account for the propagation
of error. The theoretical precision and Monte Carlo simulations use a
background noise of b � 0.7, a spot size of s � 208 nm, and a pixel size
of a � 130 nm. Both bead and computer-generated images show an excess
noise of 30%, which is likely due to the absence of photon-counting noise
in the derivation of the fitting algorithm.
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out-of-focus fluorescence, in contrast, the localization pre-
cision will be virtually unchanged as the pixel size is made
smaller. At larger pixel sizes, the theory systematically
underestimates the localization error because it only takes
the first order into account and neglects the fact that the
error must become a/12 independent of N when a 

 s.
The minimum in the curve, however, is accurate at (a/s)4 �
96�b2/N.

An important characteristic of a fitting algorithm is that it
shows no systematic deviations of either the localization
precision or the average position of the particle, depending
on where in the pixel the particle is located. Although this
has been found true of the full least-squares fitting algo-
rithm (Cheezum et al., 2001), it was necessary to test it for
the Gaussian mask algorithm. The test was performed by
scanning over a 5 � 5 grid of x, y positions within the lower
right quadrant of a pixel (the other locations are related by
symmetry). In general, systematic deviations will become
more apparent with greater numbers of photons in the spot,
less background noise, and averaging over a greater number
of spots. The parameters used were N � 10,000, b � 0.7,
and s/a � 1.6. For each x, y position, the results of fitting
10,000 spots were averaged, giving an accuracy of 1% in
the means and standard deviations. No systematic devia-
tions were found for either the Gaussian mask or the full
least-squares algorithms.

The 30% discrepancy between the theory and the Gauss-
ian mask algorithm can potentially be attributed to a variety

of reasons. Up to 10% of this error is due to the analytic
interpolation between the two limits (Eq.17), as opposed to
an exact integral. Further error likely arises from the im-
plicit assumption of infinitesimal pixel size involved in
transforming the summation (Eq. 11) to an integral. In
addition, the derivation of Eq. 17 is only to first order in �x;
terms of higher order in �x and of higher order in 1/N were
dropped. In contrast, the Gaussian mask localization algo-
rithm (Eqs. 3 and 4) is based on a least-squares fit without
photon-counting noise and is a simplification of the more
general nonlinear least-squares fitting algorithm with prop-
erly weighted terms. Although the simplification makes the
algorithm easier to implement and faster to run, it will also
adversely affect the accuracy of localization, especially at
high photon numbers.

Full least-squares Gaussian fits

To better isolate which of the potential causes of the 30%
discrepancy in error estimate is at fault, a series of tests
using full least-squares Gaussian fitting was performed.
Figure 5 shows a comparison between the full least-squares
fitting algorithm, the Gaussian mask localization algorithm,
and the theoretical prediction of Eq. 17.

The theory and the full least-squares fitting agree well at
high N, as is to be expected because the theory converges to
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FIGURE 4 The localization uncertainty �xrms increases for small pixel
sizes a due to increased background noise and for large pixel sizes due to
pixelization noise. The theoretical prediction of Eq. 17 (solid line) is
shown. Results from computer-generated images (circles) agree well with
the theoretical prediction plus 30% (dashed line). The deviations at large
pixel sizes are due to the inclusion of only the first-order dependence on the
pixel size (see text). The position of the minimum of the curve, however,
is accurately given by (a/s)4 � 96�b2/N. Both the analytical theory and the
computer-generated images used N � 100 photons.
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FIGURE 5 Theory and Monte Carlo simulations of two localization
algorithms based on the Gaussian mask described in Methods (filled
circles) or a general nonlinear least-squares minimization (open circles).
The parameters are the same as in Fig. 3: b � 0.7, s � 208 nm, and a �
130 nm. The two methods result in similar localization precision for small
N. For large N, the theory (solid line) agrees with the full least-squares
minimization algorithm. At lower values of N, the prediction of Eq. 17
underestimates the error due to the analytic interpolation between low and
high N limits, and to the neglect of higher-order terms in the derivation. At
extremely low N, the error of the fitting algorithms increases rapidly due to
the low signal to noise in the spots. The Gaussian mask algorithm has
greater noise due to its neglect of photon-counting noise in the spot.
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the simpler Eq. 6, whose derivation is based on assumptions
that become very good at large photon numbers. By con-
trast, the Gaussian mask algorithm has an excess uncertainty
of localization of �30% at high N, probably because it
neglects the counting error on photons originating from the
spot. The failure to model the noise correctly thus con-
tributes an excess uncertainty of 30% to the localization
precision.

At very low N, both fitting methods show considerable
excess error above the theory. This is primarily due to the
difficulty of consistently locating the spot at such low signal
to noise. If the fitting algorithm “slips” from a subliminal
spot, it is liable to travel far away from it, resulting in an
outlying point in the standard deviation calculation. Thus, a
single spot that is difficult to find can significantly bias the
statistics upward.

In the middle range, the theory slowly begins to under-
estimate the full least-squares fit precision, up to a 17%
underestimate at N � 50. Part of this deviation is due to the
analytic interpolation between the two limits (Eq. 17),
which we expect to reach a magnitude of 10% at the
transition point of N � 30 photons. The remainder of the
deviation we ascribe to the discarding of higher-order terms
in �x and 1/N in the derivation.

The excess error of the Gaussian mask algorithm is
expected to decrease with decreasing N as the counting error
on the spot’s photons decreases relative to the background
noise and the model of the noise becomes more accurate. In
Fig. 5, relative to the full least-squares fits, the Gaussian
mask algorithm decreased from 30% excess error at N �
10,000 to 7% excess error at N � 50. Thus, although the full
least-squares fits were clearly better in our tests, the differ-
ence between the two methods was small at the light levels
relevant to many single-particle tracking experiments. Prac-
titioners may still wish to use the Gaussian mask algorithm
because of its simplicity of implementation and robust
operation.

To gain a better idea of when the theoretical Eqs. 17 and
19 may be relied upon, we tested the theory in relation to
full least-squares fitting over a wide range of the variables
N, a/s, and b. We varied N logarithmically between 30 and
10,000 photons, a/s between 0.33 and 2, and b between 0.1
and 5 photons. We deemed the theory to have poorly
predicted the fitted results when the two failed to agree
within a factor of two.

There were two situations in which the theory failed to
accurately predict the full least-squares fits. The first situ-
ation occurred with low numbers of photons N and high
background noise b. Errors of this sort are seen in Fig. 5 and
are responsible for the upward trend at very low N. In this
case, as mentioned previously, there was very low signal to
noise making it difficult for the fitting algorithms to find the
spots, and hence giving a large deviation in position. Such
errors greatly decreased the estimated accuracy of the fitting
procedures.

The second situation in which there were significant
deviations between the theory and the least-squares fits
occurred when the spot is spread over too few pixels, or
when the value a/s was large. An example of this sort of
error is evident in Fig. 4 at a/s 
 1.6. In this case, pixelation
noise becomes more significant, and the first-order treat-
ment of pixelation noise in the theory is no longer adequate.
As mentioned above, the theory neglects the fact that, at
high values of a/s, the localization error must become
a/12, independent of the value of N. In general, values of
a/s � 1 were well predicted by the theory.

Testing of the Gaussian mask algorithm over the same
range of variables showed that it performed similarly to the
full least-squares fitting, taking into account the 30% excess
error. The algorithm appeared to perform worse than the full
least-squares fits at high values of the pixel size a/s, but
typically better at high values of background noise b. It
disagreed with the theoretical results in the same two situ-
ations that were described above.

In general, the theory accurately predicted the localiza-
tion error over a large portion of the gamut. It should thus
serve well as a means of estimating the accuracy of an
experiment, as an aid to designing and exploring the limits
of proposed experiments, and as a tool for diagnosing and
improving the experimental apparatus.

DISCUSSION

In seeking to optimize measurements for fluorescent-parti-
cle localization and tracking, attention should be paid to
maximizing the detected fluorescence and minimizing the
measurement noise. Typical estimates for the photon-detec-
tion efficiency in microscopes are around 1%, reflecting the
accumulated optical transfer efficiencies of the detection
angle (30%), objective (50%), filters (80%), beam steering
optics (50%), and detector quantum efficiency (20%)
(Sandison et al. 1995). Because good fluorophores can yield
on average as many as 105 photons before photobleaching,
a single fluorophore could theoretically be tracked to a
precision of 65 nm over 100 frames, or 20 nm over 10
frames, in the absence of background noise. Use of high
numerical aperture objectives is essential both to decrease
the spot size and to maximize the number of collected
photons.

Sources of noise include dark current, CCD readout
noise, light leakage, extraneous sources of fluorescence, and
cellular autofluorescence, which frequently dominates bio-
logical experiments. For example, photomultiplier (PMT)-
based laser scanning microscopes in photon-counting
modes can offer zero readout noise and dark currents of
�50 counts/s, giving extremely low intrinsic background
noise. The background noise we measured (0.7 photons/
pixel) only becomes dominant for spots with fewer than 30
photons. Background noise in PMT-based microscopes is
not likely to be a problem. Cooled CCD cameras, in con-
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trast, typically have a relatively high readout noise of �5
photons, which will be the dominant source of error unless
more than 1600 photons are collected per spot, assuming the
same pixel size a as was used in the described experiments.
CCD cameras have the advantage of a higher quantum
efficiency than PMTs (80 vs. 40%), but this higher effi-
ciency is insufficient to make up for the associated increase
in background, which can be comparable to the low num-
bers of photons observed in typical fluorescence experi-
ments. In general, a CCD camera can be used instead of a
PMT-based system when the expected number of photons
per spot N is large, and the increased quantum efficiency
gained with a CCD camera overcomes the increase in back-
ground noise. It should also be mentioned that the combi-
nation of an image intensifier (microchannel plate) with
some form of image integration (on chip or electronic)
results in background noise characteristics that are similar to
a scanning PMT-based system but in a wide-field configu-
ration similar to that used by Ghosh and Webb (1994).

The analysis we have presented in this paper applies to
any subresolution probe used in optical microscopy, includ-
ing brightfield and differential interference contrast (DIC)
probes and fluorescent probes. The expressions for local-
ization precision and photon-summing precision (Eqs. 17
and 19) are qualitatively similar to results obtained by
Bobroff (1986) and Kubitscheck et al.(1999) but have the
advantage of simplicity, and they are readily applicable to
single-particle tracking experiments. The inverse depen-
dence of the error on the number of photons collected means
that brightfield or DIC-based strategies for localizing par-
ticles are more precise than fluorescence techniques. Such
strategies have been used to localize latex beads and col-
loidal gold to within 2 nm at 30 frames/s (Gelles et al.,
1988), in a DIC-based experiment to localize a hair cell cilia
to 1 pm/Hz1/2 (Denk et al., 1989; Denk and Webb, 1990),
and in conjunction with optical trapping to localize latex
beads in experiments on motor proteins (Svoboda et al.
1993; Wang, 1999). These brightfield and DIC experiments,
however, use relatively large (1-	m-diameter) latex beads
or 30–40-nm-diameter gold particles (Geerts et al., 1987;
Edidin et al., 1991; Sheets et al., 1997), which are likely to
be more obstructive than typical fluorescent labels. Fluores-
cent labels can also be targeted to specific proteins, and,
unlike large probes, fluorescent labels are not limited to the
extracellular environment.

Multiphoton or confocal laser scanning microscopes can
offer a distinct advantage when the major limitation on
localization is background noise caused primarily by cellu-
lar autofluorescence or other extraneous sources of fluores-
cence. The intrinsic three-dimensional resolution and local-
ization of the excitation volume (Williams et al., 1994)
significantly reduces the extra noise caused by fluorescence
from immersion oil, scattering inside the microscope, or
parts of the cell out of the focal plane. In addition, mul-
tiphoton laser scanning microscopes produce fluorescence

at wavelengths far from the excitation wavelength, allowing
for more efficient optical filtering. Although it is possible
that some laser scanning microscopes might introduce ad-
ditional errors due to fluctuations in the beam position, we
searched for and found no evidence for such artifacts in our
apparatus, as also indicated by the agreement between
Monte Carlo results and data obtained from a confocal laser
scanning microscope.

Quantitative subresolution imaging has increasingly be-
come more widely used in biology. As new probes become
available and detector technology improves, the possibility
of obtaining greater precision in the localization of point
sources becomes more feasible. We have developed a sim-
ple analytical expression for both localization precision and
photon-counting precision based on the knowledge of ex-
perimentally determined parameters such as background
noise and pixel size. We have also described a simple,
robust, and effective algorithm for localizing subresolution
objects with a precision almost as good a full least-squares
fit.
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