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Integration by parts reduction is a standard component of most modern multi-loop calculations in 
quantum field theory. We present a novel strategy constructed to overcome the limitations of currently 
available reduction programs based on Laporta’s algorithm. The key idea is to construct algebraic 
identities from numerical samples obtained from reductions over finite fields. We expect the method 
to be highly amenable to parallelization, show a low memory footprint during the reduction step, and 
allow for significantly better run-times.
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Over the past few decades, it has often been the case that new 
developments in computer technology have sparked advances in 
theoretical high energy particle physics. This has been especially 
true with regard to the application of integration by parts (IBP) 
identities in d dimensional spacetime to the reduction of multi-
loop scalar Feynman integrals in quantum field theory to a basis 
of irreducible master integrals [1,2]. From the MINCER program 
written long ago for the reduction of three-loop propagator-type 
integrals [3], to the more recent general-purpose algorithm intro-
duced by Laporta [4], automated approaches to integration by parts 
reduction have long been favored because of the enormous amount 
of algebra involved. This is also reflected in the fact that, in re-
cent years, quite a few dedicated IBP solvers have been written 
and made publicly available [5–10].

While many integral reductions of phenomenological interest 
have been successfully performed in the past, improvements are 
required for the calculation of many precision observables relevant 
to the physics program of the Large Hadron Collider. For exam-
ple, solving all of the IBP relations relevant for the calculation of 
the two-loop virtual corrections to the pp → tt̄ cross section in 
Quantum Chromodynamics will take currently available reduction 
programs at least several weeks to run on a desktop computer. 
In order to handle future problems, which are likely to be signif-
icantly more demanding due to either the presence of additional 
kinematical scales or additional loop integrations, it is worth un-
derstanding what makes IBP solving computationally expensive.

Let us point out three major performance shortcomings of stan-
dard IBP solvers based on Laporta’s algorithm. First of all, for a 
process on the edge of feasibility, the algorithm will typically re-
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quire finding a reduced row echelon form for a sparse system of 
millions of linear equations with coefficients that are polynomial 
in the available independent ratios of dimensionful scales and the 
spacetime dimension. Solving such linear systems using standard 
techniques (e.g. variants of Gaussian elimination) leads to coeffi-
cients which are rational functions of high degree at intermediate 
stages of the calculation [11]. Depending on the exact order of 
the reduction steps, the coefficient complexity and the number of 
nonzero coefficients per row vector may grow dramatically.

This type of phenomenon is commonly referred to in the lit-
erature as intermediate expression swell and leads to performance 
problems since the expressions become expensive to manipulate 
and, en masse, even to store in memory. For IBP reductions, a 
standard operation performed on the coefficients to recognize ze-
ros and to simplify the resulting expressions is the computation 
of greatest common divisors, which becomes increasingly expen-
sive as the coefficients get more and more complicated. To get a 
feeling for how severe spurious intermediate expression swell can 
become during an IBP reduction, one can mask a single relation 
between integrals while performing some set of integral reduc-
tions. Carrying out this experiment, we observed cases where, as 
a consequence of the masking, the reduction result grew by more 
than an order of magnitude in size. While heuristic rules to avoid 
expression swell can be found in available IBP solvers, there is ob-
vious motivation for improvement.

Second, a large fraction of the identities computed in the con-
ventional approach reduce auxiliary integrals which do not occur 
in the actual calculation of interest (e.g. some component of a 
cross section). However, considering identities involving auxiliary 
integrals is unavoidable for a complete reduction of the required 
integrals. Clearly, it is of considerable interest to avoid expensive 
computations for purely auxiliary quantities whenever possible.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Third, in an effort to improve upon the run-time requirements 
of the Laporta algorithm, it is natural to attempt a dedicated par-
allelization of the reduction procedure. Among the publicly avail-
able IBP solvers, Reduze 2 [9] is distinguished by the fact that 
it was designed to be run on a computer cluster. While the opti-
mal number of cores is problem specific, it is often the case that 
one observes a significant speed-up only when utilizing up to at 
most a few tens of cores. Modern computer clusters available at 
research institutions and laboratories may provide a considerably 
larger number of cores which can therefore not be fully exploited.

In this Letter, we describe a new approach to automated in-
tegration by parts reduction based on well-known ideas in com-
putational mathematics which should significantly ameliorate the 
issues discussed above which one typically encounters in practi-
cal applications. Roughly speaking, the strategy is to sample over 
many distinct prime fields for most of the calculation and then, at 
the end, reconstruct the symbolic rational coefficients for the iden-
tities of interest by combining the samples together. Remarkably, 
the requisite mathematical techniques are simple, well-tested, and 
can be found in expository form in many modern computer alge-
bra textbooks (e.g. [11]). Our work is similar in spirit to that of 
Kant [12] and, in fact, we expect that his ICE package will serve 
as a useful preprocessor for IBP relations. The key idea is to sys-
tematically avoid manipulating polynomials or rational functions 
at intermediate stages of the calculation in an effort to avoid inter-
mediate expression swell.

The outline of this Letter is as follows. First, we review the re-
construction of rational numbers from samples obtained over finite 
fields. Next, we discuss how this can be exploited for fast rational 
linear system solving. It is possible to work entirely with sam-
ples over small (machine-sized) prime fields, since the information 
from samples over distinct fields can be combined by using the 
well-known Chinese remainder algorithm. Finally, we promote the 
rational reconstruction method to the case of univariate rational 
functions through interpolating polynomials and discuss various 
generalizations and improvements.

Let us begin with a brief review of the mathematical prereq-
uisites. At the heart of everything is the extended Euclidean algo-
rithm (EEA). This algorithm computes the greatest common divisor 
(GCD) of two integers, a and b, together with their associated Bé-
zout coefficients, integers s and t such that

GCD(a,b) = s a + t b . (1)

Initially, one begins with the triples (g0, s0, t0) = (a, 1, 0) and 
(g1, s1, t1) = (b, 0, 1) such that |a| > |b|. Then one iterates accord-
ing to

qi = gi−1 quo gi (2)

gi+1 = gi−1 − qi gi (3)

si+1 = si−1 − qi si (4)

ti+1 = ti−1 − qiti , (5)

where gi−1 quo gi denotes the integer quotient of gi−1 by gi (i.e.
gi−1 = giqi + ri for some remainder ri ). The modulus of gi de-
creases according to 0 ≤ |gi+1| < |gi | until the algorithm termi-
nates with gk+1 = 0 for some index k. At this point, gk = GCD(a, b), 
sk = s, and tk = t . It should be emphasized that the version of the 
EEA presented above is not guaranteed to be optimal for all in-
tegers a and b; it will certainly be the case, for example, that a 
different variant performs better for a and b with asymptotically 
large absolute values [11]. Throughout this Letter, we will often 
choose to describe classical versions of algorithms for the sake 
of clarity and then point out various optimizations or alternatives 
which may prove useful.
It turns out that the EEA has a number of useful applications. 
For example, it is possible to use the EEA to define multiplicative 
inverses in prime fields, Z/pZ (hereafter we use the shorthand 
Zp). If we apply the EEA to b and p, we find that

1 = s p + t b (6)

for some s and t . By definition, this implies that 1 ≡ t b mod p
and we are therefore led to the definition

1

b
≡ t mod p . (7)

If we denote the canonical homomorphism from Z onto Zp by 
φp(z) = z mod p, then (7) implies that the p-homomorphic image
of a rational number a/b can be consistently written as

φp(a/b) = φp(a)φp(1/b) . (8)

The natural question that arises now is whether one can go the 
other way under certain conditions and reconstruct a/b from its 
p-homomorphic image. Actually, for our purposes, we must first 
generalize and replace the prime p with a possibly non-prime 
positive integer m such that GCD(m, b) = 1. Obviously, for the re-
construction to be possible, m must be chosen large enough. An 
algorithm to reconstruct a/b from its m-homomorphic image was 
first provided long ago by Wang [13] without proof and then sub-
sequently understood in [14]. More recently, this so-called rational 
reconstruction (RR) algorithm has been improved upon and gen-
eralized in a number of important directions ([15] and [16] are 
of particular interest to us). Before commenting on the state-of-
the-art, it is worth saying a few words about how the classical RR 
algorithm works.

Given two integers m and u fulfilling u ≡ a/b mod m we want 
to reconstruct the rational number a/b. The crucial observation is 
that, when one applies the EEA to m and u, one obtains an identity 
of the form

gi = si m + ti u (9)

at every step of the algorithm because the gi , si , and ti are com-
puted via exactly the same linear recurrence. Now, if m and the ti
have no common factors, φm(gi/ti) = u by definition and it there-
fore follows that the integers gi and ti obtained at each step of the 
EEA will all furnish a rational number, gi/ti , which is congruent 
to u modulo m. However, one iteration j turns out to be special 
and allows one to recover a/b from g j/t j . Note that, in practice, 
m will be chosen to be a (relatively large) machine-sized prime 
or a product of such primes. This choice for m has the desirable 
consequence that m and ti are almost always relatively prime; ex-
ceptional cases are very rare and, in any case, easily dealt with 
[17].

We now describe RR as originally envisioned in [13]. Employing 
the EEA for a generic m as discussed in the previous paragraph, it 
can be shown [14] that the RR problem will be well-posed when 
the modulus m is greater than 2 max{a2, b2}. In this situation, the 
unique solution to the RR problem is given by

a

b
= g j

t j
, (10)

where the number g j is distinguished by the fact that it is the 
first gi in the EEA to violate the inequality |gi | > �√m/2�. In prac-
tical applications, one will usually not know the values |a| and |b|
in advance and therefore one needs to veto reconstructions which 
satisfy either |t j | > �√m/2� or GCD(t j, g j) 	= 1 since, by design, 
the conditions |g j | ≤ �√m/2�, |t j | ≤ �√m/2�, and GCD(t j, g j) = 1
hold when the RR procedure succeeds. The point is that, for suf-
ficiently large m, all steps of the EEA still yield integers gi and ti
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such that gi/ti ≡ a/b mod m but one step—the jth—is special in 
that both |g j| ≤ �√m/2� and |t j | ≤ �√m/2�.

An important remark is that the RR algorithm outlined above 
will be suboptimal if a and b are not of roughly equal length. 
In fact, it was argued in [15] that, for most practical applications, 
one must reconstruct rational numbers where a and b have signif-
icantly different lengths. This indeed appears to be relevant to the 
problem of interest to us. We note that the modern RR algorithm 
presented in [15] performs almost as well as the classical variant 
in unfavorable cases but much better on average (it succeeds with 
high probability once m > 2|a||b|).

Let us illustrate how the mathematical ideas described so far 
can be exploited to construct a fast linear system solver. Suppose 
that, for the sake of argument, we want to find a reduced row ech-
elon form for a large linear system, A, with rational coefficients. 
From the above discussion we see that it is enough to perform a 
row reduction over a finite field of size m for sufficiently large m. 
It is then possible to reconstruct the true rational solution of in-
terest via RR. Actually, we can go one step further and build up a 
reduction of A modulo a large number, m, with the prime factor-
ization

m = p1 · · · pN (11)

from reductions of A taken modulo the distinct prime factors, pi , 
of m.

For each pi , we take the pi -homomorphic image of A and row 
reduce A over Zpi to obtain a solution set, K (Zpi ). Here we as-
sume that none of the pi appear in the prime factorizations of 
the denominators of the rational coefficients we wish to recon-
struct. In practice, this condition will be satisfied automatically for 
large but machine-sized primes and, at any rate, it is easy to deal 
with exceptions [17]. Next, we employ the Chinese remainder al-
gorithm (CRA) to produce the solution set modulo m, K (Zm), by 
sewing together the K (Zpi ) via the EEA. As explained above, the 
solution set K (Zm) can in turn be used to reconstruct the solu-
tion with rational coefficients via RR provided m was chosen large 
enough. Finally, a check of the purported rational solution, K (Q), 
can be performed efficiently working modulo a new prime num-
ber. Employing prime fields smaller than the size of the largest 
machine integer has the highly desirable consequence that fast 
machine arithmetic can be exploited for the linear algebra. The 
scheme described here is well suited for (vector) parallelization 
and, by the very nature of the CRA, efficiently handles the situation 
where RR does not immediately succeed and additional samples 
must be generated modulo new prime factors before attempting 
another RR.

We now turn to the problem of finding a reduced row echelon 
form for a large linear system whose coefficients are polynomials. 
For the sake of simplicity, we restrict ourselves in this Letter to the 
case of a single variable d and consider linear systems with coef-
ficients in Q[d]. The main non-trivial observation is that a rational 
function of d can be reconstructed from samples where d is re-
placed by numbers {α1, . . . , αM} for some sufficiently large M . In 
fact, the procedure for rational functions is quite closely analogous 
to that given above, where solutions over Q were obtained from 
samples computed in Zpi .

Suppose we sample a rational function at the M distinct ra-
tional points, αr . Remarkably, writing down the standard Newton 
interpolation polynomial of degree M − 1 which fits the sample 
data, I(d), furnishes an analog of the CRA in the univariate ratio-
nal function case. Before proceeding, we note that, as for any other 
polynomial in Q[d], evaluation at the point αr is equivalent to tak-
ing the remainder with respect to polynomial division by d − αr . 
In other words, we have the simple but useful relation
I(d) ≡ I(αr) mod (d − αr) ∀ r ∈ {1, . . . , M} . (12)

Now, observe that, by virtue of the fact that univariate polyno-
mial division is completely analogous to integer division, the EEA 
makes sense for univariate polynomials as well as integers. In fact, 
this immediately implies that Wang’s original RR algorithm can be 
modified to yield a rational function reconstruction algorithm in 
the univariate case. One must simply make the observation that 
the classical RR algorithm is, at its core, nothing more than the 
EEA with a modified termination criterion. In particular, Eq. (12)
implies that the number m = p1 · · · pM which appears in the ratio-
nal number version of Wang’s algorithm is replaced by

m(d) = (d − α1) · · · (d − αM) (13)

in the univariate rational function version.
With a bit more analysis (see [11,16]), analogs can be found 

for all of the other defining characteristics of the RR algorithm 
up to essentially trivial differences like uniqueness in the ratio-
nal function case only holding up to multiplication by a scalar. In 
this way, we can reconstruct a rational function for each of the 
coefficients in the row echelon form of our linear system from 
reductions obtained for rational coefficients. Once rational func-
tion reconstruction succeeds for all coefficients in the row echelon 
form, we may normalize the vectors obtained and arrive at a solu-
tion with entries that lie in Q[d].

It is worth mentioning that, once again, the classical strategy 
outlined above can be optimized. For example, the modern variant 
of rational function reconstruction implemented in the Mathe-
matica package LinearSystemSolver.m by Kauers [17] was, 
to the best of our knowledge, first proposed in [16]. The main new 
insight is that, when one attempts to carry out a rational function 
reconstruction along the lines discussed above, almost all steps of 
the polynomial EEA are such that the rational functions gi(d)/ti(d)

have total degree M − 1 (i.e. the degree of the interpolating poly-
nomial input to the univariate rational function reconstruction al-
gorithm). Clearly, if M is large enough to successfully reconstruct 
the rational function, the jth step of the polynomial EEA which 
actually gives the solution of interest will be such that the total 
degree of g j(d)/t j(d) is less than or equal to the degree of the in-
terpolating polynomial. It follows that a smart strategy is to simply 
run the polynomial EEA to the end and check whether there is a 
unique step such that gi(d)/ti(d) is of minimal total degree. If so, 
it is true with high probability that this step of the polynomial EEA 
reconstructs the rational function of interest.

Combining the methods discussed so far, we can obtain the re-
duced row echelon form of a given linear system over Q[d], A(d), 
from prime field samples, Kr(Zpi ), where r indexes the sample 
αr relevant to the construction of the Newton interpolating poly-
nomial, I(d). In practice, it is advantageous to avoid introducing 
rational numbers at intermediate stages of the calculation. For this 
reason, instead of proceeding exactly as described above, we re-
construct the row echelon form of A(d), K (Q[d]), according to

Kr(Zpi ) → K (Zpi [d]) → K (Q[d]) . (14)

In this way, it is possible to construct a fast linear system solver in 
the univariate polynomial case which avoids intermediate expres-
sion swell and performs significantly better [17] than traditional 
linear system solvers based on some variant of Gaussian elimina-
tion. Although it is not entirely straightforward to treat the multi-
variate polynomial case, it is feasible [17,18] and will be discussed 
at length in future work.

We stress that, in the context of IBP reduction, the approach 
advocated here allows for massive (vector) parallelization in the 
reduction step, since N × M copies of the same system need to 
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be solved. Moreover, the reconstruction step is massively paral-
lelizable as well, since, in the IBP relations under consideration, 
the rational coefficient function of each master integral may be re-
constructed independently of all others. While existing approaches 
typically focus on the case of dense systems, it should be empha-
sized that IBP systems demand the use of a sparse solver for the 
linear algebra. In contrast to standard IBP reduction, we expect the 
exact order in which the reduction steps are carried out to have 
considerably less impact on the performance of the algorithm as 
long as sparsity is maintained, since coefficient manipulations have 
constant complexity when working over prime fields.

Let us conclude by reiterating that, on general grounds, we 
expect the IBP solving strategy discussed in this Letter to be con-
siderably more efficient than conventional approaches based on 
Laporta’s algorithm. Our method avoids sources of intermediate 
expression swell which cause severe problems for most currently 
available reduction programs. It circumvents complicated symbolic 
manipulations for purely auxiliary equations and allows for the 
dedicated reconstruction of the very small subset of IBP relations 
actually needed for the specific calculation under consideration. Fi-
nally, it is massively parallelizable and should allow for a much 
more effective use of modern computational resources.

Acknowledgements

We would like to thank Manuel Kauers for useful discussions 
concerning the implementation details of his Mathematica pack-
age LinearSystemSolver.m and José Zurita for useful com-
ments on a preliminary version of this work. The research of AvM 
is supported in part by the Research Center Elementary Forces and 
Mathematical Foundations (EMG) of the Johannes Gutenberg Univer-
sity Mainz and by the German Research Foundation (DFG). The 
research of RMS is supported by the ERC Advanced Grant EFT4LHC 
of the European Research Council, the Cluster of Excellence Pre-
cision Physics, Fundamental Interactions and Structure of Matter 
(PRISMA-EXC 1098).

References

[1] F.V. Tkachov, Phys. Lett. B 100 (1981) 65.
[2] K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192 (1981) 159.
[3] S.G. Gorishnii, S.A. Larin, L.R. Surguladze, F.V. Tkachov, Comput. Phys. Commun. 

55 (1989) 381.
[4] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087.
[5] C. Anastasiou, A. Lazopoulos, J. High Energy Phys. 0407 (2004) 046.
[6] A.V. Smirnov, J. High Energy Phys. 0810 (2008) 107.
[7] A.V. Smirnov, V.A. Smirnov, Comput. Phys. Commun. 184 (2013) 2820.
[8] C. Studerus, Comput. Phys. Commun. 181 (2010) 1293.
[9] A. von Manteuffel, C. Studerus, arXiv:1201.4330 [hep-ph].

[10] R.N. Lee, arXiv:1212.2685 [hep-ph].
[11] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge 

University Press, 2013.
[12] P. Kant, Comput. Phys. Commun. 185 (2014) 1473.
[13] P.S. Wang, in: Proceedings of SYMSAC ’81, ACM Press, 1981, p. 212.
[14] P.S. Wang, M.J.T. Guy, J.H. Davenport, SIGSAM Bull. 16 (2) (1982) 2.
[15] M. Monagan, in: Proceedings of the 2004 International Symposium on Sym-

bolic and Algebraic Computation, ISSAC ’04, 2004, p. 243.
[16] S. Khodadad, M. Monagan, in: Proceedings of the 2006 International Sympo-

sium on Symbolic and Algebraic Computation, ISSAC ’06, 2006, p. 184.
[17] M. Kauers, Nucl. Phys. B, Proc. Suppl. 183 (2008) 245, visit http://www.risc.

jku.at/education/courses/ss2012/ca2/LinearSystemSolver.m to obtain an accom-
panying software package.

[18] P. Kant, private communication.

http://refhub.elsevier.com/S0370-2693(15)00192-6/bib546B6163686F763A313938317762s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4368657479726B696E3A313938317168s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib476F726973686E69693A313938396774s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib476F726973686E69693A313938396774s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4C61706F7274613A323030316464s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib416E6173746173696F753A32303034766As1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib536D69726E6F763A323030386977s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib536D69726E6F763A32303133646961s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib53747564657275733A323030397965s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib766F6E4D616E7465756666656C3A323031326E70s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4C65653A32303132636Es1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4D6F6465726E436F6D7075746572416C6765627261s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4D6F6465726E436F6D7075746572416C6765627261s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4B616E743A32303133767461s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib57616E67s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib57616E67477579446176656E706F7274s1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4D6F6E6167616Es1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4D6F6E6167616Es1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4B686F64616461644D6F6E6167616Es1
http://refhub.elsevier.com/S0370-2693(15)00192-6/bib4B686F64616461644D6F6E6167616Es1
http://www.risc.jku.at/education/courses/ss2012/ca2/LinearSystemSolver.m
http://www.risc.jku.at/education/courses/ss2012/ca2/LinearSystemSolver.m

	A novel approach to integration by parts reduction
	Acknowledgements
	References


