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Introduction

In this paper we study the categahyof finite-dimensional representations of affine Lie
algebras. The irreducible objects of this category were classified and described explicitly
in [1,2]. It was known, however, thalt was not semisimple. In such a case a natural
problem is to describe the blocks of the category. The blocks of an abelian category are
themselves abelian subcategories, eachtdth cannot be written as a proper direct sum
of abelian categories and such that theiedirsum is equal to the original category. Block
decompositions of representations of algebare often given by a character, usually a
central character, namely, a homomloism from the center of the algebra@ as, for
instance, in the case of modules from the BGG catedbfgr a simple Lie algebra. In our
case, however, the center of the universal algebra of the affine algebra acts trivially on all
representations in the categ@hand the absence of a suitable notion of character has been
an obstacle to determining the blocks(of

In recent years the study of the corresponding categgrgf modules for quantum
affine algebras has been of some interest [3,4,9,10,12,14,15]. In [6] the authors defined the
notion of an elliptic character for objects 6f when|g| # 1 and showed that fdg| < 1,
the character could be used to determine the block®, o he original definition of the
elliptic character used convergence pndigs of the (non-trivial) action of th&-matrix
on the tensor product of finite-dimensional representations. Of course, in=thk case,
the action of theR-matrix on a tensor product is trivial. However, the combinatorial part
of the proof given in [6] suggests that an elliptic character can be viewed as a function
x : E — Z™ with finite support, wheré is the elliptic curveC* /¢%* andm € N depends
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on the underlying simple Lie algebrahib then motivated our definition when= 1 of
a spectral character df(g) as a functionC* — I with finite support, wherd" is the
guotient of the weight lattice gf by the root lattice ofy.

The other ingredient used in [6] to gure that two modules with the same elliptic
character belonged to the same block, was a result proved in [1,12] that a suitable tensor
product of irreducible representations was indecomposable but reducible on certain natural
vectors. In the classical case, however, it was known from the work of [2] that a tensor
product of irreducible representations was either irreducible or completely reducible.
However, it was shown in [4] that the tensor product of the irreducible representations
of the quantum affine algebra specialized to indecomposable, but usually reducible
representations of the classical affine algebhas led to the definition of the Weyl modules
as a family of universal indecomposable modules. The Weyl modules are in general not
well-understood; see [4,7,8] for several conjectures about them. However, in this paper, we
are still able to identif a large family of quotients of the Weyl modules, which allows us
to effectively use them as a substitute for the methods of [6]. Although we work with the
affine Lie algebra, our results and proofs work for the current algghgaC[¢], but with
the spectral character being defined as functions f€otm I~ with finite support.

The paper is organized as follows: Section 1 is devoted to preliminaries and Section 2 to
the definition of the spectral character and the statement of the main theorem. In Section 3,
we recall the definition of the Weyl modulesdagive an explicit realization of certain
indecomposable but reducible quotients of these modules and the parametrization of the
irreducible objects of. The theorem is proved in the remaining two sections. We prove
that to every indecomposable object@fone can associate a spectral character. To do
this we show that if two moduleg;, j = 1, 2 have distinct spectral characters, then the
corresponding EX(V1, V») = 0. Finally, we prove that any two modules with the same
spectral character must be in the same block ahd hence we get a parametrization of
the blocks ofC analogous to the one in [6].

1. Preliminaries

Throughout this papeX (respectivel\N*) denotes the set of non-negative (respectively
positive) integers.

Let g be a complex finite-dimensional simple Lie algebra of rankith a Cartan
subalgebrd. Set/ ={1,2,...,n} and let{e;: i € I} C h* (respectivelffw;: i € I} C b*)
be the set of simple roots (respectively fundamental weightg\ith respect tdy. Define
a non-degenerate bilinear for(m) on h by (w;, «;) = §;; and leth; € h be defined by
requiringw; (h;) = 8, i, j € 1. We shall assume that the nodes of the Dynkin diagram are
numbered as shown in Table 1 and welletC I be the indices of the shaded nodes in the
diagram.

Let R be the corresponding set of positive roots and denotethg highest root of.
As usual,Q (respectivelyP) denotes the root (respectively weight) latticegaind we let
I = P/Q. Itis known that [11]

r=27,y1, goftypeA,, r=z,, goftypeB,, C,, E7,
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' =74,
=73,

I'=27>x%x 2o,
=0,

g of type Doy,
g oftypeEs, Fa, Go.

g of type D2y 41,
g of type Ee,

The groupl” is generated by the images of the eleméats i € I,} and hence any e I
defines aunique element =Y ; riw; € PT wherer; € Z are the minimal non-negative
integers such that, is a representative of. In particulary; =0if i ¢ I,.

Let W be the Weyl group off and assume thatg is the longest element d¥. The
groupW acts onh* and preserves the root and weight lattice. Pét=3",_, Nw; be the
set of dominant integral weights and g8t = )", _; No;. We shall assume that has the
usual partial ordering, giveh, u € P we say that. > u if A — e QT. Fora € RT, let
g+, denote the corresponding root spaces, and fix elemg“htsgia, hy € b, such that
they span a subalgebra gfwhich is isomorphic tesh. Fori € I, setxijE = ng, he; = h;.
Setn® = @, g+ 9+«- Given any Lie algebra, let L(a) = a ® C[t,~1] be the loop
algebra associated withand letU(a) be the universal enveloping algebrawmfClearly,
we have

g=ntophon, L@=LmM)®LMH) ®LMn),

and a corresponding decomposition

U(g) =U@HUmUm™), U(L(9)) = U(L®7))U(LB))U(Ln™)).

Givena € C*, let ey, : L(g) — g be the evaluation homomorphism &v ® ") = a"x.
For » € P, let V(1) be the irreducible finite-dimensiongtmodule with highest

weighti and highest weight vectas,. Thus,V (1) is generated by, as ag-module with

defining relations:

\A(h)+1 .
ntu, =0, hvy=itv, ()", =0, Vhep, iel
Table 1
1 2 -1 1 2 3 4 5
e A, : 5 0—0 o Fg:
6
1 2 n-1 n
e B, : o0—0 .-+ Oo==®
1 2 3 4 5 6
o Fr
1 2 n-1 n
o () : &0 ... =<0 7
1 2 n-2 n-1 1 2 3 4 5 6 7
e Dy,nodd: o—o--- Eg : '—O—O—O—I—O—O
en 8
1 2 n-2n-1 1 2 3 4
e Dy, neven :0—0 - T—O Fy &—C==0—0
n
1 2
Gy : [ ==
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Let V be a finite-dimensional representatiorgofThen we can writé/ as a direct sum

V= V.  Vi={vev: hv=pv, Vheh}, (1.1)
nepP

and set
wt(V) ={une P: V, #0}.
The following result is well-known [11].

Proposition 1.1. Let V be a finite-dimensional representationgof

(i) Forallwe W, ue P, we havedim(V,) = dim(Vy,).
(i) The module/ is isomorphic to a direct sum gtmodules of typ& (L), A € PT.
(iii) LetV(1)* be the representation gfwhich is dual tov (1). Then

V(A)* =V (—woh).

The following proposition is crucial for the proof of the main theorem.

Proposition 1.2. Let 4, . € P™ be such thak — i1 € Q. Then, there exists a sequence of
weightsy; € PT,1=0,...,m, with

() mo=p, um=2,and
(i) Homg(g ® V (1), V(i41)) #0, YOI <m.

Proof. Considerthe modul® (1) ® V ()*. Sincer —u € Q, it follows thath —wou € Q.

In particular, this means that If (v) is an irreducible summand of (1) ® V (w)*, then
ve Ot N PT. It follows that V (v)g # 0. This implies by a result of Kostant [5,13],
that there exists: > 0 such that Hop(S™ (g), V (v)) # 0. It follows that Homy (S" (g) ®
V), V(») #0.

We now proceed by induction om. If m = 1, we are done for themo = u.
Otherwise there must exigt,—1 € PT with Homg (V (,—1), 92 ~P ® V) # 0 such that
Homy (g ® V(um—1), U) # 0. Since the category of finite-dimensional representatiops of
is semisimple, we see also that Hp@® ™Y ® V, V (in—1)) # 0. But now we are done
by the inductive hypothesis.O

Remark. In Appendix A we construct the sequengg, . .., u,, in the special case when
u = A, With the properties stated above. In particular, this gives a different and perhaps
more elementary proof of this proposition.
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2. Spectral charactersand the block decomposition of C

Let & be the set of all functiong : C* — I' with finite support. Clearly, addition of
functions defines a group structure Bn Giveni € P*, a € C*, let x; , € & be defined

by

Xra(2) = 8a(2)h,
wherex is the image of. in I and$,(z) is the characteristic function af € C*. We
denote byP the space ofi-tuples of polynomials with constant term one. Coordinatewise
multiplication defines the structure of monoid h Given A € PT, a € C*, define
T ha= (1, ...,my) €P, by

T =(1- au))‘(h"), 1<i<n.

Any & = (71, ..., 7,) € P can be written uniquely as a product,

r
R':l_[n)xj,a]w (21)
j=1

where
(i) {a,.‘l: 1< j < r}isthe set of distinct roots qf[/_; 7;,
(i) Aj=>F_ymijor € PT, andmy; is the multiplicity with whichaj‘1 occurs as a root

of mg.

Definex™* € P by

r
*
T = l_lnfu)o)\j,ajs
j=1

where we recall thabyg is the longest element of the Wey! groupgoGivens € P, define
Xz € & by

r
XJT = ZX)‘j*aj’
j=1

wherel;, a; are as in (2.1). Obviously,

Xnn' = Xz + Xo/»

forall =, x’ € P.
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To state our main result, we need to reclk tparametrization of irreducible finite-
dimensional modules of affine Lie algebras4l and also the definition of blocks in an
abelian category.

Proposition 2.1. There exists a bijective correspondence between the isomorphism classes
of irreducible finite-dimensional representations of affine Lie algebras and elemehts of

We denote by (r) an element of the isomorphism class corresponding to

Definition 2.1. We say that a modul¥ € C has spectral charactgre Z if y = x, for
every irreducible componeni(x) of V. LetC, be the abelian subcategory consisting of
all modulesV e C with spectral charactey.

Let C = Csin(L(g)) be the category of finite-dimensional representations @f. This
category is not semisimple, i.e., there exist indecomposable redugigplemodules inC.
However is an abelian tensor category and every obje¢t ras a Jordan—Holder series
of finite length. This means th&thas a block decomposition which is obtained as follows.

Definition 2.2. Say that two indecomposable objeétsV € C are linked if there do not
exist abelian subcategori€s, k = 1,2 such thatC =C1 ® C2 with U € C1, V € Co. If

U andV are decomposable, then we say that they linked if every indecomposable
summand ol is linked to every indecomposable summand/of

This defines an equivalence relation®and a block ot is an equivalence class for this
relation, clearlyC is a direct sum of blocks. The following lemma is trivially established.

Lemma 2.2. Two indecomposable moduldg and V» are linked iff they contain
submodule$/; C Vi, k =1, 2 such thatlU is linked toUs.

The main result of the paper is the following.

Theorem 1. We have

c=EPec,.

XEE

Moreover, eaclt, is a block. Equivalently, the blocks Gfare in bijective correspondence
with 2.

The theorem is obviously a consequence of the next two propositions.
Proposition 2.3. Any two irreducible modules i@, , x € =, are linked.

Proposition 2.4. Every indecomposable(g)-module has a spectral character.
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We prove these propositions in Sections 4 &ndespectively. We shall need several
results on a certain family of indecomposable but generally reducible modulésgnr
the so-called Weyl modules, this is done in the next section.

We conclude this section with an equivadelefinition of linked modules and with some
general results on Jordan—Holder series.

Definition 2.3. Let U, V € C be indecomposable(g)-modules. We say thdf is strongly
linked to V if there existsL(g)-modulesUs, ..., U,;, with U1 = U, U, = V and either
Homy () (U, Ug+1) # 0 or Hom () (Uk41, Uy) # 0 for all 1< k < £. We extend this to
all of C by saying that two modulelg andV are strongly linked iff every indecomposable
component olJ is strongly linked to every indecomposable componerit of

It is clear that the notion of strongly linked defines an equivalence relatighwhich
induces a decomposition @finto a direct sum of abelian categories. If two modulés
andV are strongly linked, then they must be linked. For otherwise, suppos& taat V
belong to different blocks. It suffices to consider the case HgyU, V) # 0. This means
thatU andV have an irreducible constituent s&&in common. Then, since each block is
an abelian subcategod, must belong to both blocks which is a contradiction. Conversely,
suppose that/ andV are linked but not strongly linke@hen, there is oliously a splitting
of C into abelian subcategories coming from the strong linking, suchifhertidV belong
to different subcategories. We have proved the following lemma.

Lemma 2.5. Two module¥/ andV are linked iff they are strongly linked.
Lemma 2.6. Suppose thal/ € C,, andV € C,, are strongly linked. Thef1 = x2.

Proof. It suffices to check this when Haty,) (U, V) # 0. But this means thal and V
have an irreducible constituent sain common and hencg; = x2. O

We shall make use of the following sit@pproposition repeatedly without further
mention.

Proposition 2.7.

(i) Anysequenc@cC Vi1---C Vi C V of L(g)-modules irC can be refined to a Jordan—
Holder series ofV.

(i) Supposethadc Uy Cc---c U, =U and0cC Vy--- C Vs C V are Jordan—Holder
series for module#/, V in C. Then the irreducible constituents bf® V occur as
constituents ot/; ® Vy forsomel <k <r andl < £ <s.

(iif) Suppose thal/y € C, 1 < k < 3and thatU; andU, are strongly linked. Theti1 ® Us
is strongly linked td/> ® Us.
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3. Weyl modules

In this section we recall from [4] the defifon and some results on Weyl modules. We
also study further properties of these modules.

LetV € C. Regarding/ as a finite-dimensional module fgrwe can writeV as a direct
sum as in Section 1, (1.1), = @ueP V.. Let wi(V) be the set of weights of . Notice
thatL(h)V,, C V,. SinceL(h) is an abelian Lie algebra, we get a further decomposition

vi= @ v

deL(h)*

where
Vl? = {v €V, (h Q1 — d(h ® tk))rv =0, Vr>rh,k)> 0},

are the generalized eigenspaces for the actidi(pf on V,,. Clearly, ifU, V € C, then any
L(g) homomorphism front/ to V mapsU¢ to V<. SinceV,, is finite-dimensional, we see

that if V9 5 0, then there exists £ v € V¢ such that
(h@t)w=dhet)v, hebh, keZ.

We say thad is of typer € P, if
d(h@*) = (ij(maj?),
j=1
wherei; € Pt anda; € C* are as in (2.1) and we denote the corresponding generalized
eigenspace by'y .

Definition 3.1. Given ann-tuple of polynomials with constant term 1, we denote®yr )
the L(g)-module generated by an elemernt and the following relations:

LoHuwr =0, (h@)wy = (ZM <h>aj‘-> wr.

j=1
(7 1), —o @1

foralliel,k,£eZ,a € R, h e handwhere we assume thats written as in (2.1). Set
Ax = Z;zlxj.

The following properties o¥ () are standard and easily established.

Lemma 3.1. With the notation as above, we have
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(i) W) =ULMm))w, and sowt(W(r)) C A — OT.
(i) dim W(x),, =1, and soW(n)fn = Wy,.
(i) Let V be any finite-dimensional (g)-module generated by an elemente V
satisfying

L(nHv =0, (h®t*)w= (Z)\./(h)a(I?)v.
j=1

ThenV is a quotient ofW (i ).
(iv) W(r) is an indecomposable(g)-module with a unique irreducible quotient.

Let B1,..., By be an enumeration of the elementsRf. Givenr € Z, setxﬁ‘j,r =
xp; ®t". The following result was proved in [4].

Theorem 2. Let ©r be ame-tuple of polynomials with constant term one and assumerthat
has a factorization as in (2.1).

(i) The L(g)-moduleW (rr) is spanned by monomials of the form
x/;jlsrlxﬁ_jzs’? .- -x;jéuwn,
wheref e N*, j1 < jo < --- < jo, and 0< rg < Ax(hg,) forall 1<k <€ In
particular, dimW () < oo.
(i) As L(g)-modules,
W(”) = W(nkl,al) ®---& W(”}»,,lh)'

We can now elaborate on the parametrization of the irreducible finite-dimensional
modules stated in Section 2 of this paper.

Proposition 3.2. The irreducible finite-dimensiondl(g)-moduleV (xr) is the irreducible
guotient ofW (;r) and we have

V(”) = V(nkl,al) ®---® V(”A,,a,)-

Further, the modulé/(x, ,) is the L(g)-module obtained by pulling back tlgemodule
V (1), by the evaluation homomorphisn, : L(g) — g. Finally, asL(g)-modules we have

V() ZV(x™).

The structure of¥ () is not well-understood in general, although it is known thair )
is in general not isomorphic t¥ (), a necessary and sufficient condition ##i(x) to be
isomorphic toV (xr) can be found in [4]. In what follows, we establish further properties of
the Weyl modules which we need in this paper, and also identify natural indecomposable
reducible quotients oW ().
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Proposition 3.3.LetA=)""_;riwj € PT,a € C*.
(i) Forall « € R™ we have
(x; ® (t — a))‘(h"‘))w,,m =0.
In particular, W (. ) is spanned by elements of the form
(x/;j1 Rt — a)’l)(x/f,‘j2 ®(t—a)?)--- (xﬁ_je ® (t —a)")wm), q,

wheret e N¥, j1 < j2 <+ < jp, andO< e < Ag(hpy ) forall 1<k < ¢
(i) Forallheh,keZ, pe P, andw e W(my )., We have,

(h ® (tk — ak))rw =0, Vr>0.

(iii) There exists a bijective correspondence between irredugibldomodules o (x; ,)
and the irreducibleL (g)-constituents oWV (i 4).

Proof. The relation(x; ® (t — a)*")w,, . = 0 was proved in [4, Section 6]. This
immediately implies the second assertion of (i). To prove (i) one just uses commutation
relations once we know from (i) that
— - _ 1 — _ T . - _ re
w= (X'le ®(t—a) 1)(xﬁ]_2 ® (t —a)?) (xﬁjé ® (t —a) Ywmy q.

To prove (iii) first notice that, from (ii), it follows that the irreducible constituents of
W(my q) are all of the formV (o) for somew € P*. Then, sinceV (m,,4) =4 V (1), it
follows that all g-constituents oW (x ., ) must also be_(g)-constituents with the same
multiplicity. O

We now prove the following proposition.

Proposition 3.4. Let A, u € Pt. Assume that there exists a non-zero homomorphism
p:g® V(L) — V(u) of g-modules. The following formulas define an actionL@f)-
module onV(L) & V (u):

xt" (v, w) = (arxv, a'xw+rd px® v)),

wherex e g,r € Z, v e V(1), andw € V(u). Denoting this module by (1, u, a), we see
that

0— V(e = VA, u,a) = V(mr,) —0

is a non-split short exact sequence bfg)-modules. Finally, ifA > u, there exists a
canonical surjective homomorphismbfg)-modulesW (x; ,) — V (A, 1, a).



830 V. Chari, A.A. Moura / Journal of Algebra 279 (2004) 820-839

Proof. To check that the formulas give A(g)-module structure is a straightforward
verification. SinceL(g)V (u) C V(w), it follows that V(. ) is a L(g)-submodule of
V&, u,a).Sincep : g® V(L) — V() is non-zero, it follows that the modulé(i, «, a)

is indecomposable and we have the desired short exact sequeh¢g) ahodules. Note
thatif » > u, we have

L(nM)(vy, 0 =0, h @ t*(v;., 0) = (a*v;., 0).

Also, sinceV (A) = U(g)vy, we see tha(V (1), 0) c U(L(g))vx, and hence it follows
that V (A, u,a) = U(L(g))v,. But now Lemma 3.1(iii) implies thaV (A, i, a) must be
a quotientofW (x, ). O

Remark. One can view the modulés(x, i, a) as generalizations of the modulégr ;. ,)
as follows. Thus, whileV (x; ,) is a module forL(g) on whichx ® (f — f(a)) acts
trivially for all f € C[z,+~1] andx € g, the modulesV (1, u, a) are modules on which
xQ® (f — (t —a)f'(a) — f(a)) acts trivially for all f € C[¢, 1], where f’ is the first
derivative of f with respect ta.

4. Proof of Proposition 2.3
We begin with the following lemma.

Lemma4.1.

(i) Assume that., x € PT and that there exists a non-zero homomorphisimy ®
V(x) = V(u) of g-modules. Then the moduléSx; ,) and V(x . ) are strongly
linked.

(i) Lety e I' be such that. =, modQ. Then,V(x; ,) and V(x,, ) are strongly
linked.

Proof. The first part of the lemma is immediate from Proposition 3.4. The second part is
now immediate from (i) and Proposition 1.20

Proposition 4.2. Let V (xy) € Cy, for somey, € &, k =1,2. ThenV(w1) ® V(x2) €
CX1+X2'

Proof. By Proposition 3.2, we can writ& (x1) = ®’;:1V(nxj,aj) with a; # a; for

all 1<1+# j <kandiy.....x € PT. Similarly, write V(m2) = @'_; V(). We
proceed by induction on the cardinality 8f where

S={a1,...,ar}N{b1,...,be}.
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If Sis empty, ther ® U is irreducible and the result is clear. Suppose thenghat and
assume without loss of generality that= b1. Write

V(nkl,al) ® V(nul,al) = @ mvv(”v,al),

vePt

wherem, is the multiplicity with whichV (v) occurs inside the tensor product of tpe
modulesV (A1) ® V(u1). Sincex +u — v e Q7, it follows from the definition of spectral
characters thatr, ,, = X, ., + Xr,,.4,- 1h€ inductive step follows by noting that,

k 14
V(r1) @ V(mo) = (@mvvm,al)) QR Vi) @V, p). O
v S:Z j:2

Corollary 4.3.
(i) Forall x, € E,k=1,2, we have

Cx1 ®Cxy CCritxa-
(i) LetV eCy,thenV*eC_,.
Proof. Let Vx € Cy,, k =1, 2. Since every irreducible constituent &f is in C,,, part (i)
is immediate from the propositn. For part (i), suppose that* € C,. for somey’ € =.
SinceV ® V* contains the trivial representation bfg), it follows thatV ® V* € Co and
the lemma is proved. O
Proof of Proposition 2.3. Suppose thaV (r¢), ¢ = 1, 2, are irreduciblel.(g) modules

with the same spectral character By Proposition 4.2, there exigh ¢, ..., As¢ € PT,
¢=1,2anday,...,a; € C* suchthat;; — ;> € Q and

N
m =[] Thjea;-
j=1

If s =1, then the proposition follows from Lemma 4.1 = Z;’:l X>.j.a;, thenit follows
from Proposition 2.7 and Lemma 4.1 thiatr ) is strongly linked tO(X)j.:1 V(”Xj,g,aj)-
The result follows. O

5. Proof of Proposition 2.4

We begin with the following lemma.

Lemma5.1. We haveW () € C,,, .
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Proof. In view of Corollary 4.3, it suffices to prove the lemma wheg-= r;_,. It follows
from Proposition 3.3 that every irreducible componeni#agr ) is of the formV (x, ) for
someu € A — Q. The result is now immediate.O

Lemmab5.2.

() LetU eC,. Letmg € P be such thay # xx,- ThenExt}(g)(U, V(mg)) =0.
(i) Assumethat; €C,;, j =1,2and thatxs # xo. ThenExt%(g)(Vl, V) = 0.

Proof. Since Ext is (bi)additive, to prove (i) it suffices to consider the case wheis
indecomposable. Consider an extension,

0— V(mg >V —->U-—N0.

We prove by induction on the length &f that the extension is trivial. Suppose first that
U =V (x) for somer € P and thaty, # x=,. Then, either

() Az <Agg,Or
(ii) )\no - )‘n ¢ (QJr - {O})

Since dualizing the exact sequence above takes us from (i) to (ii), we can assume without
loss of generality that we are in case (ii). This implies immediately that

L@V, =0,

since WtV (o)) C Ar, — Q. On the other hand, sinc®,, maps ontoV (x),,, we

see that dinV,” # 0. Thus there exists an elementv € V,, which is a common
eigenvector for the action df(h) with eigenvaluer. SinceV has length two, it follows
that eitherV = U(L(g))v or thatU(L(g))v = V (o). But the submodul&(L(g))v of

V is a quotient ofW (x) and hence has spectral charagigr Since x # xx,, we get
V(o) NU(L(g))v =0. Hence

V= V(ro) © U(L(g))v.

This proves that induction begins.

Now assume that/ is indecomposable but reducible and that we know the result for all
modules of length strictly less than thatléf Let U1 be a proper non-trivial submodule of
U and consider the short exact sequence,

0O—-U;—U—U—0.

Since Ext(g)(Uj, V(ro)) =0 for j =1, 2, by the induction hypothesis, the result follows
by using the exact sequence

EX] (o) (U2, V (0)) — EXty (o (U, V (w0)) = EXt] o (U1, V (70)).

Part (ii) is now immediate by using a similar induction on the lengtf:of O
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The proof of Proposition 2.4 is now completed as follows. Vdie an indecomposable
L(g)-module. We prove that there exisise = such thatV € C, by an induction on the
length of V. If V is irreducible, follows from the definition of spectral characters that
vV eC,, forsomer € P. If V is reducible, let (7o) be an irreducible subrepresentation
of V and letU be the corresponding quotient. In other words, we have an extension

0— V(T —>V—->U-—N0.

Write U = @;:1 U; where eachlU; is indecomposable. By the inductive hypothesis,
there existy; € & such thatU; € Cy;, 1< j <r. Suppose that there exisfs such that
Xjo 7 Xno- LEMMa 5.2 implies that

,
Ext] o) (U. V(m0)) = @D EXt 4 (Uj. V(wo)) = P Extj 4, (Uj. V(o).
Jj=1 J#Jo
In other words, the exact sequencexXQV (xg) — V — U — 0 is equivalent to one of the
form

0— V(mo) > Ujyd V' — Uj, @ U; — 0,
J#jo
where

0— V(g — V' — @Uj—>0
J#Jo

is an element ofEBj;,éj0 Exti(g)(Uj, V(mo)). But this contradicts the fact thadt is

indecomposable. Hengg = xx, forall 1< j <randV e€Cy, .
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Appendix A

We give an alternate elementary prooffrfoposition 1.2. This has the advantage of
computing the sequenge of weights explicitly, which is useful in determining precisely
the irreducible representations in each blockitker, it also makes precise the algorithm
for determining the blocks in the quantum easudied in [6]. We proceed in two steps,
namely,
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() Let u e PT. There exists a sequence of weighise P™,1=0, ..., m, with po = p,
m =Y _icy, Siwi, si € NT, satisfying

Homy (g ® V(i) V(1) #0, VI<I<m.

(i) Assumethap =)";.; siw; € P*. Then, there exists a sequence of weights P,
[=0,...,m,with uo=A,, w, = u satisfying

Homg (g ® V (1), V (u+1)) #0, YOI <m.
We also need the following result proved in [16].

Proposition A.1. Suppose that, i € P*. Fix a non-zero element,,,, € V(1) wou. Then
V(A) ® V(w) is generated as g-module by the elemeni, ® v,,, and the following
defining relations

()T 4 @) =0, (7)) "W @ vugu) =0, Viel.
Assume thay is of type A, or C,,. Write u = Y_7_; riw;. To prove the first step, we
proceed by induction okg = max1 < k < n: r; > 0}, and show that such a sequence

exists and further that,, = (}_/_ iri)w1. Clearly, induction starts wheip = 1. Assume
now that we know the result for all < ko. To complete the inductive step, we proceed by
a further induction omy,. Definingu1 = u+ Zf.‘i’ll «a;, itis easily seenthat; € P and,
using Proposition A.1, we have

Homy (g ® V (w), V(1)) #0.

Since

ko—2

pi=(r1+Dor+ Y rox + (ko1 + Darg-1 + (ko — Dk,
i=2

the proof of step (1) is now immediate by the inductive hypothesis. To prove the second
step, it is enough to show that there exists a sequence of the desired formikito; and

wo = rw1 are such thatk — r)w; € Q7. In the case ot it suffices to consider the case

k —r = 2. Noting that 201 = 6, we see that by Proposition A.1,

Hom, (g ® V(rw1), V((r + 2)a)1)) #0,

and the result follows. Fat,,, we have to consider the case whien r =n + 1. Consider
11 = o+ 6 so that

Homy (g ® V(rwy), V((r +Dw1 + a),,)) #0.
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By the first step we know that there exists a sequence. ., w,, with u1 = (r + w1+ w,
andu, = (r +n + w1 with

Homg (g ® V (i), V(ik+1)) #0

and the proof is now complete fef,,.

Suppose thay is of type B, andu = Y 7 _;riw;. If r; =0 for i # n, the first step
is obvious. Otherwise, we hawg # 0 for somek < n. We prove by induction on
ko =min{l < k < n: r,, # 0} that we can find the sequenega, ..., u, with w, =
(rm + 27 _qri)w,. Whenkg =n — 1, consideru1 = u + a,. Then, Proposition A.1
implies that

Homg (g ® V(rp—104—1 + rnwy), V((”nfl —Dwy—1+ (rn + 2)0)11)) #0,

and now an obvious induction of_1 gives the result. Assume now that<n — 1 and
that we know the result for alt > kg. We proceed by a further induction of,. Set
w1 =+ (@rg+1+ 2(arg+2+ - - - + o). We now proceed as in the casedf to complete
the first step. For the second step it suffices to prove the existence of the sequence when
u = kw, anduo = rw, andk — r = 2. To do this observe that if we takg = i + 6, then

Homg (g ® V(). V(1) #0,

and the proof of the first step shows that we can conpeandu by a sequence of the
appropriate form.

Suppose next thag is of type D, with n even and thap = )/_;riw;. If ri =0,
i #n,n — 1 there is nothing to prove. Otherwise, we hayez 0 for somek <n — 1. We
prove by induction orkg = min{l < k < n — 1: ry, # 0} that we can find two sequences
Ui, ..., Wm, ONe where

(n—4)/2 (n—2)/2 (n—4)/2
um=<r,,l+ S npate rzj-)wnﬁ(w 5 )w

j=0 j=1 Jj=0

and another where,

(n—4)/2 (n—4)/2 (n—2)/2
Mm = (Vn—1+ Z 72j+l>wn—1+ (rn"' Z 72j+l+2 Z ij)(Um
j=0 j=0 j=1

Whenkg = n —2 takeu1 = u+a,—1 (respectivelyt; = u+«,) and proceed by induction

onr,_». To complete the inductive step fbg < n — 2, we takeus = u+ kg1 + 2(kg+2+

<-4 ap—2) + ay—1 + a,, we omit further details. For the second step, we must prove

thatkw; and (k — 2)w; are connected by an appropriate sequence of elemes dbr

i =n,n — 1. As before, we tak@g1 = (k — 2)w; + 6 and use the first step to get the result.
Now consider the case @), with » odd and lefu = Y""_; riw;. If r; =0, i # n there

is nothing to prove. In the general case we proceed in two further steps:
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(a) There exists a sequence of weightse P*, 1 =0,...,m, with o=, um =
Y iodaSi@i, si € N, satisfying

Homy (g ® V(u), V(/LH_]_)) #0, VvVi<I<m.

(b) Assume thaj is supported only on the odd nodes. Then, there exists a sequence of
weightsp € P*,1=0,...,m, with po =, wm = Y_;¢;, siwi, si € NT, satisfying

Homy (g ® V(u), V(/LH_]_)) #0, VvVi<I<m.

To prove step (a), we assume that- O for somek even and proceed by induction on
ko = min{k even:r; > 0}. First, assume thap = n — 1 and proceed by a further induction
onr,—1 as usual. Setting

Hi=p+(@1+-+op—2+a,)
(n—3)/2

= Z r2jr1wzj+1+ (r1+ Do + (rp + Dy + (rp-1 — Dawy—1,
j=1

and using the induction afy_1 — 1 completes this case. Next, suppose that » — 3 and
take

m1=p+ (@p—2 +an—1+ o)
(n—3)/2

= Z r2j+1w2j+1+ (rp—1 + Dwy—1+ (rp + Dy + (r—3 — Dwy—3
j=0

and the result follows by induction on_3. Now assume thafy < n — 3 and that we know
the result for alk > ko. Takingu1 = i + (akp+1 + 2(27;1<20+2 ai) + ap—1+ ay—2). Then

(n—1)/2 (n—1)/2
H1= Z r2j+1w2j+1+ Z r2jw2j + (rkg+2 + Dwkg+2 + (rg — Dy
j=0 j=(kot4)/2

completes the inductive step. Observe that whega 2, we have

(n—3)/2 (n=1)/2 (n—3)/2
Mom = Z r2j+102j+1+ (rl + Z rzj)wl + (rn +rn-1+2 Z rzj>wn-

j=1 j=1 j=1

Now we prove step (b), i.er; =0 for all 1< j <n with j even. We proceed by
induction onkg = min{k: r, > 0} and onry,. If ko = n, there is nothing to prove. Ko =
n — 2, then takinguy = u + «,, = (r;, + 2wy + (rp—2 — Dw,—2 completes the induction.
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Now assume thaty < n — 2. Takingu1 = u + (ctkg+1 + 2(2:’;,30+2 a;) +ap-1+ay-2),
we see that

(n=1)/2

U1 = Z r2j4102j 11+ (kg2 + Dangr2 + (kg — D
Jj=(ko+3)/2

This completes the proof of the first step, notice that following this procedure gives

(n—3)/2 (n—3)/2
,U«m=<rn+3rnl+2 Z r2j+l+4 Z r2j>0)no
j=0 j=1

The second step is completed by the usual method and we omit all details.

g= Eg. Consider the following sequence of weights:

M= (r1+re)w1+raw2 + r3ws + rawa + (rs + re)ws,
o= (r1+r3+re)wi+ (r2+r3)wz +rawa + (rs + re)ws,
A3=(r1+r3+re)wi+ (r2+r3)w2 + (2ra+rs+re)ws,
la=(r1+r3+re)wr+ (r2+r3+2ra+rs+re)wz,

A5 = (r1+ 2ro 4+ 3r3 + 4ra + 2r5 + 3rg)ws.

Settingu = Ao, it suffices to show that, andi1 are connected by a sequence of weights
as in (i) above. But this is clear fno Proposition A.1, by noting that

A — Ao =re(o1 + o2 + 3 + 24 + a5),

A2 — A1 =r3(o1 + a2),

A3 — A2 = raos,

ra — A5 = (2ra+rs+re)(0a1 + 202 + 203 + a4 + a6),
A5 —re=(r2+r3+2ra+rs+re)oq.

To prove the second step, we can assumeutbat rw1, u = kw1, andk — r = 3. Take
m1=pno+0=pu+ we.
Then by Proposition A.1, we have Hgity ® V(u), V(1)) # 0. On the other hand, we

see from step (i) that there exists an appropriate sequence connectanyl (r + 3)ws.
The result is proved foEsg.
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g= E7. Consider the following sequence of weights:

M= (r1+r7)w1+raw2 + r3ws + rawa + rsws + (re + r7)we,
A2 = (r1+ra+r7)wi+ rowz + (r3 + ra)ws + rsws + (re + rr)ws,
A3 = (r1+ra+r7)w1+rawz + (r3 +ra)ws + (re + 17 + 2rs)ws,
la=(r1+ra+ror+ (r2+re+r7+ 2r5)wz + (r3 + ra)ws,
As=(r1+r3+2ra+trror+ (r2+r3+ra+2rs+re+r7wz,
Ae = (r1+2r2+ 3r3 + 4ra + 4rs + 2re + 3r7)w1.
Settingu = Ao, We see again that; andi41 are connected by an appropriate sequence.
For the second step, we can assume @t rwi, u = kw1 with k — r = 2. Taking

w1 = o+ 6 =u+ wes, we find from step (i) thafr1 and (k + 2)w1 are connected and
we are done.

g= Eg. Consider the following sequence of weights:

A= (r1+re)w1+ row2 + r3ws + rawa + rsws + rewe + (r7 + rg)wz,
A2 = (r1+rs+rg)wi + rowz + r3wz + (r4 + rs)wa + rewe + (r7 + rg)wy,
A3 = (r1+rs+rg)wi + row2 + r3wsz + (ra + rs)wa + (r7 + rg + 2re)wy,
Aa=(r1+ra+riwr+ (r2+2r6 +r7 +rg)wz + r3ws + (ra + rs)wa,
As=(r1+2ra+rs+rrwi1+ (r2+ 2re +r7 +rg)wz + (r3 +ra + rs)ws,
M= (r1+r3+3ra+2rs+rrw1+ (r2+r3+rat+rs+2re+r7+rg)ws,
A= (r1+ 2ro+ 3r3+ 5ra4 + 4rs + 4rg + 3r7 + 2rg)w1.
Settingu = Ao, We see again thaty andi41 are connected by an appropriate sequence.

For the second step, we can assume @t rwi, u = kw1 with k — r = 1. Taking
1= o+ 0 =puo+ w1 =u andwe are done.

g = F4. Consider the following sequence of weights:

A= (r1+ 2r2)w1 + raws + rawa,
A2 = (r1+ 2r2)w1 + (ra + 2r3)wa,
A3 = (r1+ 2ro 4+ 4rz + 2ra)w1.

Settingu = Ao, We see again thaty andi1 are connected by an appropriate sequence.
For the second step we can assume thatrws, with r # 0. Then we define
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n1 =+ (@1 + 302 + 203 + o),
M2 = 1+ o,

u3 = p2 — (201 + 202 + a3),
ma=puz—=0

and the result is proved by induction ennoting thatus = (r — 1)ws.

g = G2. Here we define\; = u + r2(301 + a2) to see thatw and (r1 + 3r2)wy are
connected as in step (i). To prove step (ii), we use the factthgt (2o1 +a2) = (r + Vw2
to get the result.
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