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HIGHER ORDER GRASSMANN BUNDLESY

W. AMBROSE

(Received 1 August 1963)

INTRODUCTION

THE AmM of this paper is to discuss higher-order Grassmann bundles as a setting for (non-
linear) partial differential equations (including systems of such equations). The kinds of
equations we have in mind are those whose solutions are submanifolds of a given manifold
M, e.g. the equation for a p-dimensional minimal surface in a d-dimensional Riemannian
manifold. From a geometric point of view a system of kth order partial differential equations
assigns at each point m of M some collection of kth order contact spaces there, a kth order
contact space at m being a linear subspace of the kth order tangent vectors at m; a solution
is then a submanifold N of M such that the kth order tangent space to Nateachne N
is one of the given contact spaces at n. For example, in the minimal surface equation
(usually called a system of equations) one is given at each me M (M being assumed
Riemannian) a family of second-order tangent spaces at each point of M, namely all those
whose first-order part is p-dimensional and such that the trace of the second fundamental
form of the second order space, relative to any first-order tangent vector which is
perpendicular to this p-dimensional space, vanishes. (One can define a second fundamental
form for a second-order tangent space at a point—a whole submanifold is unnecessary.)

We attempt to formulate systems of partial differential equations of this kind geometri-
cally because they arise geometrically; a co-ordinate expression for such equations seems
to be an extra complication, depending on an arbitrary choice of a co-ordinate system.

Now we indicate how the usual expression for a partial differential equation (or
system—but hereafter we shall use the term ‘partial differential equation’ to include what
are usually called ‘systems’) can be transcribed into geometrical language. First consider a
single first order equation for a single unknown function, which is usually written as

d
f(xi, e Xpy U, L ,al, ) =0,

X
u being the ‘unknown’ function and x;, ..., x, the ‘independent variables’. Consider the
graph of u; at a point (xy, ..., x,, u) = (x, u) of that graph the % are the slopes of the
tangent plane to the graph at (x, u), and characterize that p-plane. So f may be considered
1 This research was partially supported by the National Science Foundation.
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as a function on p-planes at points in R”**. Then a solution of this equation is a function u
such that f vanishes at every p-plane tangent to the graph of v. We may generalize this
situation, replacing R”*! by a manifold M, and taking f to be a function on G,(M), where
G,(M) is the Grassmann bundle over M whose elements are all the (m, P) such that me M
and P is a p-dimensional subspace of the tangent space at m. Then a ‘solution’ will be any
p-dimensional submanifold N of M such that at each point n of ¥, f vanishes on the tangent
plane to N. So a solution is now a submanifold rather than a function; the possibility above
of representing the submanifold as the graph of a function u was related to a particular
co-ordinate system for R?*! so we are willing to drop that feature.

Now suppose we have a single first order equation for a family of ‘unknown’ functions,
written classically as

ou,
f(xl, ey Xpy gy eee s Ugy ey 5}: . ) = 0.

Letting « = (u,, ... , u,) the graph of u is a submanifold of R? *2 and f can be considered as
a function on p-planes at points of R?*4;a solution is a u such that f vanishes on the p-planes
tangent to the graph of . Similarly, if we have a collection fj, ..., f; of such f’s; a solution
isstillau = (uy, ... , u,) whose graph lies in R”*%, but such that all the f vanish on the graph
of u. So to generalize this as above we replace R "7 by a manifold M of dimensiond = p + ¢,
replace the f;’s by functions on G,(M), and define a solution to be a p-dimensional submani-
fold N of M such that at each point of N all the f; vanish on the tangent plane to N. The
only difference from the preceeding case is that now d-p = g instead of d-p = 1. So in
our general formulation we define the ‘number of unknown functions’ to be d-p.

Now we note that the only feature of f, or of the f;, which was used above was the set of
its zeros, or the set of common zeros in the case of more than one f. So letting E be this set
of zeros, a solution is a submanifold N of M whose tangent space at each point is in E. For
this reason we shall define a ‘system of first-order partial differential equations’, depending
on a given manifold M and integer p, to be a subset E of G,(M). If N is any p-dimensional
submanifold of M it has a natural lift {'JN which is a submanifold of G, (M), i.e. "IN
consists of all (n, P) € G,(M) such that n € N and P is the tangent space to N at n. Then N
is defined to be a solution of E if and only if 1IN < E.

We have been discussing first-order systems. Now we turn to higher-order systems.
The concepts here can be formulated as above, but using higher-order tangent vectors,
higher-order spaces (i.e. spaces of these higher-order tangent vectors) and Grassmann
bundles of these higher-order spaces. But at this point there arises something which is the
main concern of this paper, namely, the relation between these higher-order Grassmann
bundles and the iterated first-order bundles. By the iterated first-order bundles we mean
G,(G,(M)), etc. This relation seems important to us for the following reasons: (1) Through
it we can express in general the fact that every system of partial differential equations is
equivalent to a first-order system, (2) In removing the co-ordinate systems from the notion
of a partial differential equation one loses the fact that each higher order derivative is an
iterate of lower order derivatives. This loss is restored, however, by a theorem which we



HIGHER ORDER GRASSMANN BUNDLES 201

call the Kuranishi factoring theorem, which says that every higher-order contact space is

‘qut:ly C)&pleSSlUlC as a pluuuu. of first-order mteglamc coiitact spaces; however the
factors are first-order tangent spaces to successive first-order Grassmann bundles. Thus
this theorem seems to us to restore the omdnfmn of derivatives and to p rov1d_ » an important

Riaky LG0T SCLIS ua LO TCSL010 LI aldaiioll O Call iy

structural element to the higher-order Grassmann bundles.

Kuranishi factoring theorem (Theorem 4.1). This theorem occurs in Kuranishi [3] in a
purely co-ordinate form and is also intertwined with prolongations of differential systems.
Our contribution is to give the theorem a geometric setting. It ends with a discussion of
characteristics of (non-linear) partial differential equations.

We are greatly indebted to both James Simons and I. M. Singer, first for many dis-
cussions of matters considered here, but more importantly, for the very concepts on which
this paper is based. The notion of an integrable element of an iterated Grassmann bundle
was pointed out to us by Simons; he not only pointed out that there was an important
notion here but he also explained to us that such elements were characterized by the vanish-
ing of certain differential forms. Our characterization of these forms as ‘lift-forms’ and
differentials of lift forms is our way of describing these forms. But the notion of these lift
forms we owe to I. M. Singer, who pointed out to us that these were the essent1a1 feature of
certain matters in [3]. We also owe to I. M. Singer the procedure for passing from an f

defined on M to the related e, f'on S;(M), used in section 1. We are also indebted to H. Wu
for reading and criticizing this paper.

NOTATION
We use uy, ... , u, for the usual co-ordinate functions on R". Usually the integers i, j
will satisfy 1 < i, j < p, though sometimes they will be allowed to be 0; the integers r, s will
usually satisfy p + 1 < r, s < d, and a, b will be integers satisfying 1 < a,b < d.

§1. ITERATED STIEFEL BUNDLES AND THEIR INTEGRABLE POINTS

Let p be any integer with 1 < P < dand we now define the Stiefel bundle Sp(M\ over M.

The elements of S, (M) shall be, by definition, all the (m, ey, ... , e,) where m is any point
of M and ey, ..., ¢, is any ordered set of p linearly 1ndependent elements from M,,. We
define the projection map n : S,(M)— M, by n(m, ey, ... , e,) = m. Co-ordinate systems of

S,(M) are defined as follows. For any co-ordinate system {x,} of M with domain Q we
define a co-ordinate system for S,(M), with domain n~'(Q), consisting of the functions
x9 and x/! defined (for [ <a<d,1<i<p)by

xf,) =Xgo T

xi(m, ey, ..., e,) = dx(e) = e;x,.
Thus §,(M) has dimension d + pd.

Now we define, for any non-negative inte

1e zth iterated ! A
Si(M) by Si(M) = S,(S:~'(M)), making the convention that SUM) =M, S;(M) = S,(M).
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Iterating the procedure used above to define a co-ordinate system for S,(M) from a given

co-ordl quatar far AL wrn Akt qtarting uith a oo ardin SV [

A UlulllaLU dyolLilil 10T Vi W UULalll, Staltilly VVlLll a MU‘UIUlllaLD oYyo Le 1L Y Agf Uf 1“’{ a Co-
ordinate system of S5(M), consisting of functions x§, where 1 < a < d and « runs through
all o = (ay, ..., a,) such that the «,, are integers with 0 < a,, < p. That is, if such a co-
ordinate system {x%} has been defined for Sz_l(M ) (¢’ running through the (ay, ... , o, )
we then obtain the co-ordinate system {x}} of S3(M) by

x@0 = x* g
v(a 'l)f al ,,1 /)z \
a \fivy V1, s ©ps s “1» )

Note that among these are functions x{%*® which we shall usually denote by x9, this last

rmasanrirnt N dae atioo Zarn alamanmt AF DZ. Faun 3o Ay wina alhall a~menbicoana
Du}lblbhllpt v uCllULllls LllU ZETO Cicimicnt o1 i\ s 1UL 1uuuuuuu PULPUDCD W Sndu SOmcumes
write x5 also for x,, considering this zero superscript as the zero element of R°. The context

will always show where the O really hes,

If ¢ is any non-singular map of an open Q in R® into M then ¢ has a natural lift,
which we denote hv (hl mapning O into S (M\ dml is defined hv

GCLIVW ot P e 7 MR0O BN HM . @ I3 QOLNLCE

@ = (0. 4 5 @) b 5 @)

Iterating this procedure we define the zth lift ¢, a map of Q into S5(M) by

ww%wwwrﬂ@wwr@@)

and we clearly have

Tod®=¢* ! n = n[Sy(M)— S '(M)]
If (m, e) is any point of S, (M) it is trivial that there exists such a ¢ with o (q) = (m, e).
However, the corresponding property for S%(M) is false if z > 1.

DEFINITION. A point (m, e) € S;(M) is integrable if and only if there is a non-singular
map of an open Q in R into M and a point g € Q such that ¢*(q) = (m, e).

The purpose of this section is to prove Theorem (1.1) below, which characterizes
integrable points intrinsically, i.e. without referring to a ¢ as above. At this point we note

NPT VAt

that if (m, e, ..., e;;, ..., €], ..., €) is an integrable point of S3(M) then
(L nyef = e? ! (1 <i< pn=n[S;"YM)- S5 *(M)]).

This is proved inductively from
(0 _,f[ 0 -
Ty€f = Ty o P 1(7- (q)\ = ¢ 2(—:— (q)\l =e
\Uui / \Oui /

Notation. We shall write ¢ = (a4, ... ,,) and § = (B4, ... , B.) where the «,, and f§, are
lnLegerb Wl[ﬂ U < Oy pw < yZ [HIS meanmg IOI' me 1euers o dn(l p W]ll DC leed mrougnout
this paper. We say f is a permutation of o if and only if there is a permutation n of {1, ... , z}

such that B, = a,,, for all w, and in this case we write § = na. We define || to be the
number of w for which «,, # 0 and ! = n;! ... n,! where #; is the number of w for which
«, = i. We shall also use this notation |u] and u! below where u = (u;, ..., g,) with

0 < u,, < d, replacing p by d in the above definitions.
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We now point out that each (m, e}, ... ,e;, e 5 €1, ..., €5) in SH(M) gives rise to a

family {e,} of tangent vectors of order <z at m. To define the e, we must define e,f for
fin C* at m. We first note that each such f gives rise to p + 1 functions, f°, f*, ..., f? of
S, (M) defined (on =~ 1(Q) where Q is the domain of f) by

fo(m, ey, ..., e,)=f(m)

fi(ma els"'rep)=eif (ISISP).

It will be convenient also to write e, f = f(m), so the preceding becomes

fitm ey, .. e)=e;f (0=<j<p).
Now we iterate this procedure to define, for any such f; functions f* of S¥(M), i.e.

fe =f(az1,...,az) =(.. (f"l)“z... )i

and in particular, we have

ef=e fer 0= fm e, ... e ..., &, ..., E).
If {x,} is a co-ordinate system of M then this definition of x* coincides with that used above
in defining a co-ordinate system of S3(M).

It is easily verified that e, is a tangent vector of order |x| at m. As such we have the
usual representation

0
(12) €y = Z (eaxu/ﬂ!) E

where p ranges through all 4 = (g, ... , g,) such that 0 < u,, < d, and we use the following
conventions,

0 0 o of

a_"'xu‘—‘axu‘ ”'6?”:,6_x0

If (m, e) € S5(M) we let H(m, e) = (m, {e,}) where {e,} is the family of tangent vectors

(of various orders) at m obtained, as above, from (m, €), thus defining a map H from S(M)

into certain families of tangent vectors. H is 1:1 because if H(m, €) = H(m, e*) then

e, = er, hence, for any co-ordinate system {x,} at m, e,x, = e*x,, i.e. x%(m, €) = x%(m, e*)
for all g, a. Since the xZ are a co-ordinate system this shows (m, €) = (m, e*).

=

Now we show that (1.1) is equivalent to
(1.1) efei e, = elef"le,,  (0<i<p).

Proof. Let a=(i,0,a"), a* = (0, i, «"). If (1.1) holds then

ejey lepf = efeg Y = ef(f¥ o m) = T
=D = oo f D = ehei e, f

On the other hand, if (1.1") holds then the two ends of this string of equalities are equal,
hence the middle equality must hold, since the others are true by definition. And the middle
equality is (1.1).

By virtue of (1.1") the condition (1.3) below includes (1.1). We shall prove in the follow-
ing theorem that (1.3) characterizes integrable points.
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Lemma (1.1). If (m, el ..., ek, ..., €], ..., &) is an integrable point of Si(M) then
(1.3) e, = ¢g if B is a permutation of a.

In fact, if ¢ is a non-singular map of an open Q in R? into M with ¢*(q) = (m, e}, ... , e}, ...,

€l, ... , €3) then
0
(1.3) bz (@D =,
ud
Proof. Tt is sufficient to prove (1.3%), i.e. that
o(fs¢)

ef = o, (@
for fin C® at m = ¢(q). For this it is sufficient to prove
o(f o
(139 frod® = (J; 9)
u&

Ifa=(y,..., ) weleto' =(xy,...,%,_4). Then (1.3") follows by induction on z from

1o = 37 (5 )17 = 5 O 67

du,)” B,
0 (Afa)\ O
~6uaz( ou, )_6ua (o)

We remark that (1.3") shows, on the zth order tangent spaces at points of R?, and for
¢ as above, that

(1.4 (o ) = (m. {8 - @)

We now state a generalized Leibnitz product rule for our derivatives e, for which we
need the following notation. Let E be any subset of {1, ..., z}. We define the support of o
by supp & = [wle,, # 0] and Eo = o* where o = «,, if we E, a¥ =0 if w¢ E. Then the
product rule, which is easily proved by induction, is: if f}, ... , f,, are functions in C*® at m,
then
(1.5) (fy - [ =Y 1% . fEw*
where this sum is over all partitions of supp « into w subsets, i.e. over all choices of ordered
families of subsets £, ... , E,, of supp « such that each E, is disjoint from E, if u # v and
U.E, = supp a; in this we include those partitions in which any number of the E, may be
empty and we emphasize that for each E,, ..., E,, which occurs, each permutation of it
will also occur. We note that in another notation (1.5) reads:

(1'5’) ea(fl' o 'fw) = Z ((eEla)(fl)) ((esz)(fw))

and we point out that by previous conventions, e., . o,f =f(m), and (- ? ={.

Z

THEOREM (1.1). The following conditions on a point (m, e) = (m, e}, ... , ey, ... , €, ...,
e;) of Sy(M) are equivalent:

(a) (m, e) is integrable,

(b) e, =e; if B is a permutation of a,
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(c) there exists a co-ordinate system {x,} of M at m such that all x,(m) = 0 and

(1.6) e,=-"(m) foralla,
X

ox,
(d) there exists a co-ordinate system {x,} of M at m such that x%(m, e) = x(m, €)
whenever f§ is a permutation of «,

(e) for all co-ordinate systems {x,} of M at m, x*(m, e) = xE(m, €) whenever B is a
permutation of o.

Proof. Lemma (1.1) says (a) implies (b). It is trivial that (c) implies (a) because,
restricting the homeomorphism that defines the x, to its first p co-ordinates gives a non-
singular ¢ as above for which

0 0
au{z (9) = (}-Xa (’n) = €y
Using (1.4) and the fact that H is 1 : 1 we see that ¢*(q) = (m, e), proving (a). Clearly (b)
implies (e) since x%(m, e) = e,x,, and (e) contains (d). Hence it will be sufficient to prove (d)
implies (b) and (b) implies (c). Proof that (d) implies (b): From (d) we have e,x, = ¢;x,
whenever f§ is a permutation of «. Let x, = x,, ... x, with | <y, <d and we shall show

P

(i) eyx, = e,x, if f is a permutation of a.
By (1.2) this will prove (b).
To prove (i) we first observe
(i) 7(Ex) = (n 'E)(ma)
for all « and all subsets £ of {1, ..., z}, = being any permutation of {1, ..., z}. We also
observe that when Ej, ..., E,, run through all partitions of supp « then n ‘£, ... , n 'E,
run through all partitions of supp 8, if § = na. The following calculation, using (1.5),
(ii) and (d), now proves (i):
epXy =Y (en-12p)%u, - (€a-15,0p) %,
=Y (€ £ Xy - (En 18wy ra) X,
= Z (exeiarXu) -+ (€nEnayn,,)
=Y (egaXy,) - (€ 0%,)
= e,X,.
Proof that (b) implies (c): We induct on z. This is trivial for z = 1 and we now show it for

z assuming it for z — 1 < 1. Let (i, e) be any point of S3(M). By the induction assumption
there is a co-ordinate system x* at m such that all x¥(m) = 0 and

9
¥ oxE
for all o’ = (ay, ... , ;). For any numbers ¢ with |u| = z we can define functions x, by

(i) x,=x¥+4 IIZ chx®
n|=z

D e (m)
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and these x, will form a co-ordinate system with all x,(m) = 0. We now determine the c¢*
so these will satisfy (1.6). By (1.2) we see that (1.6) is equivalent to

() €X =10 if not

for all p = (uy, ..., p;) such that 0 < p,, < d and all . We first determine the c” so that

_ {a! if a is a permutation of u
"

(iv) ex,=0 if |lej=z,1<a<d
and then show that (i) plus (i1) plus (iv) implies (jii).

Using (1.5) and that all x*(m) = 0 we have, if || =|«| = z,

eXy = (e xx) ... (e, X1
which is clearly either «! or 0 according as « is or is not a permutation of u. By (ii) then,
€,X, = exy + ol

Hence if we choose the ¢; = —(e,x})/a! we shall have (iv), no matter how the remaining c*
are chosen.

We now show that (i) plus (ii) plus (iv) implies (iii). If o, = 0, thus & = («’, 0) we have,
by (D,

Xy = €yX, = ea,( Iill (xp,+3 c{lwxf))

_ 0 = * v *) U x
“ae(J 6t T ) =

«

and this shows (iii) in case o, = 0. If || < z then there is a permutation § of o with 8, = 0,
and e, = ez, hence (iii) also holds whenever |a| < z. If |a| = z then, by (1.5),

CaXy = Z ((eElrz)xul) ((eEzrz)qu)'
Any product here containing an (eg ,)x,,, with 1 < |E a| < z will be 0 by the preceeding
case and any containing such a term with |E,w| = z will be 0 by (iv). Since E; {J) ... U E, =
{1,...,z} and |o| = z, the only products here which do not contain an (e; ,)x, with
|E, o} > 1 are those in which all [E,«| = 1. Hence

eX, = (e, %) ... (€. %,)
and this, by the result for the case |o| < z, equals a! or 0 according as y is a permutation
of o or not. This proves (iii) and hence the theorem.

The preceding theorem shows that the integrable points of S3(M) form a submanifold
of dimension d(p,) where p,, is the dimension of the linear space of polynomials in p variables
of degree <w. The integrable points form a submanifold because in any co-ordinate
region with co-ordinates {x%} as above, the integrable points are those for which x% = x#
whenever f is a permutation of «; and the dimension is d(p), because this is the number
of equivalence classes of a’s if we make two equivalent if and only if they differ by a
permutation.

Notation. We shall denote the submanifold of integrable points of S3(M) by IS3(M).

Now we give an alternative to (1.3) which is important because it enables us to reduce
certain considerations to the case where z = 2.
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If (m, e}, ..., ep ..., €, ..., )€ SyM) then efe}’ ' is defined from the above, for
0 <i,j < p and is a second order tangent vector to S¥~%(M) at (m, e}, ... , e}, ..., ey, ..

3 P°
€%~ ?%). Our alternative to (1.3) is

* 9

* -1 _ —1 ..
(1.3%) efel ™ = el’e} for O0<i,j<p2=<w<z

Lemma (1.2). If (m,el, ..., e
(1.3) and (1.3*) are equivalent.

Proof. If (1.3*) holds then for each C* function A of S}~%(M) which is defined at

s e s €1, ..., €3) Is any point of S(M) then the conditions

(m,el,...,eh ...,e¥" % .., ef™?) we have efef *h = efey™'h. In particular, if {x,} is
any co-ordinate system of M such that the x%, for " = («q, ... , o,_,), are defined there
then x40 = x@"-D  Hence x*=xb if « = (2",4,7,0,...,0) and g = (2", /,7,0,...,0).

Repeated application of this shows x = x% whenever f is a permutation of «, hence e, = ¢,
by Theorem (1.1).

If (1.3) holds then we have xX=xf for any a=(2",4/0,...,0) and B=
@', j,1,0, ..., 0), where & = (ay, ... , &,_,). Hence for any such o”, e}e’ ™ 'x3 = ef'ey ™ 'x¥",
Then, by Theorem (1.1), e¥ey ™' = e} ™.

LEmMA (1.3). If(m, ef, ..., e}, ..., €}, ... , &) € Si(M) and for each w < z — 2 the point

(m,el, ....el ..., eV 2 .., elT ) is integrable over S (M) then(m, e5, ... , eh, ..., &5, ...,

*Tp? 14
e) is integrable over M, i.e. lies in 1S3(M).

Proof. Immediate from Theorem (1.1) and Lemma (1.2).

§2. ITERATED GRASSMANN BUNDLES, THEIR INTEGRABLE POINTS, AND A
REDUCTION THEOREM

We begin by defining the Grassmann bundle, G,(M). The elements of G,(M) are (by
definition) all the (m, P) where m is any point of M and P any p-plane at m, i.e. P is any
p-dimensional subspace of M,, (1 <p <d). Given a co-ordinate system {x,} of M with
domain Q we now define a co-ordinate system of G (M) consisting of some functions that
we denote by y9, ..., yo, ..., yJ, ... where  <a <dand 0 < < p. To define the domain
of these functions we consider, for each m e Q, the projection p,, (depending on {x,}) of
M, — M,, defined by

. 0 ¢
Pm Zz=1 Ca a—?a (’n) = Zg=1 Cq O_Xa (m)

We define the subset 0* of G, (M) by Q* = [(m, P)lme Q and p,, is non-singular on P].
We also denote by = the projection of G,(M)— M, defined by: n(m, P) =m. We now
define the functions y? and y’ on Q* by

W=x,0m

yi(m, P) = dx,(e;) = e;x, (I<sigspp+l=sr=<d

)
where e; is the (unique) element of P such that p,e; = . (m). By a previous convention
X:

L

we have also
yAm, P)=ex, (p+1<r<d.
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Note that for the above ¢l < i < p) we have

0
ox,

ey = (m) + 5, yim, B) e (),
X;

Clearly, dim G,(M) =d + p(d — p) and S,(M) is a bundle over G,(M) whose fibre is the

group of non-singular p x p matrices (with real entries), the projection map = of this bundle

being defined by n(m, ey, ... , e,) = (m, spley, ... , ¢,}), where sp{v;, ..., v,} denotes the

span of the vectors v,, ... , v,—a notation that will be used frequently below.

We now define the iterated Grassmann bundles, G5(M), for each integer z > 0. They
are defined inductively, by G3(M) = G (G3™'(M)), with the conventions that G3(M) = M,
G_,’,(M) = G ,(M). Iterating the procedure used above for defining a co-ordinate system for
G,(M) from a given co-ordinate system for M we obtain, for each z, starting from a co-
ordinate system {x,} of M, a co-ordinate system for G3(M) consisting of functions that we
denote by y{®~-®and y* where 1 <i<p, p+1<r<d, and a=(x,,...,a,) as usual
(ie. the o, integers with 0 <o, < p). However, if z> 1, not every point of G}(M) is
contained in the domain of such a co-ordinate system so we call these special co-ordinate
systems.

If A is a non-singular map of a p-dimensional manifold N into M then it has a lift,
that we denote by A", into G,(M), defined by A"(n) = (n, A,N,), and a zth lift, A,
defined inductively by A1 = (4=~ D11, Since we shall be concerned here with conditions
for integrability at a single point we shall consider only non-singular maps of an open
Q in R? into M. It is trivial that if (m, P) € G,(M) then there exists such an 4 with 41')(g),
(m, P) (for some g € Q) but, as in the Stiefel case, the corresponding statement for z > 2 is
false. We define an integrable point of Gy(M) to be a point (m, Py, ..., P,) € Gi(M) for
which there exists such an 4 with A%(q) = (m, P,, ..., P,). We seek, as in the Stiefel case,
an intrinsic characterization of an integrable point, and we find such a characterization in
terms of the ‘lift forms” discussed below. Before discussing these however we reduce the
problem of higher order lifts to the problem of second order lifts by the reduction theorem
given below. We now develop some lemmas necessary for the reduction theorem and for
other considerations below.

As with Si(M), we write y2 for y* - ® and sometimes, for induction purposes, write
X, = y9. Writing &’ = (0o, ... , &,_;) we have, with = = n[G%(M) - G;~ (M1,
yW=y"on 0eR,0eR ™

yEO =y om

(2.1)

0 e 0
m(m, Py, ooy Poo))+ Y0 v (m, Py, ..., PZ)W (m, Py,...,P._)eP,

where 1<i<p, p+1<r<d, and (m,Py,...,P)eGi(M), so n(m, Py, ...,P)=
(m, Py, ..., P._;). Consequently we have, at points in the domain of y?, 1%,



HIGHER ORDER GRASSMANN BUNDLES 209

3] )
e T35~ 3 o
oyi 0y
é 5,
(2.2) s 0 = =
oy, oyy
0
e =7 — 0
oy
for i and r as above
Hence if ~ Annn~tag tha meaiantinan ~n WA ran by tha ~n_ardinata
P(m,Pl, ’PW) UCIHIUW D LILe lJlU LLLivil vl Up \IVI}(m Pl, Pw) 12 U_y L1V LvuUTUiIALLLA L
0
system {y?, y¥'}, onto the span of the =0 (m, Py, ..., P,) then we have, on tangent spaces

(o]
(2 3) T o Pon P A= D B > S o Tle
(£.3) tk O F(m,Pr,...,Pyw) FlmPrye,Pyw—1) ¥ %

The domains of the special co-ordinate systems do not cover G3(M) (if z > 1) but they
1e only part of G5(M) that will interest us so we shall be able to make all our co-
ordinate computations w1th such systems. We now characterize intrinsically that open
subset of G5(M) that is covered by the domains of special co-ordinate systems and shall
denote this open submanifold of G3(M) by G3(M)°. We shall now write ¢ for n[G}(M) -
G5 '(M)]. We assign to each (m, Py, ..., P,) € Gi(M) a sequence P3, ..., P9 of subspaces
of M,,, defined by

cover t

P¢=P,, P’=nf,.. nl_.P,

LEMMA (2.1). Gi(M)° consists of those (m, Py, ..., P,) in Gi(M) for which dim P =
=dim P? = p. If {x,} zs any co-ordinate system of M at m for which the associated p,, is
non-singular on each r (1 < w < 2) then (m, Py, ..., P,) is in the domain of the special
co-ordinate system y?, y* obtained from this {x,}.

Pennf Cirnmnacae D DY = 7ZA 1ig in tha damain Aaf tha cenanial sacardinata
r IUUJ. uu P ow \Ill, 4 1, v ,1 Z} L= W \IVIJ 10 111 Ly uvllidill Ul Ll oyuuxcu wUsUIGlLiLaley
system {y?, %} obtained from the co-ordinate system {x,} of M. Then P,, is spanned by a
. o 0 , - o
set of vectors of the form: 370 (m, Py, ..., P,_,) + t;, where each ¢, 1s a linear combination
y.
ALl o a 7. D D Ngen A 1 e T TTminmm /A 1N _G -G D e cmamian
o1 ine a7 ", ry, s, )andp + 1 S r=<d. oCneC, Oy (L1 )y Tig o Ty 1%L, is spanned
Vr
0 . . é S
hvy the (1) L ¢t where . 1¢ a linear caomhination nfthe — () chowinoe that dim P — n
by the 7= (m) + t; where £; 1s a linear combination of the === (m), showing that dim P, = p.

Now suppose that (m, Py, ... , P,) is a point of Gi(M) for which all the P2 have dimen-
sion p. Choose a p-dimensional linear subspace Q of M,, and a linear complement Q' of Q
such that the projection of M,, onto Q given by this decomposition is non-singular on each

ju Q
P2, We can choose a co-ordinate system {x,} at m such that the a—U— (m), ..., a—— (m) span
X1 X,

Q and th
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showing (m, Pl, ... , P,)is in the domain of the special co-ordinate system {y?, 3%} obtained
“““““““ ) MO A dlia (0 bV nan Alidbniiend Afban M) on alencia A xrleatlian ) A d N
llUlLl SULll dli 1./\ j’, WllCLll T e 1.&4} A4alC ODLdUICU allll L/ dd dDUVE, UL WIICLLICL ¢/ alil U/
are defined from the {x,}.
By the definition of @, P, = P{ is in the domain of the co-ordinate system {y?, y/} of
G,(M). Now we show by induction on w that (m, Py, ..., P,) is in the domain of the
co-ordinate system {y?, %) of GJ(M). Assuming this for w —1 we wish to prove

PmPy,... Py 15 NOD-singular on P,. By assumption P), = n¥, ... n§_,, P, has dimension p
and by the choice of Q and the x,, p,, is non-singular on F, hence p,, o 7%, ... n9_,, is
non-singular on P,. Using (2.3) and iterating we have

O.A.nTI.G 7[G 1w =T

g oaee IV PRSP
L 1w LAl 1=

hence the right side must be non-singular on P,, thus p, p, . p._,, is non-singular on P,
This proves Lemma (2.1).

We now deﬁne a subset S3(M)° of Si(M) analogous to G5(M)° in Gi(M). Let n} be
on {I\/f\ into c’—lnm 75(m. ol o &Y = (m

»1

1 M) into (MY: =5(m, Ll,...,up,...,Ll,...,bp,—\...,;l,...,.p,
&7, ep). We define, for each (m,e)=(m, e, ..., e, ..., €f, ..., €) a sequence
PY, ..., P? of subspaces of M,, by

Qo _. 1 1
P} - sp{eb cars ep}
DO — sni{nS =S ¥ S - PRl
PS=sp{nie .. m_(uels o, Wia o Ty ya€l )

Then we define S? (M)0 [(m, e) € S3(M)| for the associated sequence of subspaces,

po po ] hava dimencinn nl
P, ..., P, all have dimensicen pl.
S’(M)0 is an open subset of S3(M) for the following reason. In Si(M) (unlike Gi(M))
vy tmimd 1o 1 tha AAesain A€ o A A tem Alenton s d £onans s +a

yel_y puvian 1 ‘D 111 lllU UUlllalJI 01 a CO-0i Uilldlc Sy icin Ooiainea i1irom a Co-orainaic D_yybtclll
{x,} of M. One verifies easily that in the domain of each such co-ordinate system of S3(M)
the points of Si(M)° are those for which each of the matrices x> has rank p, ie.
for each w (1 < w < z) we have such a p x g matrix 1 <i < p 1 < a <d; we are using
the notation here: 6, =(0,...,0,1,0,...,0), soib,=(0,...,1,...,0).

We now define the projection map 7, : Si(M)° - GZ(M )°, under which S%(M)° will be
a bundle over G5(M)°. r, is defined inductively by:

SHM)? 5 GUM)° - my(m, ey, ..., e,) = (m, sp{eq, ..., e,}),

[o |
LV 3

n MY g 1.
all y ]

3 o efimed Lo
i @,_4 nas Cnnea oy

S SEM) - GE(M)° s m(m, e, ...,k L6, €)= (m, Py, ..., P),
where the P} are defined by

1 1 z—1 z—1
(M, ep, o, ep ., e) L mel Dy =(m, Py, ..., P_y)

Pz = Sp{nz—l*ezly rer e nz—l*e;}
or, more briefly,
nz(m’ e) = (nz—l(ma el)y Sp{nz—l*ezl, LRI nz—l*e;})
if(m,e)=(m,ei, ..., e}, ..., 65, ..., eyand (m,e)=(m,el, ... ,el, ..., ei7", ..., ek );
we shall frequently use the notation (m, €) and (m, ¢') in this way below. For inductive
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purposes we also define 7, to be the identity map of M onto M; then the definition of
above is given, in the inductive process, from n,. One verifies trivially that the sequence of
subspaces PY, ... , P9 associated with (m, e) is the same as that associated with 7_(m, ) and
this shows that z, maps S3(M)° onto G5(M)° (and not just into Gi(M)). The reason for
introducing S3(M)° and G%(M)° is that =, does not exist from S%(M) to GZ(M) since the
spans used above are not p-dimensional for a general point of S3(M). One verifies easily
that

(2.3) T om =nl0m,.

For the purpose of seeing how S3(M)° ‘lies over’ GZ(M)° in terms of the special co-
ordinate systems we are using, and thus for showing that $(M)° is a bundle over Gf,(M)O
we now determine the ranges of the co-ordinate systems {y?, y*} and {x%} obtained from a
given co-ordinate system x, of M. We shall now use the following notation. {x,}, {y?, y*}
and {x%} shall be as just described. Q, Q'%1, 07 shall be the domains of these co-ordinate
systems, and 0, 01=), 0 shall be the ranges of these co-ordinate systems, i.e. 0, OI], 07 are
the images of Q, Q'*), Q% under the homeomorphisms onto Euclidean spaces which define
the co-ordinate systems; we also write Q = Q%7 = Q% and 0 = 01°? = 0°,

LEMMA (A). The range of {y?, y2} is 0 x RPU™P) x RU+PIPE=P) 5 o RUFEIRE=D),
More precisely, for each choice of real numbers {b?, b7} such that (b3S, ..., bS) €0 there is
a unique (m, Py, ..., P,) € Q' such that y’(m, Py, ..., P,) = b? and y*(m, Py, ... , P,) =b%,
foralli,r, a.

Remark. The product RPY™P) x RU*PPE-P) o RUFP=TIPU=P) gahove is just the
Euclidean space of dimension (d — p)(1 + p)* — 1) but it will be convenient below to
consider it decomposed as above. We note that the dimension of G3(M) (and Gi(M)°) is
(d—p)p+ 1) +p.

Proof. One observes for any manifold N with co-ordinate system vy, ... , v, that for
any real numbers by, ..., b,, ..., b,,...(1 <i<p;p+ 1 <5 <e) such that (b, ...,5,)
is in the range of vy, ..., v,, say b, = v (n) for all ¢, that there is a unique p-plane P at n
with these co-ordinates, namely, the P spanned by the

0 ]
20, () + 35— pe1 S 7, (n)
Iteration of this remark yields Lemma (A).

If p and g are integers with p < g we shall write R?*4 for the open set in R?? consisting
of all matrices (a,;) of rank p, where 1 <i < p and u ranges through some set with ¢
elements. In particular then, R?*? is the full linear group.

LeMMA (B). The range of {x%} is0 x RP*¢ x Rp*(p+Dd) o RpX((p+1*"1)  prope
precisely, the following is true. Considering any set of real numbers c% satisfying the following
two conditions:

L (% ...,c%e0

2. For each integer w the matrix (c,;) defined as follows has rank p. Let 1 <i<pandu
run through all pairs (a,a) such that 1 <a<d and o= (xy,...,x,,0,...,0) and let
— )
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Then there exists a unique (m, €) € S3(M) with x,(m, e) = c} for all a and o, and the

set of all such {c}} is the range of {x5}.

Proof. This is proved by iterating the following fact. Consider any manifold N with
co-ordinate system vy, ... , v,. Consider any real numbers ¢y, ... , C,y ... , ¢, .. (1 € i< p,
1 < b <e). Suppose there is an ne N w1th v(n) = ¢, for all b and that the matrix (c})
has rank r Then there exist uni

nas ranxg - 21105 LARIC 8

v;)(nafls ,f;;) = C;, namely,

earlv indenendent ¥ f in N for which
ear mgaepengent fy, ..., f, In LV, IOr WRICh

< a uniague (m 2}
S a UIque yn, ¢;

with all x%(m, e) = c% Conversely, the c,, ¢/ satisfying the above clearly form the range of
the co-ordinate system v, v}, of S,(N) obtained from the given v, and iterating this fact gives
the statement in the lemma about the range of the x2.

Remark. The dimension of S3(M) is d(1 + p)°.

It is clear that

(S E=0
and we wish to determine the range of the x? when restricted to =] !(Q'*)). For this and
athar rescanc we wich ta ohtain formulac evnraccing the v0 n nd u* P in tarmec af tha
ULLAWL LWAOWVIRD VYW YYLIOILL LWV VU ulll LVL1IUIGT VAyLvdolllb lAW 'y o Lz u lu )/r O /L z A1l LWl il Wi o Lliv

1
x2, these formulas to hold on #n; }(Q™)). From (2.3) we have

s~ o4 N (a’,0) _ .2 \OQ
(4.92) Vr 0Ty =\Vr 0Ty q)

where o' = (o4, ..., ®,_;) and the zero superscript on the right denotes the lift of the
function in the parenthesis from S%™*(M)° to S%(M)°.

In the following we shall often give special consideration to the functions x{00::0:-0) .
letting 6,,=(0,...,0,1,0,...,0) (the 1 in the wth spot) so 5, = (0, ..., j, ..., 0); then
these functions are denoted by x®w, in our usual notation. We note that for each integer w
with 1 € w < z we have a p x p matrix (x{°w) when 0 < i, j < p. Now we prove

O om_ ) = L x{(0 o)

(2.4b)
(v} o m,_q) = x{*
We are using here our previous notation f7 for the functions of S,(N) induced from a
formula that the y?, y f G3(M) and the x¢ of

function f of N and it is understo d in thi
s .

@
r
S2( M) are the co-ordinate f1 dinate system {x 1 of M.

1 1 SRILL (Rgy O A

=
=3
Q
et
Q
=

Bpuaviy ait VUG LU

¢ e e
The range of the indices appearing in this formula is: 1gi,j<p,p+1l<sr<do =
(als ey c‘z—l)s 0 < O SP'

Proof of (2.4b). Let (m,e)=(m,ej, ..., ep, ..., €, ..., €) and 7n,(m, €)= (m, P)=
(m,P,,....PYe Q%) (m,Py=(m, Py, ..., P,_,). Then, by definition of n, and the co-

ordinates y?, y%,
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where (a;;) is a non-singular p x p matrix. We determine the a;; by
a;; = (712—1*4))’? = ej'(ylp 0oMy_1) = ejx? = xija’-
Then the preceeding formula becomes

0
oy

: 0 . .
7Tz—l*e; = Zi leaz(m’ e) a—yo (’ns P,) + Zi,a',r xlléz(m’ e)yra ’l)(ms P) (m; Pl)&

Hence
(7o 14€)yy = Y xfo(m, )y (m, P)
(m - 15€9)yi = x{*(m, &)

and these are just (2.4b) in a different notation.

We now determine the range of the co-ordinate system {x%} when restricted to
7, 1(Q"); we also find, for any fixed (m, P) = (m, Py, ... , P,) € Q%), the range of {x?} when
restricted to the ‘fibre’ n] !(m, P). These facts will be useful in several ways including:
(1) obtaining the local product representation needed to show S;(M)O is a bundle over
GZ(M)°, (2) determining the fibre of this bundle, (3) obtaining the previous two facts for the
manifolds of integrable points of S3(M) and Gi(M).

For the determination of these ranges it would be convenient to have explicit formulas
for the y? o 7, and y% o 7, in terms of the x%. We could obtain such formulas from (2.4) but
the explicit formulas would be complicated; the information obtained about them in the
next lemma will be sufficient for our purposes.

We now introduce certain functions v¥ on Q7, where 1 < i < p. These vf will depend
only on the x{ (not on the x%). We define the v? as follows:

(& o =x7;

(b) (v{’) = the inverse matrix of (x/*);

(c) for general a = (ay, ... , &) let «, be its first non-zero co-ordinate; each x/°* is
the lift of a function x;; of S;(M), hence each vf°w is the lift of a function v;; of S}(M);
we define

viim,e)=e, ... e, , Uy, =(...( e )Yw+1)..)z(m,e)
1

where, as usual, (m, €) = (m, e, ..., ep, ..., €}, ..., €2).

LemMa (O). Ifl<u<w< z then
2.5) pldurlon _Zk,i (i) Bu Wbw(ouy
where 1 < i, j, k,l,m < p.
Proof. If x;;, v;; are functions of Sy(M) related to x{%, v/%* as in (c) above (but with u

p i

in place of w) and if x;;, vj; are the lifts of x;;, v;; to S¥~1(M) then, because Yy xjv =}; .

Zk (x;{li)l(”;cj)o + Zk (xfk)o(vij) '=0
hence, multiplying on the left by (v,,;)° and summing on i,
=2 (0n)°(xi) (04))° = (v},
This is (2.5) in a different notation, hence (2.5) is proved.
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LEMMA (D). For eachr, o (p + 1 < r < d) there exists a polynomial Q% such that
(2.6) yem, = Qu(v{™, X, X]) + Yo 057 o VXY
where the w, i, j, k, B, v, @ occurring in QF satisfy:

(@) 1<i,j,k<p;

(b) we [t #0];

© B=p=0,=0 if =0

(d 0<|Bl < of;
) hl<laf;
) ol = Jal;

" (g) every term of QF contains an x! as a factor.

The sum in (2.6) is over all w = (@, ... , w,) satisfying (¢) and (f). We use the convention
here that v3 =1.

Proof. We induct on z. If z=0 we have y? = x? = x, so (2.6) holds with Q% = 0.
Now suppose it holds for all z’ <z and we prove it for z. Let o' = (ay, ... , %, _1) SO
a = (o, o). If o, = 0 then (2.6) follows from (2.4a) and the induction assumption. So now
suppose o, # 0.

From (2.4b) we have, if we multiply by v%z°z and sum on 1,
(2.7) Vio =Y iy o m,_ o).
If |oj = 1 then, since a, # 0, &’ = 0 and (2.7) gives
Yrom, =Y i)z

proving (2.6) in this case, with Q% = 0. Henceforth we suppose that {z%| > 2. Now using(2.7)
and the induction assumption,

Yeom, = Yy of P Qr (o, xf, xT)f

+ X o (L 03 v )
where

@) 1<i,jk i<p;

b)) weltle/# 0];

(€) Bi=vi=0/=0 if «=0;

@) 0<|fl =o'} =]o] = 1;

) Wi<laf=lal—1;

() o =la] =l —1,

(g) every term of Q% contains an x?’ as a factor.
Repeated use of the differentiation rule for products then gives

(1) Q¥(vi*, xf', xI') = a polynomial in the v/>, pf/o¥ 1= ' xB+10= v 1/ +10
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() Qo vl . vk x®Y =Y om0yt 192-1x@ F = plys a polynomial in the

w1 Wz -1 u)l m-_1
@b rz,d +dz '’
Dm, s Uy s Xp

where the 7, j, k, [, w, o', ', ', @', satisfy (a’) — (¢').
Using (2,5) we then see

(i) Q¥(w!®, x¥', x2) = a polynomial in the v/®, xf', xf'*mo= x1' x1'*+19z
(i) O, vt .. Z;‘_‘f"‘x, V= v L p2 719 x@ 2 plus a polynomial in the
2) ég xa,é +m5, xw

where the 7, j .k, I, w, B, 7", o, satisfy (a") — (g) and 1 < m < p. Substituting these expres-
sions in (2.7) we see that we obtain the desired form for y* . n, and that the indices satisfy
(2)—(2).

The following lemma shows that S%(M)° is locally the product of G3(M)° by (L,)* x R
where L, denotes the full linear group of p x p matrices, (L,)* denotes the product of L, by
itself z times, and ¢ = p(p + 1)* — p — zp*. 1t follows, except for showing that such local
product representations are properly related (a step we omit because it is not relevant to
what we are doing, and is only tedious to carry out), that S;(M)O is a fibre bundie over
G%(M)° with fibre (L,)* x R? (g as above).

We let 0(z) be the open set in Euclidean space of dimension p(p + 1)* — p defined in
the following way. Consider all i,  with o # 0 (i and « as usual). Define

0(z) = [(c?)l for each win 1 < w < z the p x p matrix (¢{>*) is non-singular].
Clearly 0(z) is diffeomorphic to (L,)* x R? (¢ as above).

We also define 7/: Q' x 0(z) » Q=11 x 0(z — 1), by

n((ch), (m, P)) = ((¢}), (m, P"))
where a' = (a3, ... ,a,_4), (m, P)=(m, Py, ... , P,),and (m, PY = (m, Py, ... , P,_).

LEMMA (2.2). For each (m, P)e Q' and (c¥) € 0(2) there exists a unique (m, e) e, *
(O™ such that

@ m(m,e)=(m,P);

(b) xi(m,e) =& (for all i, o« as above).
This defines a map A(z) of Q' x 0(z) into =] "(QY¥Y). This A(z) is a diffeomorphism of
O x 0(z2) onto = '(Q'). The set of such maps A(2), as z varies (but all depending on the
same co-ordinate system {x,y) is consistent in the sense that

© Az—Don, =75, A(2) on Q1 x 0(z).

Proof. Weinducton z. For z = 0 there is nothing to prove so we now assume the lemma
for all z’ < z and prove it for z. First we prove the existence of A(z), i.e. given (m, P) e Q'*
and (cf) € 0(z), we prove the existence of an (m, €) € 0° which satisfies (a) and (b). We
obtain (m, e) by determining its co-ordinates x%(m, €), then use Lemma (B) to ensure the
existence of an (m, ) with these co-ordinates.

So let (m, P)=(m, Py, ..., PYe OY, (c¢?) e O(z), and let (m,P)=(m, Py, ..., P,_,)



216 W. AMBROSE

and (c{") be the point of 0(z — 1) whose co-ordinates are the numbers (c{*?) (&' = (%, ... ,

%y 1), i-E.
n((c§), (m, P)) = ((c]'), (m, P))
Using the induction ssuriptlor we choose (1, € )en, (O '} such that

(b) x} (m, e) =cf.
We can now define certain of the co-ordinates of the desired (m, ), denoting them by 5%, by
b0 = ¢ = x¥(m, ¢)
i) b = x:(m, €)
bf=c¢f ifa,#0.
s to determine those b withp + 1 <r < dand «

First we define numbers (d{’*) by: (d{>*) is, for each w, the inverse matrix of (b
Now we use (2.6) to define the b? for which «, # 0 by induction on |¢|. We define 4% by

ab L. nl

—
CD
gs)
=}
I-s
‘:l"
7
S
I'c]
@
=
B,
l:
723
e}
~~
N
[

NI

yE(m, P) = Q% (df*™, b, bl) + Y, d%%t ... d*d=pp

HPN " - LY Lic fasemnzila Andasesanlomns 1O ofinan 4l o /,JJ:L,
1.C. uavxug, UCLCHnIcy e o nis rormuia ucwuuulcb Ur, auu.c LG LU} )

are no n-smgular Using Lemma (B) (and our assumption about the ¢?%) it is clear that there
ts a unique (m, e) in Q7 such that

..... At memntn o1 41

exists
(ii) x¥(m, e) = b’ for all a, a,
ANl ~vn ole s afian fa) nnd (LN Der £4) 378 Lrinnces 24 cntlicofine Fl) T~ ol oo
INOW show this {1, €} satisfies (a) and (b). By (i) we know it satisfies {(b). To show

Wwe
it satisfies (a) it is sufficient to prove both:

e . e) e niz]

i) =w,(m,e)e
(1I (m, ) = y{(m, P);
yi(r(m, e)) = yi(m, P).

Using (2.4b) we see that

I
Ty 1485 = 9, ¢}’ 37 (m, P+ 3
i

3

where 7 is a linear combination of the —; 77 - (m, P"); since the (c/%?) are assumed non-singular
y

¥

follows that 7.(m. e e Ozl wravine (ii1)
ollows that 7,(m, ¢) € Q' proving (iii).
Proof of (d). We have the first statement in (iv) by
Q7 s ) 07 VUSRS AN W ¢ VU 5 YA WUUINNN ¢ VAU 5
Yi \nz\m, e)) = Vi \nz—lkms €))=y;un, rr )= y;\m, r).
We have the second statement in (iv) for those o of the form («’, 0) by
YO (m, e)) = yi o 1S o m(m, €)
= yf' oM,y 0 nf(m9 e)
= y:’ ° Tcz—l(m! el)
= y¥(m, P)
"0
= ys,a )(m, P).
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Finally, for the o« = (&', &,) with o, # 0 we have (iv) by the definition of the b, i.e. inducting

i~ o

on |0t| and usmg (£.0) and that aennmon W€ prove UV)

It is now trivial that A(z) is a diffeomorphism of Q'*! x 0(z) onto = *(Q') and (c) is
trivial; hence the lemma is proved.

REDUCTION THEOREM. Let (m, Py, ..., P,) be in GYM). Then (m,Py,...,P) is
integrable if and only if, for each w < z — 2, the point (m, Py, ... , P,,1,) is integrable over
Gy(M).

~ 0

Proof. We first note that (m, Py, ... , P;) € G3(M)" by showing
* #b .7 P, =P, (<wsg2).
This holds because integrability of x(m, Py, ..., P,) over Gy~ *(M) clearly gives
a8 _, P, =P,_
and iteration of this gives (¥).

We now proceed by induction on z. For z = 2 this theorem is immediate so we now
assume z > 2 and prove that if it is true for z — 1 then it is true for z. Consider our given
(m,P)=(m, Py, ..., P,) € G(M)° as in the statement of the theorem. By the induction
assumption there exists a non-singular map A of an open Q in R? into M such that A'(q) =

(m,P). We then define (m,e)=(m,ef,...,eh ..., €5 ", ..., &5 )by A(q) = (m, ¢).
Because 1, _; A7~ ' = A"~ it is clear tl“at ,_1(m, &) = (m, P’) Since (i, €'} is integrable,
by the way it was defined, we have, for th w+2<z—1,that(m, e, ..., e, ..., e "7,

e} ") is integrable over Sy(M).

We now proceed as follows. We shall define ¢}, ..., €} € S3™ (M), such that

(@ (m,e)=(m,el,..., e, ..., e, ..., e) is integrable over S5~ *(M)
hence, combined with the preceding, for each w with w + 2 < z, the point (m, ey, ...,
N wt2 SWH2Y s ot Tl s SY(M). Bv Lemma (1.3) this implies (302 2\ 30
(:p, eer g 61 s vee s Cp ) 1> lllLCs dAIC OVCL p\lVl} Dy LCIL \L.9) lllb LHIPUOS \/7i, €) 1>
integrable over M. Furthermore, the €], ..., ¢; will be so chosen that

1.\ PR SR WY U "\
{b) =mA(m, e} =(m, P).

This plus mtegrablh of (m, e) will prove (m, P) is integrable since if 4%(q) = (m, ) then
A¥(g) = n(m, ) = (m, P). Hence it will be sufficient to obtain ¢, ... , eZ so that (a) and
(b) hold.

Now choose B, a non-singular map of an open Q in R into G5~ *(M) such that

(B"™(g) = (m, P)

We now wish to obtain a local cross-section y,_, of S3~

o

2(M)° such that both the following

hold:

(1) (m P Ne{m e " -2 Lz 2)

\z/ Az 2\'”:Jl 12 vvr s L z-2) = U7ty €1, s Epsy > €1 s sCp )

(i) (-2 0 B)'(@) = (m, &).
T 2o ~lane famane T oo o X W TP R timvism~os wars Fate
It 1§ Cicar 1rom Lemima \4 <) \tera lllg lL) that we can achieve \1} SO W€ suppose we nave
that and now show how to modify a x,_, satisfying (i) to obtain one satisfying both (i) and

Kl

. / \
(i). Letvy, ..., v, be the elements of G5~ (M) (m, Py, ... , P,_,) such that B, t——- (q)) =,
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Since $272(M)° is a bundle over G, *(M)° we can choose another cross-section y,_,
satisfying (i) and

(i) yo-owt;=€""' I<i<p.
Tt is then clear that (ii) holds.

We now define ¢, ..., e; by

: a
= (oo B2 @)
Ju;
ie., by
(m,el, ....ep ..., €, ..., €)= (20 BY(a)

so it is clear that (a) holds. It remains to prove that (b) holds.

To prove (b) we note the general fact: if y is any local cross-section of S;Y(M)O over
G»(M)°® and B any non-singular map of an open Q in R” into G%(M)° then

(© B =7n,.100m0B)"
This holds because if (m, e) € S3(M)° and e}’ € SH(M)(y, .
then

é 0
B*(_ ((1)) = (T[w o Xwo B)* (_ ([I))
du; Ou;
" (0
=T, (XWB)* a_ (q) .
u;
)

ou;
e s ey, sp{m €Y, ..., T,e€y}), this proves (c).

Since B''l(q) = (q, sp{

1 w—
€ps eee s €1

(q)}) and m,.,(m, e, ..., e, ..., els .., ) =(m (m, e, ..o

1
Applying (c) again to B! gives
(m, P) = B q) = 7, o (-1 - B™)' (@)
=7 0(fzoy0Mamyo(fzmzo BHY ()
=17, o (fz-2 0 BYH(9)
= m,(m, e).
This proves (b) and hence the theorem.

§3. INTEGRABILITY AND LIFT FORMS

The reduction theorem of the previous section reduces certain integrability considera-
tions about points in G(M) for general z to the case, z=2. We now turn to the case,
z =2, and find an intrinsic condition for a point of G%(M) to be integrable. Combined
with the reduction theorem this will give us an intrinsic criterion for a point of G3(M) to
be integrable. This will enable us to show that the integrable points of G;(M) are a sub-
manifold of G%(M), and that IS3(M) is a bundle over that submanifold.

Our intrinsic condition for integrability will be in terms of what we call ‘lift forms” so
we begin by discussing these. We shall use the following terminology. By a 1-form on M



HIGHER ORDER GRASSMANN BUNDLES 219

we shall mean a function w on the tangent vectors to M, linear on each tangent space, and
defined on all tangent vectors at all points of Af; so w 1s really a function on the tangent
bundle to M. And we use the corresponding terminology for higher degree forms. If

me M then a 1-form af m will mean a linear function on M : a 1-form of M will mean a

vi eIl a 11071 di wiii INCall Acal ILICl my < 2-iOMIL OF 54 Jaiame a

1-form on an open submanifold of M. And similarly for higher degree forms.

'8 vat 4 110

DErINITION. Let (m, P)e G,(M). A lifi form at (m, P) is a I-form w at {m, P) with the
property: o(t) =0 for all t € G,(M), p, such that n.t € P, where n = 1§ = 1[G, (M) — M].
Alift form on G ( M )!v a fnrm on GAM which is a hft at each point nff' (M)

110 % S i AR cLLn p\iE .

We note that the set of 1-forms at (s, P) which are lift forms at (m, P) is the annihila-

tor of the subspace n{; '(P) of G,(M) hence an element of G,(M), p, projects (under n$y)
into P if and only if it is annihilated by all lift forms at (m, P). As a consequence we obtain

LEMMA (3.1). Let (m, P, Q) € G5(M) and = = 5. Then n,,Q = P if and only if (m, P, Q)
€ GX(M)° and all lift forms at (m, P) vanish on Q.

Proof. If m,Q = P then clearly (m, P, Q) € G,(M)°, and all lift forms at (m, P) vanish
on Q, by the definition of a lift form. If all lift forms vanish on Q then the above remark
shows each element of Q maps into P and then, because (m, P, Q) € G5(M)° we have
Q= P.

We call the above forms ‘lift forms” because of the following property: if 4’ is any map
of an open 0 = R” into G,(M) such that n§ o 4’ = A is non-singular, then

A" = A" if and only if w o 4% = 0 for all lift forms .

Proof. First suppose A’ = A1, hence A'(g) = (g, A,(0))) for g€ 0. Let » be any lift
form and we wish to show that w vanishes on 4.(0). So let z € 4,(0,), thus ¢ is a tangent
vector at (g, A4(0,) (using A’ = A")). Then n§o A" = A implies n§ A} = A, hence
nixt € A4(0,), so w(r) = 0, by definition of a lift form. Now suppose that w - A} = 0 for
all lift forms w. Then A;(0,) = the annihilator of all lift forms, hence 4,(0,)) = P’ is a
p-dimensional subspace of the tangent space at A'(g) = (m, P) and projects to P under

1Sy, e n8 Al = A, 50 (¥ 0 A)y = A, 6. A = A",

We shall denote the set of integrable points of Gi(M) by IG;(M). One aim of this
section is to prove

THEOREM (3.1). A4 point (m, P, Q) € GA(M) is integrable if and only if (m, P, Q) € Gf,(M)0
and every C® lift form w on G,(M) has the property that w and dw vanish on Q, i.e. that
() =0 and dw(s, t) =0 for all s, t e Q.

We also wish to prove:

THEOREM (3.2). IGX(M) is a submanifold of G3(M) and IS%(M) is, in a natural way, a
bundle over IG2(M).

The proofs will depend on co-ordinate expressions for the lift forms, co-ordinate con-
ditions describing I(‘ (M), etc. so we begin by obtaining co-ordinate expressions for the

lift forms. In the followmg {x,} will be a co-ordinate system of M and y?, y{ the associated
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co-ordinate system of G (M), with 1 <

amentint 22 dlan dmianndin Al tl o am o aa Tl nda
PULLLL 111 LT UUlladlll Ul these LuU~Ul ulu'atc

Then 7§t € P if and only if n§,t is a linear combination of the

d . d
€= 5_x,(m) + Zr y;l'(my P) a_x, (m)’

Since
0 0
nfl;* 2.0 (m’ P) = e (m)
Y¥a Yia

this shows that n¢ e P if and only if
SP_ eyim,P)=c, foraiir.

We define »,, a 1-form of M, by

o, =3P yidy? —dy?, p+l<r<d.
Then

wr(t) = zs-;l y;(ma P)ci - ¢

hence n%,t € P if and only if all w,(f) = 0. Hence on the domain of this co-ordinate system,
w is a lift form if and only if

W= Zf=p+1 S, = Zr fr(Zi yidy? — dy))
for some functions f,. This shows that C® lift forms exist and that if w is a lift form at a
point of G,(M) then it can be extended to a C* lift form on the whole of G,(M).

LemMma (3.2). Let {x,} be any co-ordinate system of M and {y}, yI*} the associated
co-ordinate system of GX(M) 1 <i<p,0<jk<p,p+1<r<d). For points (m, P, Q)
in the domain of this co-ordinate system each of the foilowing conditions is equivalent:

(@ ¥%m, P, Q)= yFVm, P, Q);

(b) 780 =P;

(c) alllift forms at (m, P) vanish on Q.

Proof. The equivalence of (b) and (c) follows from Lemma (3.1) and the fact, from §2,
that all points in the domain of a special co-ordinate system of GZ(M) are in G3(M)°.

Now we prove the equivalence of (a) and (b). We shall use also the co-ordinate system
{y?, yi} of G,(M) obtained from {x,}; and we shall use the projections p,,, p(m,ry defined in
§2 from these co-ordinate systems. Throughout the calculations below we write = for =7

From (2.2) and (2.3) we have

G 6
[n*a;)(m,P)=5;(m)

0
\

G,
'TL’* w (m, P) =0
L Oyr

(i) 7y 0 P(m,p) = Prm © -
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We let e; be the element of P that projects to —6—0— (m) under p,, and f; be the element of
X

5]
Q that projects to e (m, P) under p,p) 80,

i

? ,. 9
(iii) e = o, (m) + Y., yi(m, P) P (m)

. 0
() fi= gsm, P) + Topom, P, Q) 5 P

Now we"show
(v) mn,Q = Pifand only if n, f; = e, for all i.

Proof of (v). If all n.f; = e, it is clear that n,Q = P. Now suppose n,Q = P. Then
by (i), (iv) and (ii),
0 0
Puaf) = (Mg o P, py)) i = Tx a—y? (m, P)) = 5x—, (m).
Since p,, is non-singular on P, f; € Q, and =, Q = P, this implies n¢, f; = e;, proving (v).

Now we finish the proof that (a) is equivalent to (b). From (i) and (iv) we have
G a Q,i a
nl*fi= - (m)=2r yr'(m7 P» Q) (m)
Ox; ox,

Comparing with (iii) we see that n, f; = e; (for all i) if and only if y®(m, P, Q) = yi(m, P)
(for all i, r) and since yi(m, P) = y-°(m, P, Q) this shows that y-°(m, P, Q) = y*(m, P, Q)
(for all i, r) if and only if =, f; = e; (for all {). Using (v) this gives the equivalence of (a)
and (b), and hence proves the lemma.

LemMA (3.3). Let {x,} be any co-ordinate system of M and {y?, y/'*} the associated
co-ordinate system G2 (M) the following conditions are equivalent:

@) for all C* lift forms w on G, (M), both w and dw vanish on Q, i.e. w(s)y=0 and
da(s, £) =0 for all s, t € Q;

(b) yMm, P, Q)= (m, P, Q) forall j k,r (0<j,k<p p+1<r<d).

Proof. Because all C* lift forms on G,(M) are, locally, linear combinations with C*
coefficients of the

o=y, ydy? —dy? (p+1<r<d
we see that (a) is equivalent to

(a’) each m, and dw, vanishes on Q.

i)
For 1 < j < p let f; be the element of Q such that p,, p,f; = 50 (m, P), so
Vi

() dw, =0 on Q if and only if dw,(f;, f;) =0 for all j, k, r.
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Clearly
dw, =Y -y dy,dy}

dwr(fj’fk) = Zi in(fj)d,V?(fk) - Zi in(fk)d)’?(fj)
= Zi yi’j(m, P, Q)0y — Zi J’£’k(m, P, Q)éij
= ypi(m, P, Q) — y["(m, P, Q).
Combining Lemma (3.2) with (a’), (¢) and this calculation we see that this lemma holds.

hence

TueoreM (3.1). If (m, P, Q) € GXM) then the following conditions are equivalent:

(1) (m, P, Q) is integrable;

@2 (m P, Qe Gf,(M)o and for every C* lift form w on G (M), both w and dw
vanish on Q;

3) if(m P, Q)eCG (M)O and {y?, y/*} is a special co-ordinate system at (m, P,
Q) then y/*(m, P, Q) = yii(m, P, Q) forallr, j,k O <jk <p,p+1<r<d).

(4) There exists an (m, €) € IS3(M) such that n,(m, ) = (m, P, Q).

Proof. By Lemma (3.3), (2) and (3) are equivalent, so it will be sufficient to show that
(e) implies (4), (4) implies (1) and (1) implies (2).

Proof that (3) implies (4): Applying (2.4), (2.5), (2.7) one has, in the notation of §2,

ifl<i,j<p,
Poomy =Y vpxy°

(3.1) ,’Aonz—Zvo' O
,Vi i, M, = _Z vOjvn()quULOXMO +ZD0_]UlO m,1
(This is the explicity expression, for the case z = 2, of (2.6)). The summation indices in the
above are /, m, n, u and satisfy 1 <, m,n, u < p. We know by Lemma (2.2) that for any
choice of numbers (c/*) (1 < i < p, 0 < j, k < p) such that the p x p matrices (¢/°) and (c2*/)
are non-singular, there exists a unique (m, e) € Si(M) such that n,(m, e} = (m, P, Q) and
xi*(m, e) = cf*. We now consider any fixed set of such numbers ¢/* with the additional
property: c¢j* = ¢ (for all i, j, k). (For our purposes it would suffice to make a particular
choice, e.g. ¢/'® = ¢i° = §,; and all other ¢/* = 0.) Using that yj(m, P, Q) = y;"/(m, P, Q)
and (3.1) it then follows easxly that the (m, e) obtained with this choice of the ¢/* satisfies
xP*(m, ) = xBI(m, e)

for all a, j, k. Hence, by Theorem (1.1), (m, e) € ISZ(M), so (4) holds.

Proof that (4) implies (1). If A is a map of an open 0 = R” - M which is non-singular
and with 4%(g) =m, e) then, because A} = 1, o 4% we have A1*)q) = (m, P, Q), proving (1).

Proof that (1) implies (2): Let 4 be a non-singular map of 0 (open, in RP) into
M with A™¥q) = (m, P, Q). Let w be any C* lift form on G,(M). Then, by Lemma (3.1),
w o AL = 0 hence dw - AL = d(w - AYY) = 0. In particular, applied at A" (g) = (m, P),
this says @ and dw vanish on Q. Hence the theorem is proved.

Remark. Tt is clear from the proof that it is equivalent to state (3) for all co-ordinate
systems or for a single one.
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LeMMA (3.4). IGY(M) is a submanzfold of Gi(M)° of dimension p + (d — p)(p,). If {x,}
is any co-ordinate sysiem of M and {y?,y"} the associated co-ordinate system of G{(M), with
domain Q'%, then

[z SR

- ]}y (i, r}—}‘ {#1, r)
for all permutations = of {1, ..., z}].

Y7

Proof. The first statement is immediate from the second. We prove the second by
induction. For z =0 or 1 it is immediate; for z = 2 it was proved in Theorem (3.1). We

now assume it forz — 1 > 2 and prove it for z. Rv the reduction theorem of S') we know

that (m, Py, ..., P,) € Gi(M) is 1ntegrable if and only if (m, Py, ..., P,_ ) EIG;_l(M) and
(m, Py, ..., P,) is integrable over G5~ *(M). For points in Q' the first of these is character-
ized by y®® = (.0 (using our induction assumption) for all «’ = (a4, ... , &,_,) and
permutations 7’ of {1, ...,z — 1}. And the second is characterized by y*"/"* = @1 for
all «” = (ay, ... ,%,_,) and all j, k. Together these give the desired condition for z, thus
proving the lemma.

DermNiTiON. We define a 1-form 0 ofG (M) to be a lift form of G3(M) if and only if it
can be expressed either as 0 = w o (n8 ... 7%, 1), where is a lift form of Gy(M), considered as
G (G}~ U(M), (for some wwith | <w <z — 1), or as a lift form of G7,(M) over G5~ (M).

COROLLARY. The point (m, Py, ..., P.) € G(M) is integrable if and only if 0 and df
vanish on P, for all lift forms 6 of G5~ *(M).

Proof. Immediate from Lemma (3.3) and (3.4).

For the proof of Lemma (2.2) we defined a certain open subset 0(z) of Euclidean space
of dimension p(p + 1)* — p We now consider the subset 0,(z) of 0(z) consisting of all those
{c¢}) € 6(z) such that ¢f = ¢]* for all permutations 7 of the integers 1 through z. So 0,(z) is
naturally diffeomorphic to the space Lp x R where L, is, as above, the group of non-

sineular » % p matrices, and f=p(p. — DN —p 2 - p(p. —p~— ]\ The followine lemma
mgular p X p matrices, and plp. p plp, —p following iemma

contains the essential part of the proof that IS3(M) is a bundle over IGi(M) with fibre
L, x R'. We omit, as before, the proof that the strip maps of the type given by the following
are properly related (it is easy and not necessary for us). Again we assume a co-ordinate
system {x,} given for M and use, in the following lemma, its associated co-ordinate systems
for Gi(M) and S%(M), and with our usual notation for those. We let, as before, Q'] and
QF be the domains of those co-ordinate systems.

LemMA (3.5). If A(z) is the map of Lemma (2.2) then the restriction of A(z) to
(G NV IGYM) x 0y(2)) is a diffeomorphism of the space onto 7] *(Q!1) M) IS%(M).

Proof. The proof consists in performing an induction, essentially the same as in the
proof of Lemma (2.2), to show that A(z)(m, e) € IS;(M) if and only if (¢}) € 0,(z). We omit

,,,,,,, . L TR TN

UCld.llb UCLdubb‘ of the close SlHllldIlLy witl the prckus pI'OOl

From Lemma (3 4) we see how to obtain, for each co-ordinate system {x,} of M, a
1
1

cacnrdinate cuctam WAy AF 102 whara the rances of thece indicee are - § o
WUTULULLA LY DY OLwlll 1_}/' P .yrj UL aAg \JV‘ }, Yyliviuw Liiv lalls\io Wi LLIVDL 11IIUIVLD dlo ., =i = P’
p+l<r<di=(y,...,4,),0< 1, <z > 1, <z Wedefine y} to be y* where a is any

superscript such that, for all , the number of «,, which equal i is A;. These co-ordinate
systems will be used often.
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4. HIGHER ORDER GRASSMANN BUNDLES AND THE KURANISHI
DIFFEOMORPHISM THEOREM

We now wish to define the analogs of S,(M) and G (M) for higher order contact and
shall denote those for zth order contact by “S,(M) and *G,(M). We shall then establish a
natural diffeomorphism between *G,(M) and IG;(M); from our point of view this diffeo-
morphism carries the information that a higher order system of partial differential equations
is equivalent to a system of first order partial differential equations. It also provides an
essential structure on *G,(M).

We first discuss “S,(M). The elements of “S,(M) will be certain bases of the spaces of
zth order tangent vectors at the points of M and we now explain just which bases. If A4 is

d
o (@)

(la] < z) of z the space of zth order tangent vectors to R” at ¢ onto a base of a zth order
tangent p-plane to M at m and *S,(M) is to consist of all such bases at all points of M. We
would like to characterize such bases intrinsically, without reference to such an 4. We shall
do this in the following way, which does eliminate 4 but depends upon IS3(M), which is
also not intrinsic to *S,(M). In fact our definition of “S,(M) will make it only trivially
different from IS;(M) and for this reason “S,(M) does not seem of great interest.

Each (m,e)=(m, e}, ..., e, ..., €, ..., &) € S3(M) gives, by §1, a family {e,} of
tangent vectors (of zth order) to M at m. This set will be linearly dependent and if (m, €) e
IS3(M) then various members of this set will be equal. More precisely, if (m, e) € IS7(M)
then e, will equal e, if and only if § is a permutation of a. For such families {e,} we now
make a change of notation to eliminate this redundancy, i.e. we shall change to a system of
subscripts in which different subscripts will indicate different (zth order) tangent vectors. We
shall always use the letter 4 to denote a p-tuple of integers (4,, ... , 4,) where each 4, satisfies
0 < A4; < z. Then to each o as above we assign A = A(x) where 4; = the number of w for
which a,, = i. Clearly, if (m, e) € IS;(M) then e, = ¢; if and only if A(x) = A(f) so we now
associate to the sequence {e,} the sequence {e,} where the ¢, are defined by ¢, = ¢, if and
only if 4 = l(a). Clearly {e,} is a base of the zth order tangent space to M at m. We define
2S,(M) to be the set of all bases of zth order tangent spaces to M at all points of M, i.e.
*S,(M) is the set of all (m, {e;}) where {e;} is obtained from an {e,} obtained from an
(m, e) € ISE(M) as above.

We now put the differentiable structure on *S,(M). Recall our map H of §1, from
Si(M) to families (m, {e,}). Then we define a map K of IS3(M) to *S (M) by K(m, e) = the
(m, {e,}) associated with H(m, e) = (m, {e,}) by the preceding paragraph. Because H is 1:1
it follows that K'is 1:1. We put on “S,(M) that differentiable structure carried over via K
from our differentiable structure on IS%(M). This completes our definition of *S,(M).

Now we discuss the higher order Grassmann bundles *G,(M). The elements of *G (M)
are to be of the form (i, ?P) where “P is the ‘right kind’ of zth order contact space at m. We
could define the ‘right kind’ of a ?P to be one of the form 4, V, where V is all tangent vectors
of order <z at a point of R?, and A4 is a non-singular map carrying that point to m; we could
also define it to be the span of the e, belonging to a point (m, {e;}) of S, (M). We prefer,

a non-singular map of the open 0 < R? into M with A(g) = m then 4, maps the bases
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however, to define it through the local ring of M, because that is more intrinsic. Our

AAAAA 1 vra1las o VRS, _4..,
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R,, be the local ring of the mamfold M at m (i.e. the C* functions at m, or the ring of germs
of C* functions at m, or an eq ﬂlenﬂ We shall define the rwhf kind’ of 2P to be the

space of linear functions on R, Wthh annihilate the ‘right kind’ of ideal in R,. We now
motivate the definition of the ‘right kind’ of an ideal in R,,.

If N is any p-dimensional submanifold through m € M it gives rise to a certain ideal
I, in R, namely I, = all germs of C*® functions on M which vanish on N. We would like
first an algebraic characterization of those ideals I in R,, which are of the form 7y for some
such N. One such characterization (though non-algebraic) is: there exists a set of generators
Jo+1> - » fa of Iy whose differentials are linearly independent at m. This definition can be
rendered more algebraic to the extent of being phrased purely in terms of the local ring R,,,
in the following way.

One can first give the definition of a germ of a C*® vector field and a C* differential
form at m, in terms of R, i.e. defining V,, = the algebra of derivations of R,,, and D,, = the
space of R,, — linear maps of V,, into R,,. It is easily proved that V,, is naturally isomorphic

w . .
to the germs of C™ vector fields at s and D, to the germs of c® differential 1-forms at m.

If fe R, we also define dfe D,, by df(X) = Xfforall Xe V,; thus dfis an R, linear map
of ¥, into R,. Then the statement made above, that the differentials of f,.,, ..., f; are
linearly independent at m translates to: for each choice of real numbers ¢, .4, ... , ¢4, not
all zero, d(}_ ¢, f,) does not map V,, into 1,,, where I,, is the maximal ideal of R,,. This gives
a rather weak characterization of those ideals 7 in R,, which are of the form I, for some
p-dimensional submanifold N through m, but we shall use it and shall call such ideals
p-ideals.

DEFINITION. A p-ideal in R, is an ideal I for which there exists a set of d-p generators
Jo+1> -+ » fa with the property that for each choice of real numbers c,. 1, ... , ¢4, not all zero,
d(}_ c.f,) does not map V,, into I,,.

It is trivial that every p-ideal is an I, where N is a p-dimensional submanifold through.
m. Now we note that the local ring of such an N at m, which we shall denote by R,(N), can
be constructed from 7, without reference to N itself, i.e. we have

(a) R, /Iy~ R,(N).

We have this because the restriction homormorphism J: R,,— R,(N), is onto and has
kernel Iy. Also, under the isomorphism (a),

(b) IL/Iy =~ 1(N)
where I,() is the maximal ideal in R, (N). The space of kth order differentials of N at m is,
by definition, I,(N)/I,(N)**!. This is isomorphic to I,,/(I**" + I,) because we have the
natural homomorphisms
Ly = L(N) = (LT[ (L I .
The composite here is onto and its kernel is IX** + I, hence
[m(N)/Im(N)k+ ! ~ m/(Irlr‘l+ ! + IN)'
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Thus the zth order tangent space to N at m is isomorphic to the space of linear (over R)
functions / from R, to R which have the properties: (1) I(f) = 0if fis constant (i.e. f is the
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germ of a function constant on a neighbourhood of m), (2) I(f) = 0if f e I¥*! + I,

DEFINITION. A zth order p-ideal at m is any ideal in R, of the fnrm I+ I"+1 where 1
is any p-ldeal in R,,. A zth order p-space at m is any dual space of an /(I + I2') where I
is any p-ideal in R,. We shall sometimes denote the dual space of I /(I + IZ*Y) by
(La/(I + I D)™

A linear function on I,,|(I + I%"!) can naturally be identified with a linear function on
I,, which vanishes on [ 4+ IZ'*. We can then extend this function uniquely to a linear
function on R,, which vanishes on C, where C is the germs of functions constant on a
neighbourhood of m. Thus a zth order p-space at m is essentially a subspace of the linear
functions from R,, to R which is the annihilator of some C + I + IZ*!, where Iis any p-ideal

- A § VN min Z Y £ o oale ,.4. -“ o~ A § §. P VESRIYS PRI I » JEPU
at m. vwe bﬂdll ubuauy W[lLC f oL ¢ [0 4 Ztin O pcu.,c YWC IWULWC LidL dSulli ¢ £ 15 4
linear space over R of dimension (d—p)(p, — l) may have I + IZ*! = J + IZ+! with

I and J distinct p-ideals, however, in this case eac

a1l LY pRIlals, IO acl

hel?*! so Iand J have the same elements if we neglect higher orders than the zth.
e define *G_(M) to be the set of all (m, *P) where m is any point of M and P is any

S AN

zth order p-space at m. We have projection mappings *n% : (M) - *~1G (M), defined by

,fc T'hags the form g+ h where ge J and

las LUe 1001 aLiv o J all

n%(m, *P) = (m, span of all tangent vectors of order < z — | at m which lie in *P).
One must show for this that span of this set of tangent vectors is a (z — 1)st order p-space but
this is easy because if *P is the annihilator of C + F + IZ7! then this set is the annihilator
of C+14+ 1.

Let {z,} be any co-ordinate system of M with domain Q and we shall define a co-
ordinate system for *G,(M) consisting of functions {w?, w}} with i, r, 1 satisfying 1 <i < p,
p+l<sr<d A=y, ...,4,),0<2 <z Wealsodefine |A] = (};A;and 2! =4, ... 4,1,
Let N be the submanifold of M consisting of the slice, defined through this co-ordinate
system by

N =[meMix,, (m)=...=x4m)=0]
and < be the projection of Q into N defined by : if m has co-ordinates (cy, ... , ¢;) then 1(m)
has co-ordinates (cy, ... , ¢,, 0, ... ,0). Let “Q be the set of all zth order p-spaces (m, *P)
such that m € Q and *P has the form
zZD ¢ z+1 ANk

=U. (I, + D)
where I is a p-ideal having a set of generators of the form
fp+1 =Xp+1 —Gp+1°7T5 ... JJa=X4— g4o1

where the g,. 1, ... , g4 are C* functions on N. Wethen define the functions w7, w} |4| < zby,

Although neither I nor the g, are uniguely determined by *P (even when the x, are given) it
is trivial that these derivatives of order < z are independent of the possible choices of I and
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the g,. Said in other words, if *P = (I,/(I + I%*1))* and if I = Iy, then, for (m, *P) e *Q, N’
is locally the graph of certain functions g, on the slice N, and we define the co-ordinates of
P to be the derivatives of these g, of order < z, in all co-ordinate directions of N. Clearly
the dimension of *G (M) is p + (d — p)(p)..
We have a natural projection map *n : *S,(M) — *G (M), defined by
'n(m, {e;}) = (m, sp{e;}).

It is clear that this span is a zth order p-space for these e, come from an integrable point
(m, e) in S3(M) and if 4 is a non-singular map of Q = R? into M with 4%(g) = (m, e) then
?P = A, (the space of tangent vectors of order < z at g). It is also clear, in the same way,
that *z maps *S,(M) onto *G,(M).

THEOREM (4.1). (Kinanishi factoring theorem). There exists a unique 1:1 map L of
IG,(M) onto *G,(M) such that
Lo n,= - K.

This L is a diffeomorphism and L o nl = *1% ; L (the L on the left side being that associated
with z — 1).

Proof. To prove the first statement we shall prove, if (m, €) and (m, e*) are any points
of IS5(M), that

(@) (o K)(m,e) = (*n - K)(m, e*) if and only if n,(m, €) = n(m, e*).

This clearly gives the existence of L and the fact that L is 1 : 1. Because n,, K, *n are onto
it is then trivial that L is onto. Hence to prove the first statement of the theorem it is suffi-
cient to prove (a).

For this we shall need the following fact: if {x,} is any co-ordinate system of M and
{x2} and {y?, y?} the associated co-ordinate systems of Sy(M) and G;(M) then, for all a,

0
(i) 5;(—0(}’3'0752)=0 if l<i<pp+l<r<d
We prove this by induction on z. For z = 0 it is trivial. If true for z — 1 then (2.6) shows

it is true for z, hence (i) is proved.

Because (*n o K)(m, €) = (i, “P) where *P is the span of the e, obtained from (m, e) we
see that (a) is equivalent to

(a") sp{e,} =sp{e,} if and only if n,(m, ) = n,(m, e*).
We now choose, using Theorem (1.1), a co-ordinate system x, at m such that

0
dx,

(ii) el = (m) for ali «

Because the sets sp{e,} and sp{e,,} have the same dimension we see that (2’) is equivalent to

. L d . .
(a") each e, is a linear combination of the Tx (m) if and only if n,(m, €) = n,(m, e*).
Xp
Since every e, is expressible as in (1.2) we see that (a”) is equivalent to

(a") e,x; = 0if one or more B, is greater than p if and only if n,(m, e) = n(m, e*).
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Then, because the set {¢,} contains all the eg,, in the notation of §1, we have, still assuming

that {13} halde (a”) ¢ aqanivalant t+a
wia \ll) 11VUIUO, \a } 19 v\iulVﬂl\«llL w

(@) ex,=0forallaand r(p+ 1 <r <d)ifand only if #,(m, e) = n (m, e*).

Proof of (a™): We induct on z. For z = 1 (a') is the statement: if ey, ... , ¢, are linearly

. . . 0 .
independent vectors in M,, then e,x, = 0 for all r if and only if sp{e;} = sp{ oy ( m)}. This
i
is trivially true. So we now assume (2'") for z — 1 and prove it for z.
Clearly either of the conditions, n,(m, e) = n,(m, e*) or °n -« K)(m, €) = (*n - K)(m, &¥)
implies (m, €) and (m, e*) are both in the domain of the co-ordinate system {x%} so we only

nand Aanad idavr guin I minto MNanely Frome

P LTV o 76y chaurg -
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virtue of condition g) of Lemma (D) that all y¥=,(m, e*

L1 n ~ 11 _ar_. IS gy ds 3 A NN TR g SV, S U | _L of _ (. ANY n
liaie,x, =y, i.e. all xi(m, ¢) = 0 then (2.6) shows (again using gt y,.\n {m, ¢j) =V,
hence n,(m, e) = n(m, e*). On theother hand,if n,(m, €) = 7, (m, e*) t h enall y¥(n(m, €)) =0
1d an easy induction on |o| (z being fixed), using (2.6), and condition (e) nf‘ Lemma D,

=0, i.e. all e,x, = 0. This proves (a') and hence (a)
Tha ramainder af Thearam (4 1) 1c now eacily nravad far ana nravac ancily that
PO VIV RISV I*SSVAVAND § Av S A LAWw LWL \—l' A/ s ) LI VY \/“UILJ 1 AV R AVAN i1Vl Vilw Pl Uywo waoll Liiqan
wlo L =y?and w} . L = y%if A = A(2) (in the notation of the beginning of this section) and

if these co-ordinate systems are defined, as previously, from the same x, of M. This shows
L is a diffeomorphism. The remaining relation is trivial. Hence Theorem (4.1) is proved.

§5. PARTIAL DIFFERENTIAL EQUATIONS AND THEIR CHARACTERISTICS

DEFINITION. Let M be a d-dimensional manifold, p any integer satisfving 1 < p < d, and
z any integer < 1. A system of zth order partial differential equations for a p-dimensional
submanifold of M is a subset E of *G,(M).

DEFINITION. A solution of a system E, as above, is a p-dimensional submanifold N of M
whose lift VAN, which is a submanifold of *G (M), lies in E. Here "IN is the natural lift of N
into *G (M), i.e. it is the submanifold of *G,(M) consisting of all (n, “P) where n € N and *P is
the zth order tangent space to N at n.

Usually the system E is given as the set of common zeros of a family {F,} of functions
defined on a part of *G,(M) and one then says that E is defined by {F,}. In fact, one usually
defines the system to be the family {F,} and then considers two systems {F,} and {G,} to be
equivalent if they define the same £. Since the notion of a solution depends only on E and

..... if Liq otye wea can alwave ind a family that defineg it fa o by changing all fivnotiang
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that vanish on E) we have defined the system to be just E. However most theorems in this
subject depend on properties of the family of functions which vanish on E.

We point out the relation of our notions to the classical notions. Suppose we are given
a system of zth order partial differential equations in the classical sense, i.e. a family of
expressions

™ okt s sty Gy e s Gy e sy e ) =
\ r i ou, )
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where A runs through some set (usually finite and most often the integers from 1 through q),
A= ().1, PPN /’Lp), Zi Aﬂ-i <z, and

a). al. éup

ou, oub oupr
One calls the u; ‘independent variables’, calls the g; ‘unknown functions’ and defines a
‘solution’ to be a set of functions g; for which (*) holds.

We translate this to a system in our sense. Let M = RP*?and uy, ..., Uy, DE the usual
co-ordinate functions on R?*4, This co-ordinate system for RP*? gives us, as in §4, a
co-ordinate system {)7, y/} for *G,(M) (in §4 these were denoted by {w?, w}}. Then the
above functions f, give, via this co-ordinate system, functions F, of *G,(M), defined by

0. 0, vo . v )
» oo s Yps Ypris oo s Ypigs oo 5 Yoo o)

(The domain of the F, will be that part of the domain of the co-ordinate system {y?, yh
which maps, under the homomorphism defining this co-ordinate system, to points in the
domain of the f,.) We define the system E to be that defined by these F,. It is easy to see

hnf anv solution (in our sense) N of this E will lie in R?*9 ag the eranh of 2 map from part
hat any solution (in our sense) N of this E will lie in R?"? as the graph of 2 map from part
of R? to R? and thus will give g functions g,, ... , g, of p real variables, and these g; will be a
solution (in the classical sense) of (*). In fact, if g,. ..., g, are any C* functions defined on

an open subset 0 of RP then (*) is just an analytic expression of the fact that the graph N
of the map from O to R? defined by these g; has its lift {?1V in the E defined above, via the
F,, from the f,.

The Kuranishi factoring theorem shows every system of zth order partial differential
equations is ‘equivalent’ to some system of first-order partial differential equations. For
this we first note that IG3(M) is ‘contained’ in G,(IG%™'(M)) sense that if (m, Py, ..., P,) €
IG3(M) then P, is tangent to the submanifold / GZ‘I(M) of G (M) (in its deﬁmtlon P,
is only given tangent to G>~'(M)). For if 4 is any non—smgular map (of an open Q = R?
into Af) with A[ﬂ(q) ={m, Py, ... , P,y then A"~ ”(Q) c IU' ~!{(M), hence P, (A[Z_ll)*(R;';)
is tangent to IGZ~'(M). Now let E be any subset of °G (M ) and E, the corresponding subset
of I TG (M) lmder our difffomorphism theorem. Then, by the above remarks, E; = G,(M’)
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where M’ = IG%™'(M). If Nis any solution of E then N fe-11 will be a solution of E; and if
N, is any solution of E; then =¥ - ... - n%_,(N,) will be a solution of E, by the consistency
part of our diffeomorphism theorem. Thus there is a natural 1 : 1 correspondence between
solutions of the given system E and solutions of the associated first order system E;. In
the most usual way of establishing such an equivalence between a zth order system and a
first order system one gets not a 1 : 1 correspondence between solutions in general but only
a 1 :1 correspondence between solutions of Cauchy probiems for the two. That is because
one usually uses, instead of our process just described, a process which passes from E to the
first prolongation of E;. In that usual process one gets a quasi-linear system which our
E; will not, in general be, by prolonging any system one gets a quasi-linear system so if
that feature is desired we can obtain it by prolongation, but losing the strict equivalence
between solutions of the systems. We also remark that the classical procedure introduces
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certain new independent variables which, in our procedure, appear as the co-ordinate

systems of 1G3(M) derived from co-ordinate systems of M

We now wish to define the characteristics of a system E of zth order partial diﬂerential
......... Ao il L —~ZfY LAAN D e e £ 21 e e e Am . - ,
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ot
diffcomorphism) E; < JGi(M). The notion of a characteristic will depend on an

(m, Py, ..., P,)e E, and a P, where P, is a (p — 1)-dimensional subspace of P,. Essentially,
the definition says the following. The collectxon (m, Py, ..., P,) and P} is non-characteristic
if and only if for each ‘appropriate’ (m*, P%, ... 1_1) and P*, which are close to

(m, Py, ..., P,_)) and P., there exists a unique P} contalmng P¥ such that (m*, P%, ...,
P¥)e E,; and P} is a differentiable function of (m*, P¥, ..., P*_ )and P}'. By ‘appropriate’
we mean here: P¥’ | < some p-dimensional P, for which (m PY, ..., Py, P)e IGYM).
To express this differentiability carefully and for the proof that this notion of characteris-
tic coincides with the classical notion we introduce the following bundies.
I'GyM) =[(m,Py,..., P,_y, P,)| there exists an (m, Py, ... , P,) € IG5(M) such that
P} is a (p — 1)-dimensional subspace of P,]

I"Gi{M)=[(m, Py, ..., P,_q, P,, P)I(m, Py, ... , P,_y, P,) € IGY(M) and P} is a
(p — 1)-dimensional subspace of P,].
We also define

" I'GHM) - IGE™ (M) : (m, Py, .. , P,_y, Py (m, Py, oo, P,_y)

n+-r+r*Z(M\_Am2(M) (m, P, P’ PY=(m. P P.. P)

(M) = IGXM): (m, Py, ..., PL, Py > (m, Py, ..., P,_1, P)
20 I*GY(M) > I'GXM) : (m, Py, ..., P, P)~(m, Py, ..., P)).

We now put the differentiable structure on I'* Gi(M) and I'G%(M) under which these become
bundles with the above maps as projections of the bundles.

Let {x,} be any co-ordinate system of M and we shall consider now three associated
co-ordinate systems: (1) the usual associated co-ordinate system {y?, y¥'} of G~'(M),
(2) the usual associated co-ordinate system {y;, y7} of Gi(M), (3) the co-ordinate system of

G,- (G5~ '(M)) associated in the usual way with the co-ordinate system {y?, y*'} of G;~'(M);
we denote the functions in this co-ordinate system by z, z3, z*"?, z3/, z**?, where 1 < I <

p—Lp+li<r<d o« =(@y,...,%0_4), 0<a,<p. The exphc1t deﬁnition of these

co-ordinate functions is
=ylom
0y _ z—1 z—1
20 7 = 1[G, 1(GZ™ (M) ~ G2~ *(M)]
{/ g (m. P Yy 0, Y i (m. P P
J1 _a o \Ffks L7y, s L z—1) T 4p \ITty 11, sdz—1 4 zJ 0 Urts £ 15 s+ z—-1)
Y Yp
4 ¥ D, D 4 ( )
T Lral < ASALE IS B s L z—1s % zJ FEANALTIEES £ s+ z—1J
r
. 5, 0
where. as usnal. £/ f! are the elements of P’ that nroiect to —— at
here, as usual, f, >/ p—1 are the clements Of £, that project t ayo, ,ayo at
1 p~1
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tangent space to G;~ (M) at (m, Py, ..., P,_,), and projecting onto the span of the first

(m, Py, ..., P,_,) under the projection p’ defined as usual from the base

¢ .

p—1 of the — (m, P, ..., P._;). We denote the domains of our three co-ordinate
oy;

systems by Q'*~'1 Q" and Q'

If (m,Py,...,P,_y, P,,P)eI*G}(M) we say the co-ordinate system {x,} of M
is suitable for (m, Py, ..., P,_y, P, P,) if and only if (m, Py, ... , P,_,, P) = n°(M, Py, ...,
P._y,P,P)isin Q" and (m, Py, ... ,P,_,,P)=n"(m, Py, ..., P,_,, P,,P,)isin Q'F, ie.
if and only if (m, Py, ..., P,_1, P, P)e(@®) " HQ) N (z*) " 1(Q"). The existence of a
suitable co-ordinate system for any (m, P*)=(m,P,,...,P,_y, P,,P)el"Gi(M) is
proved as follows. Let (m, P) = n*(m, P*) = (m, Py, ... , P,). Choose (m, e) =(m, ej, ...,
€h, .o s €5, ..., €Y €ISE(M) such that n(m, e) = (m, P). Let fi, ..., [, be a base for P,
suchthat fi, ..., f,_;isa basefor P,. Then f; =) a;;n._ .} Define (m,f)= (m, f, ...,
fh o i S JR) by £ = Z a;;e’. Clearly (m, f) € IS;(M). Choose a co-ordinate system

0
{x,} of M such thatf, = F (m)if |of < z, where, as usual, (m, {f,}) = H(m, f). Itis then
xa

0
trivial that this {x,} is suitable for (m, P*) and has furthermore the property: thea—0
Y

o .
anda—ﬁthhlsiSpandlSISp—lspanP;,Pz.

Lemma (5.1). If (m, Py, ..., P,_,,P)e @, (m, Py, ..., P,)e Q" and P, < P, then
2 m, Py, ..., P,_{, P))=y*D(m, Py, ..., P)
(- +zp(m, Py, ..., P,_y, Py P(m, Py, ..., P,)
foralla' = (g, ... ,00,_¢),0<a, <p,1<I<p—~1,p+1<r=<d

Proof. Welet fi, ..., f,_, be as above and f,, ... , f, be the elements of P, such that

~

0
—,(m, Pl, teay Pz—l)-

g x
fi =é}?(ma Pla LRI Pz—l) + Zr,a’ y:a’)(ms P15 eres Pz—l)ay:

Because P, < P_ there exist numbers ¢; such that
fi= Zi=1 Citfi
) . .
and because of the way the 6—))_9 (m, Py, ..., P,_,) appear in the co-ordinate expressions

for the f’ and f; we see that the ¢, are given by
Ci= 5il + zg,l(m, Pla ey Pz—b P.Iz)
hence
f=h+zpm, Py, ..., P._y, P)S,
Writing the co-ordinate expressions for each side and equating coefficients gives (5.1).
LEMMA (5.2). If (m, Py, ..., P,_,, P;)€ Q' then(m, Py, ..., P._,, P]) e I'Gi(M) if and
only if the following all hold at (m, Py, ... , P,_,, P}):
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(a) z@*O = z¥0 gpd 2D = 7D whenever o' is a permutation of §,

(52) (b) zEOD = @O 4 Zg"zﬁ“"’l”o)

(C) Zf“"’"’l) — z’(_a”,l,n) + Zg’lzfa sosm) Zg’"Zga B )

forall I, n, r, o', o, B', with 1l <l,n<p—1,p+1<r<d, " =(f,..,a_,), & =
((‘X1, ey “z—l)’ .BI = (ﬁla LR ] ﬁz—l)a ando < d&, awa ﬂw =< p

Proof. First suppose (m, Py, ..., P,_,, P;) e I'G}(M), and let P, < P, with (m, Py, ...,
Py e IGX(M). We have z**? = y¥ o and since yi = y?" at (m, Py, ..., P,_) whenever
p’ is a permutation of «' (since (m, Py, ..., P, 1) eIG: (M) we have z{**® =z
for such o', f’. To prove z*"? = z#") for such o', B recall that P, is tangent to IG;~'(M)
hence the above ", since they are in P,, are tangent to IG5 '(M). Since y¥ = y¥ on IGZ™ (M)
(if p’ is a permutation of «’) it then follows that fy* = f;y¥" and then from the co-ordinate
expressions for the f; we see that z(*"? = z#"D proving (a).

Now we prove (b) and (c) by showing

(*) (b) plus (c) is equivalent to the statement that for every C® lift from w of

Gz~ (M) = G,(G%~*(M)), both w and dw vanish on P;.

Proof of (*). Since every such C® lift form is, by section 3, locally expressible as a Iinear
combination of the
OF = Bl 3y - dyfe
(p+lsr<d o =(a],..,00_,),0<al < p)it will be sufficient to show (b) plus (c) is
equivalent to
(d) all ®® and dw?" vanish on P,.
Let fy, ..., f,—1 be as above so (d) is equivalent to
(&) ¥ (f)=do*(f').f] =0 for all «’, r, I, n.
We now obtain co-ordinate expressions for these w? (f’) and dw?'(f’, f,). Here we will
write yt for yX(m, Py, ..., P,_,) and z{ for zX(m, Py, ..., P,_,, P)). We have
W (1) = Yty ¥ Ody2(F) — Ay )
= S 0 4y Pz — 20
- y'(.u”,l) + y,(-a"’ng’l _ Z£a”,0,l)
= Zﬁa”,l,O) + Zﬁa”,p,o)zg,l _ Zf‘a",O,l)
do?' (ff, f1) = QF= 1 dy*"2dy))( ), £)
= YP_ Ay A(NAy(fa) — Lhe1 Ay (fDdYY(A)
= Zg;—ll zs:z",i,l)éin + Z'(‘a”,p,l)zg,n _ 2{):11 zt(-a”,i,")éil . Z,(-a”,p,h)zg,l

= Z@mD ¢ @pD0m _ @ ln) _ (@".pn) 50,1
=z + z} z," — 2, 2y Z,
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From these formulae it is clear that (d) is equivalent to (b) plus (c), hence (*) is proved.
Thus we have proved that if (m, P,, ..., P,_y, P) € I'Gi(M) then (a), (b), (¢) hold.

Now suppose that (a), (b), (c) hold. Because z{**? = z(#*9 whenever f’ is a permuta-
tion of &’ we see that y* = y#’ for such «’, §’, hence (m, P, ..., P,_;) e IG;™*(M). Using
(*) we see that for all C* lift forms w of G,(G3~*(M)) both w and dw vanish on P;. Since
the dimension of a maximal subspace on which such a set of functions vanishes is indepen-
dent of the subspace we conclude that P; is contained in some P,, of dimension p, on which
all such w and de vanish. Then (m, Py, ..., P._,, P,) € IGY(M), by our reduction theorem,
hence (m, Py, ..., P,_y4, P,, P,) e I'GI(M).

We remark that a part of (a), namely that z(**" = z{#"! if § is a permutation of &', has
not been used here. That is because it is dependent on the other conditions—this being
essentially a consequence of our reduction theorem.

Now we shall put the differentiable structures on I'G3(M) and I*G%(M). Let (m, P™)
be any point of I*G%(M), (m, P')=nm, P*), and (m, P)=n"(m, P*). Let {x,} be any
co-ordinate system of M suitable for (m, P*). Let {y?, y?} and {z2, z{*"®, 20", z{*D} be
the associated co-ordinate systems of G3(M) and Gp_l(Gf,‘l(M) described above, with
domains Q' and Q’. We define 9+ = (z°)"1(Q") N\ (z*)~1(Q"™). Then we have on Q*:

2.0 =yon*t

(5.3) 20, 70 — @0 ot
2D o 1% =y o 1t 4 (200 nO)(Y P o )

forl1<i<p l<i<p-—lp+l<r<d o =(©..,0_1), 0<a,<p The first two
lines here are trivial and the third is just (5.1) in another notation.

We shall now choose functions which will (by definition) make up a co-ordinate system
for I'Gy(M). Their domain will be Q" = Q' () I'G%(M) and the functions will be obtained
by choosing an ‘independent set on Q" from among the z?, z(**?, 22, z{**P, and restricting
them to Q”; the others among these will then be determined on Q” by (5.2). First however
we make a change of notation, similar to that made in section 4 in passing from the e, to
the e,. This time however we must be more careful since (5.2) does not give invariance

under all permutations of the superscripts.

Recall as before that for each o« = («y, ... , @,) we have defined A(2) = (44, ... , 4,) by:
A; = the number of w for which o, =7. Recall we have also defined, for such « and 4,
|«] = the number of w such that «,, # 0, || = Y, 4, so [«| = |A(x)]. We now consider all
A=(Ay, ..., A,) such that |A| < z and 4, < z. Each such 1 is of the form Aa) for some o
satisfying both: (i) «, < p, (ii) o, < min(a;, ..., o, ;). And by (5.2) (a), if A = A(a) = A(B)
with « and § both satisfying (i) and (ii) then z¢ = z# on I'G(M). Hence we may now define z;
for all A = (44, ..., A,) such that |A] < zand 4, < z, by

P=21Q" if A= M), o, <p, o, <min (g, ..., %y_y)

wherel <i<p,1<l<p—-lLp+1<r<di=(4,..,4)and [ £z 4, <z. Wenow

define the functions z{, z2", z} for such values of the indices by taking z} as above and
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taking z{ and z9" to be the restrictions of our previous z{ and zJ' to Q". (This introduces

. 4l ity ahaut the d of 0 a4 Ol
SOImc lﬁCOnSCQuenual cuuulsuuy about the domains of zZ; and Zp } Tt is easi y prCVed that

the {z?, zy", z}} provide a 1 : 1 map of Q" onto an open set in Euclidean space of dimension
p+{(p-— 1\ + (d — p){(p), — 1]. Furthermore, by facts proved in section 3, the range of
this co-ordinate system is the product of the range of {x,} by an entire Euclidean space. By
this process we get for each co-ordinate system {x,} of M which is suitable for any point of
1" GY(M) such a map to a Euclidean space, and the collection of all these makes I'G(M)
into a manifold since it is easily checked that any two are C*® related. This defines our

differentiable structure on I'G%(M), making it a manifold of dimension 3p —d —1+
(d = pXp)-.

Now we put the differentiable structure on I*G? »(M). Starting again with our co-
ordinate system {x,} of M we shall define what will be, by definition, a co-ordinate system
of I*G%M), with domain Q*. We shall use here the associated co-ordinate system
{y?, ¥}} of IG(M) obtained from the {7, yi} associated with {x,}.

We define the functions which shall constitute this co-ordinate system by

wl=ylont =20 0n°
(5.4) wh=yron”t
wol =z o n®

these being defined on OF for 1 <i<p, 1<l<p—-1,p+1<

where the 1. are inteoere >0 and |ﬂ =N z. Aeain. bv sectio
s =2V and |4

WALV WiV A Giv il gl it <z / Apaiil, Uy St

ordinate system will be the range of {x,} times a full Fuclidean space. One proves easily
that this set of functions provides a 1:1 map to a Euclidean space and that the set of all
such maps are C* related thus defining our differentiable structure on I* Gi(M) and making
it into a manifold of dimension 2p — 1 + (d ~ p)(p),. From (5.3) we have, on 07,

l»‘!
Fina

s 2L TQEC O IS LU

ton®=wt if |<z
(5.9
l =0 __ A 00, A—01 4_ 8 1 —
Zy o =W, T Wpo, T Op i jaj =2
where A, <z and /= min[i|4; # 0]. Here §; = the ith canonical unit vector in R”:

=,...,0,1,0, ..., 0).

From (5.4) and (5.5) we see that if we fix (m, P;, ..., P,_y, P}) and vary P, contain-
ing P! then this variation is described, locally, by the co-ordinates w*p(p + 1 < r < d).
For if (m, Py, ..., P,_,, P.) is fixed then all the w{, wS", and w} with || < z are fixed and
so are the z} with |4] = z but 1, < z. The last line in (5.5) then shows that varying r,
containing P, is equivalent to varying the w*p, including the fact that any choice of w?’
gives a (unique) P, containing P,. Thus the dimension of the fibre of I¥G%(M) as a bundle
over I'G5(M) is d — p. On the other hand, if we fix (m, Py, ... , P;) and vary P; < P, then
this variation is described, locally, by the co-ordinates wo"(l <1< p—1). Sothe dimension

of the fibre of I* G3(M) as a bundle over IG5(M) is p — 1.

DEFINITION. Let E by a system of zth order partial differential equations, i.e. a subset of
*Gy(M\. Let E, be the corresponding subset of 1Gi(M) (corresponding that is under our
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diffeomorphism of Theorem (4.1), and let Ef = (n*)"Y(E,). A point (m,P*) = (m, P, ...
P,_1, P}, P,) e I"Gi(M) is said to be non-characteristic for E if and only if both:

() mP)=n"(m, PYisin E,,ie. im,P*)eE;,

B

(2) in some neighbourhood (in 1" G(M)) of (m, P*), E{ is locally a cross-section over
I'GYM), i.e. there exists a neighbourhood (' of (m, P') = n°(m, P*) and a neighbourhood Q
of (m, P*) and a map x of Q' into 1* GX(M) such that

@) o n® = identity, on §';

(b) x(m,P)=(m, P");

© Ef NQ=u@d);

d) Q' ==°0.

As remarked above, this says (m, P*) is non-characteristic if and only if each (m*, P*’)
near (m, P") determines a unique (m*, P*) satisfying the partial differential equation (i.e.
belonging to E,) and (m*, P¥) is a differentiable function of (m*, P*). This definition could
be expressed directly in terms of *G,(M) (without referring to IGi(M) or our basic diffeo-
morphism) in the following way. Consider a fixed (m, *°P) € E. Consider an (m,*”'P)e
*71G (M) with *~1p < *P and an (m, *P') € *G,_,(M) with P’ < *P; so z=ip 4 2p' 7P
Then the triple (m,* 'P + P’,%P) is non-characteristic for E if and only if each
(m*,* ~ 'P* + *P*') near to (m,* ‘P + *P’) determines a unique (m*, “P*) with *~'P* +
Ip* < ZP* and (m*, “P*) € E, and if the map thereby defined is differentiable. To express

this carefully one would need auxiliary bundles corresponding to I'G%(M) and I'* Gi(M) so
this procedure is just a translation of the other.

We shall show that our definition of non-characteristic is equivalent to a classical one.
The classical one says the system is non-characteristic at a point if one can ‘solve’ the
system locally for all zth order derivatives with respect to one of the independent variables,

i.e. the system is ‘equivalent’ (in the sense, say, of having the same solutions as) to one of
the form:

g4 : a}.gj
6“12, ——fl(ul, s Upy s e s g -+ 5 a—ul N ‘..)
g, o'y,
B —fq(ul, oo s Upy G5 oee s g e s o, )

where the A on the right side satisfy |A] < z and A, < z. In case ¢ = 1 (the most interesting
case) this is the only classical definition but for g > 1 there is at least one alternative which
is more general, namely, one supposes one can solve for the highest derivatives with respect
to u, without assuming those highest derivatives are all of the same order. We do not
consider this more general version. The following lemma expresses the equivalence of our
notion with the above classical notion.

Lemma (5.3). Let Ec<*G, M), E, be the corresponding set in 1G(M) and
E* = (@) Y(E,). Let (m,P*)e E}. Then (m, P") is non-characteristic for E if and only if
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there exists a suitable co-ordinate system {x,} for (m, P*) such that if {y?, yt} is the associated
co-ordinate system for IGi(M) (or equivalently, for *G,(M)) then E, (or E) is defined locally
by the family of functions:

yjzy&-fl _fp+1(y?> yp;:)a (AR} yéap —fd(y?a Yf)

where all 1 occuring in these f, satisfy |A| < z and A, < z, and the f, are C* (on a neighbour-
hood of the point in R, with e = p + (d — p)[(p), — 1), whose co-ordinates are the numbers
yi(m, P), yH(m, P), for (m, P) = n*(m, P*)).

Remark. When we say E is locally defined by such functions we mean there exists a
neighbourhood Q@ of (m, P) such that these functions are defined on @ and the set of their
common zeros in Q is E ) Q.

Proof. The only thing to prove is that if (m, P*) is non-characteristic then it is defined
by such functions, for the converse is trivial. Let (m, P*)=(@m, Py, ..., P,_, P}, P,),
(m,P)=n*(m,P*)=(m,Py,...,P,”y, P), and (m,P")=n"(m,P*)=(m,Py,..., P,_4,
P}). Choose a co-ordinate system {x,} of M which is suitable for (m, P*) and with the further
—a—o(m, Py, ...,P,_ )1 <i<p)
0y;
and P} is the span of the first p — 1 of these. This is possible by the remarks preceeding
Lemma (5.1). We shall show that for this co-ordinate system the given E is defined, locally,
by functions of the required type. In the following we use the notation {y?, y?}, {z{, z%", z}},
{w?, wp!, w}} for the co-ordinate systems defined previously from the x, and also will
denote their domains by Q¥), Q’, 0" (thus deviating slightly from previous notation in
which Q' and Q’ were open sets in GZ(M) and G,_,(G5™ '(M)) instead of, as now, IG5(M)
and I ’G;(M)). We also use p and p’ for the projections of the tangent space to G;"(M)

properties: for the associated {y?, y*}, P, is the span of the

d
at (m, Py, ..., P,_;) onto the span of the first p, and first p — 1, of the a_y_" (m, Py, ..., P,_)),
0 0
defined from the base {—; (m, Py, ..., P,_}), = (m, Py, ... , P,_y).
9y oyy
We note that
nTQT = QF, 2%t =0
The first holds because if (m, Py, ... , P,_,, P,) € Q! then we can find a (p —1)-dimensional
P, contained in P, with p’ non-singular on P], e.g. by choosing P, = the span of those

z

. . . 0
elements in P, which project under p to the first p — 1 of the 6_ya (m, Py, ..., P,_)). The

second holds because (5.4) and (5.5) show how to choose from the co-ordinates z?, zJ%, z}

of (m, P’) values of the co-ordinates w{, w3, w} that will define an (m, P*) with n*(m, P*) =
(m, P’) (using here that the range of these co-ordinates is the range of the x, times a full
Euclidean space).

We now define a local cross-section ¢ of I*G%(M) over IG%(M) with domain Q', by

o(m, Py, ..., P)=m,P,,..., P, , P, P)
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where P. = the span of the elements of P, that project under p to the first p — 1 of the

7
70 (m, Py, ..., P,_y). Clearly,

p(@"H = 0"
™ nt o @ = identity, on Q¥
witop=0 forl<l<p-—1

the last being proved by checking the co-ordinate expressions, given earlier, for those
0

fi€ P, such that f;, = 770 (m, Py, ..., P,_))
Vi

Now let § and §’ and y be as in the definition of non-characteristic for (m, P*) and
we may assume Q' = Q'. Define
0= QN QY.
We define functions F, on ' by
Fr=W,z.aPo(p—W:apoXo7TOo(P
and we shall prove these F, satisfy the lemma. For this it is sufficient to prove the following
two statements:
(1) F,=y® —f(y° vy} where the f, are C* and the only 1 occurring have
|4 < zand 4, < z;
(2) if (m*, P*) €0 then (m*, P*) € E, if and only if all F,(m*, P¥) = 0.
Proof of (I). First we note
@ wop=y"on" o=y
Because w?» . y is a C* function on (' there exist C* functions f, on ' such that
Wfép o X :fr(z?9 22’19 Z,}.')
where the only A occuring have |4] < zand 4, < z. Then using (5.4), (5.5) and (*), we have

) wogon’op=1zon’ o,z o’ @,z 70 )
=£(wi o @, Wt o @, w0 @ + (wp't o @)W %P o @)
=£0ont 0 0,0,¥} 0" o @) (by ()
= £, 0, ).
Together (a) and (b) prove (1).
Proof of (2). Let (m*, P¥)e Q" and first suppose (m*, P¥)e E,. Then o(m*, P*)e
E} A Q, which implies @(m*, P*) = y(m*, P}) for some (m*, P;). Applying n° to both
sides, n° o @(m*, P¥) = (m*, P}), hence y o n° o @(m*, P*) = y(m*, P}) = o(m*, P*), hence
all co-ordinate functions and in particular the w?’» satisfy w?r(y . n° o @(m*, P*)) =
w’(p(m*, P¥), i.e. F(m*, P*) =0.
Now suppose (m*, P*) ¢ 01?1 and all F.(m*, P*) = 0. This says, for all r,

w2 (y o 1% o @(m™*, P*)) = w’(p(m™*, P¥)).
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For any r and 4 with |A] < z we have, by (5.5),

% ok Fo T 2NN

Wit o 1% 0 @(m*, P*)) = 2}(n° o y o 7° o @(m*, P*))
= z}(n° o p(m*, P*)) = wi(@(m*, P*)

and in the same way we have

wi(x o 7° o @(m*, P*)) = wi(ep(m*, P*))
and

wp'l(x o 10 o @(m*, P*)) = wyl(@(m*, P*)) =0

hence, now with |A] = z but 4, < z, we get from (5.5) that

wi(x o m° o @(m*, P*)) = w}(p(m*, P¥)).
Because all their co-ordinates are the same we then have y - n° o @(m*, P¥) = @(m*, P¥),
proving @(m*, P*)e y(Q) € E,, hence (m*, P¥)=n" ., o(m*, P¥) e E,.
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