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Analysis of the band corresponding to the frequency of vibrational symmetric stretching mode of methylene
groups in the lipid acyl chains and the bands of water below and above the phase transition of different lipids
by Fourier transform infrared spectroscopy gives strong support to the formation of confined water pockets
in between the lipid acyl chains. Our measures and analysis consolidate the mechanism early proposed by
Traüble, in the sense that water is present in kinks formed by trans-gauche isomers along the hydrocarbon
tails. The formation of these regions depends on the acyl lipid composition, which determines the presence
of different populations of water species, characterized by its degree of H bond coordination in fluid saturated
or unsaturated lipids. The free energy excess due to the reinforcement of the water structure along few water
molecules in the adjacencies of exposed membrane residues near the phase transition is a reasonable base to
explain the insertion and translocation of polar peptides and aminoacid residues through the biomembrane
on thermodynamic and structural grounds.

© 2013 Published by Elsevier B.V.
1. Introduction

Presence of water in the membrane structure has been recently
invoked to interpret the insertion of highly hydrophilic aminoacid
moieties in pools between acyl chains, described as water pockets
[1]. Penetration of amphipathic helices into the hydrophobic interior
of phospholipid membranes has been explained by a mechanism de-
noted as “snorkeling”. The “snorkel effect” of positively charged
aminoacids, such as lysine or arginine, is favored by the long hydrocar-
bon side chains that may penetrate deeper into the acyl chain region.
The high positively charged guanidinium group can only enter the
membrane provided water domains are present or formed as a conse-
quence of the aminoacid interaction with membrane groups [2–4].

The possibility that stationary water can be present in lipid mem-
branes, was previously postulated by Traüble [5]. In this proposal,
water can diffuse across the lipid membrane by jumping from hole
to hole in the lipid matrix. These holes were formed by fluctuations
of the acyl chain trans-gauche isomers denoted as kinks. Each
water molecule, according to Traüble, can occupy a kink of the mo-
lecular dimension of a CH2 vacant.

This visualization was accepted years ago, and several permeabil-
ity models had taken advantage of it to explain the diffusivity of
water molecules across the lipid bilayers. In this regard, kinks were
much easier to be formed above the phase transition than below,
isalvo).
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explaining the sudden increase in water permeation in the fluid
state in comparison with the gel state. The kink formation was in-
duced by the head group conformational changes triggering the
propagation of kinks along the acyl chains and hence, the diffusion
of water [6].

In this context, the recent studies of amino acid penetration recall in
some extent these ideas. However, kink formation or condensation is
not cited and an apparently a new ¨structural¨ feature, such as pockets,
is introduced. In addition, neither structural nor thermodynamic corre-
lations with the lipid and the water states have been done so far.

The admittance that water is buried in phospholipid membranes
suggests that it would be facing the lipid head groups and apolar alkyl
chains [7] In this regard, it has been experimentally demonstrated
that water may penetrate the lipid bilayer reaching a plane located at
the region of the carbonyl groups [8,9]. This penetration changes the di-
electric properties of the lipid membranes [10].

In addition, it is well known that at the phase transition a reduc-
tion of the membrane thickness and area per lipid increase is accom-
plished as determined by SAXS [11]. Above this transition, lipid
membranes reach the higher disorder state due to the increase in
the trans-gauche isomers in the lipid acyl chains [12]. Parallel to
this increase in chain mobility, the water amount in the bilayer in-
creases from 7 to 20 water molecules per lipid in the case of phos-
phatidylcholines and from 4 to 7 in phosphatidylethanolamines
with a slight variation with the chain length [13].

Differential scanning calorimetry provides the total enthalpy change
of the phase transition that can be interpreted in terms of the
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cooperative units of the molecules contributed by the acyl chain resi-
dues [14]. In this condition, other experimental results, such as the de-
crease of the dipole potential in monolayers, suggest concomitant
changes in water organization [15]. More indirectly, changes in turbid-
ity or refractive index may be also interpreted as related to changes in
the membrane density due to water penetration [16,17].

On the other hand, the state of water at different lipid phase
states has been indirectly determined by fluorescence anisotropy
methods, using probes inserted in different regions of the bilayer.
The steep decrease in order parameter at the phase transition is ac-
companied by an increase in polarity as shown by fluorescence mea-
sures using Laurdan as a probe located at the membrane interphase
[18]. The generalized polarization (GP) in the gel state is 0.6–0.7
and −0.1 and 0.2 above Tc for dimyristoylphosphatidylcholine
(DMPC) and dimyristoylphosphatidylethanolamine (DMPE), respec-
tively. GP values are related with the number and motional freedom
of the water molecules around the fluorescent probe, assumed to re-
flect indirectly the state of the lipid environment. These changes in
polarity have been ascribed to an increase of water in the membrane
phase [18].

Although themechanism proposed by Traüblewaswidely accepted,
no direct experimental evidences of the simultaneous change in the CH2

kink state and water have been offered. The method that provides a
visualization of the membrane state at the molecular level, both of
lipids and water, is FTIR spectroscopy. In adequate conditions, it pro-
vides a direct measure of the acyl chain state simultaneous with the
water state measured on the same sample. The information related
to the acyl chains is obtained by the shift of a few nanometers to
higher values at the phase transition temperature of the frequency
corresponding to the symmetric or asymmetric stretching vibration-
al modes of CH2 groups [19,20]. In this regard, the shift to higher fre-
quencies of the νs CH2 stretching as a function of the water content
has been also reported for DMPC [21].

FTIR spectroscopy is also a valuable tool to obtain molecular in-
formation, without adding perturbing probes, of changes in water
states by evaluating the position and width of the 3200–3600 nm
bands parallel to the changes in the CH2 region. The broad IR ν13

(OH) band, centered at 3400 cm−1, corresponds to several coupled
OH vibrational modes: the fundamental symmetrical (ν1) and
antisymmetrical (ν3) stretching, and the second overtone of the
bending (ν2) vibrational modes [22,23]. In addition, FTIR spectrosco-
py is especially suitable for identifying H-bonds between interfacial
water molecules and phospholipid head groups. Generally speaking,
the formation of a H-bonded complex between two atoms A and B,
A–H. . .B, leads to a weakening of the A–H bond and, thereby, a down-
shift of the frequency of the A–H stretching vibration by a few tens of
cm−1. The width in frequency of ν13 (OH) band reflects the distribu-
tion in strength of the H-bonds between phospholipid and interfacial
water molecules.

The presence of water beyond the hydration shell of the phospho-
lipid head groups has been described as confined water or water in
restricted domains [24]. The properties of these confined regions of
water have been ascribed to the influence of the adjacent wall in sev-
eral materials [25,26]. In the case of lipid membranes, these water
molecules are probably confined between hydrocarbon chains,
mainly at the first carbon atoms [9]. Water facing apolar regions
would be organized in a different H bond array than that bound to
polar groups such as CO and PO, and also it would be different from
the H bond coordination of pure water. As chain states are different
in the gel and the fluid state, it would be reasonable to think that
water may organize in a different way when facing membranes in
each of these two states. However, a direct measure of the water
states in relation with the phase state of the lipid acyl chains has
not been so far analyzed.

In this paper, we present a rational description of the water pocket
creation and the influence of the adjacent wall formed at the phase
transition by analyzing the changes of FTIR/ATR spectra in the regions
corresponding to the CH2 and water band shifts with temperature.

2. Materials and methods

2.1. Materials

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dimyristoyl-
phosphatidylcholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-
choline (DPPC) and 1,2-dimyristoylphosphatidylethanolamine (DMPE)
were obtained from Avanti Polar Lipids, Inc. (Alabaster, AL). Purity of
the lipids was found to be >99% by thin layer chromatography and
used without further purification.

2.2. IR spectroscopic measurements of water bands

Samples for infrared spectroscopy were prepared by hydrating
3–5 mg of the dry lipids with 50–70 μL of H2O at pH 7.4 followed
by vigorous vortexing at temperatures well above the gel/liquid crys-
talline phase transition of the lipid.

After hydration, samples were squeezed between the CaF2 win-
dows sample cell equipped with a spacer of appropriate thickness.
Once the sample was mounted in the holder of the instrument, its
temperature was controlled (between −5 and 60 °C) by an external,
computer-controlled circulating water bath within ±0.1 °C.

The presence of water in the system was monitored by the satura-
tion of the peak of the νasym (PO2

−) band, which shows an absorption
peak at 1240 cm−1 and shift to 1230 cm−1 when lipids are saturated
in water.

The spectrawere recordedwith an FTIR Nicolet TM 380 spectropho-
tometer, providedwith a DTGS detector and a KBr beam splitter. A total
of 320 scans were done for a series of hydrated samples with a 2 cm−1

resolution. A number of different samples (no less than three) were
processed to obtain a standard deviation below the resolution of the
equipment.

In the spectral regions of interest, the observed absorption bands
are usually the result of the summation of broad overlapping compo-
nents. In such cases, Fourier deconvolution was used to accurately de-
termine the frequencies of the component bands (band narrowing
factors: 1.6–2.2), followed by curve fitting to obtain the band's widths
and intensities. Each band was simulated by a Gaussian–Lorentzian
function, for which best fit estimates of band shape was achieved
with ~70% Gaussian contribution.

The OH stretching band of water is centered at around 3430 cm−1

and shifts to higher frequencies when solutes promote non-linear hy-
drogen bonding and to lower frequencies when stronger H bonding is
promoted correlating with increased linear H bonding [27].

2.3. IR spectroscopic measurements of methylene CH stretching bands

The lipid order state and the motional freedom of the methylene
groups were monitored by IR spectra of each phospholipid recorded
at the 3000–2800 cm−1 range in an IFS55 FTIR spectrophotometer
(Bruker, Ettlingen, Germany) purged with N2 as a function of tempera-
ture [28].

Fifteen microliters of the liposome samples was deposited under a
stream of nitrogen on one side of a trapezoidal germanium ATR plate
with an internal reflection element of 52 × 20 × 2 mm with an aper-
ture angle of 45° yielding 25 internal reflections. While evaporating,
capillary forces flattened the membranes, which spontaneously
formed oriented multilayer arrangements. Under these conditions a
well-ordered multilayer stack is formed and remains fully hydrated
under a buffer flow [29]. Spectra were recorded with 2 cm−1 spectral
resolutions with a broad band MCT detector provided by Bruker. A
total of 128 scans were averaged for one spectrum at each tempera-
ture analyzed. Each spectrum was recorded between 3 and 5 times.
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An average at each temperature is plotted with a standard deviation of
±0.2 cm−1. The reproducibility of the measurements (±0.2 cm−1)
guarantees the significance of the difference of spectra for the different
lipids at each temperature. All the software used for data processing
was written under MATLAB 7.0 (MathWorks Inc., Natick, MA).

3. Results

Fig. 1 shows the frequency shifts of the symmetric [νs CH2] (panel A)
and asymmetric [νas CH2] (panel B) stretchingmode bands as a function
of the reduced temperature for the different lipids assayed. As a result of
the comparison, it is observed that in all cases an increase in frequency
is noticeable at the phase transition well above the experimental error.
Although the 2920 cm−1 and 2850 cm−1 absorption bands can both be
used to monitor hydrocarbon chain melting at the phase transition, the
[νas CH2] 2920 cm−1 band is rarely used in practice. Instead, the [νs
CH2] band near 2850 cm−1 is usually free of significant overlapping
contributions with the CH3 group vibrational modes. Thus, as long as
lipid hydrocarbon chains are the predominant source of CH2 groups in
the sample, the νs (CH2) band can be effectively used for the detection
of lipid hydrocarbon chain-melting phase transitions and, to some ex-
tent, for semiquantitative characterizations of concomitant changes in
hydrocarbon chain conformational disorder [19,21].

The abrupt wavenumber increase for the νs (CH2) [2850.0–
2852.5 cm−1] band at the reduced Tc is well above the standard devia-
tion of the average measures and corresponds to a transition to less or-
dered alkyl chains as reported by other methods. These plots clearly
indicate that, although in all lipids an increase in the frequency is ob-
served at the phase transition, the frequency values reached at the liq-
uid crystalline state are not similar for the different lipids. This is
better shown in Fig. 2, in which both frequency values at a reduced
Fig. 1. Changes in the CH2 methylenes symmetric (A) and asymmetric (B) stretching
frequencies as a function of Tr (= T/Tc) for ( ) DMPC, ( ) DPPC, ( ) DMPE and
( ) DOPC. The average standard deviation after the analysis of at least different
batches was ±0.2 cm−1.

Fig. 2. Frequency values above Tc of the asymmetric (A) and symmetric (B) stretching
mode of CH2 groups for ( ) DMPC, ( ) DPPC, ( ) DMPE and ( ) DOPC.
temperature above T/Tc = 1 are compared for different lipids. It is
clearly shown that the frequency corresponding to the CH2 groups in
DOPC is much higher than those corresponding to fluid DMPC or
DPPC. This denotes that fluidity, taken as a macroscopic disordered
state of the lipid phase has, at the molecular level, different arrange-
ments according to the lipid composition. While the increase in change
length affects slightly the frequency, important changes are observed
when an unsaturation is present.

The frequency shift in FTIR can be interpreted in molecular terms,
according to the relation between frequency (ν) and force constant
(k) of a bond,

v ¼ 1=2∏
ffiffiffiffiffiffiffiffi
k=μ

q
ð1Þ

where μ is the reducedmass of the atoms of the bond. Thus, the shift to
higherr frequencies of all lipids, shown in Fig. 1, is related to an increase
in the constant force, according to Eq. (1), i.e., a strengthening of the
C\H bonds. In the gel state, acyl chains are packed closed to each
other and, in consequence, the lateral interactions by dispersion forces
between the CH2 groups of adjacent chains are enhanced. This
intermolecular interaction explains why the frequency is lower in the
gel than in the fluid state. At the transition temperature, the frequencies
of νs (CH2) and νas CH2 shift to higher values, denoting that the bond
strength increases, which can be ascribed to the reduction of London
intermolecular interactions by the increase of interchain distance.
Thus, low frequencies for the CH2 band are due to populations of
connected methylene groups, while after the phase transition, the dis-
order promotes the increase of isolated populations (i.e., non connected
CH2). For this reason, at temperatures above Tc a lipid molecule is very
flexible and does not have a defined shape per se. Indeed, under such

Unlabelled image


Fig. 4.Water bands for DMPC (−−) and water (−−) (A) and for DMPE (B) bilayers in
the gel state.
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conditions its “shape” is better defined as that corresponding to the av-
erage volume it occupieswhileminimizing the packing free energy. To a
large extent, this “shape” is determined by the phase state of the lipid
aggregate and not the other way around [30]. In other words, average
volume is given by spaces occupied by CH2 residues or empty or vacant
spaces.

The derivation of the curves in Fig. 1A denotes different distributions
of CH2 populations around the reduced temperature (Fig. 3). The
left-hand wing before the peak indicates that connected population
prevails and, vice versa, after the transition the population of isolated
groups predominates.

Fig. 3 also denotes that this distribution of connected and isolated
CH2 populations is different depending on the lipid acyl chain and
polar head group. For instance, DMPE presents a distribution narrower
than DMPC. In contrast, DMPC and DPPC differ between them slightly.
The corresponding areas beneath the curves are 3.95, 3.87, and 2.81
for DMPC, DPPC and DMPE, respectively. For the first two lipids, the dis-
tributions are rather wide indicating that isolated groups are probably
present in the connected (gel) phase and some lipids are clustering in
the fluid (isolated residues) state. This is a direct measure of the defects
postulated by molecular dynamics [31].

Interestingly, lipids with little changes in its hydration at the
phase transition, such as DMPE, show a very narrow distribution indi-
cating that isolated populations only appear very near the transition.
In other words, in these lipids, isolated defects are unlikely below the
transition temperature and connected clusters are less probable
above the phase transition. This behavior is a strong indication that
the appearance of isolated CH2 populations is concomitant with the
ability of lipids to incorporate water [24,32,33].

In this regard, the water bands for pure water are modified in the
presence of lipids as shown in Fig. 4. The band peak for pure water,
centered around 3414.0 cm−1, indicates a wide distribution of H
bonds (Fig. 4). When lipids are swollen by heating them above the
phase transition and then cooled down to 18 °C, this band shifts to
3447.4 cm−1 and two new bands, one around 3200 cm−1 and an-
other at 3600 cm−1 are apparent (Fig. 4A). Similar patterns were ob-
served for gel DMPE (Fig. 4B).

Deconvolution of water bands allows the distinguishing of several
water populations centered around 3590.0 cm−1, 3447.4 cm−1, and
3242 cm−1 in the gel state. Similar bands in this range were also
reported for cationic lipids [34].

The new band shoulder at 3590.3 cm−1 can be assigned to less H
bound water molecules due to its comparatively high peak frequency.
In addition, the peak at 3241.7 cm−1 denotes a population of water
molecules with stronger H bonds.

It can be concluded that swollen lipids stabilized in the gel state in-
duce new water populations. These water states apparently are
Fig. 3. Derivative of the stretching frequency (dν / dTr) VS Tr for the lipids in Fig. 1.
( ) DMPC, ( ) DPPC, ( ) DMPE and ( ) DOPC.
indifferent to the lipid specie since a similar peak distribution is ob-
served for DMPE in the gel sate (Fig. 4B). It must be noticed that in
this state the CH2 populations as denoted in Fig. 1 appears to be similar.

The band at 3400 cm−1 region observed in the gel state disappears
above the phase transition at the expense of an increase in the bands at
3296.8 cm−1 and 3554.2 cm−1 regions (Fig. 5A). This suggests that
when lipids are in the fluid state, the band of neat water disappears at
the expense of those corresponding to highly bound and unbound
water species.

Finally, thewater bands for DOPC are shown in Fig. 5B. It is observed
that these bands are much more superposable with the water band for
DMPC in the gel state than for DMPC in the fluid one.

4. Discussion

It is well known that the global cooperativity at the phase transition
derived fromDSC is usually identifiedwith the rotational isomers of the

Unlabelled image


Fig. 5. Water bands for fully hydrated DMPC (A) and DOPC bilayers (B) in the fluid state.
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CH2 residues [12,14]. In this regard, the lowordered state is given by the
predominance of a CH2 isolated population, confirmed by the present
FTIR data. Similarly, high order is concomitant with an increase of
connected CH2 groups.

The observation of Figs. 4 and 5 denotes that water structure
changes at the phase transition in addition to changes in themembrane
state. This decrease in water order at the phase transition is congruent
with that previously reported by the calorimetric data of DMPC in
D2O, denoting that a considerable contribution to melting enthalpic
change is due to water [35].

In particular, the analysis of the water bands below and above the
phase transition temperature of DMPC denotes that the band centered
at lower frequencies shifts 55 cm−1 to higher frequencies (blue shifts)
when going from the gel to the fluid state. At the phase transition, the
water band centered at the higher frequency shifts downwards
36 cm−1 (red shift). The blue shift would correspond to a weakening
of the H bonds and the red shift to its reinforcement. The simultaneous
shift of the central pure water population to lower and higher fre-
quencies indicates that in the fluid state water is facing different
types of groups exposed to water in the liquid crystalline state. An
upward frequency shift of the central band at 3400 cm−1 has been
reported, although of a lower magnitude, when NaCl was dissolved
in water [36], whichwas attributed to the formation of non linear hy-
drogen bonds. In the presence of gel lipids this shift can be ascribed
to the disruption of the neat water structure near exposed phosphate
groups. In the fluid state the blue shift could be explained as a conse-
quence of the higher exposure of the PO and CO groups to water, thus
perturbing H bond water network.

On the other hand, the shifts to lower frequencies suggest that H
bonds are reinforced in comparison to pure water. This is consistent
with water facing non polar walls such as the acyl hydrocarbon chains.
Both, acyl chains and head group exposure to water are congruent with
the area per lipid increase [11] and hydration increase produced at the
gel–fluid phase transition [21].

The results of Figs. 1 and 4 indicate that the changes corresponding
to the lateral CH2 interactions are parallel to a change in the state of
water in terms of hydrogen bonding populations. What types of H
bonds are concerting water molecules according to the different fre-
quency bands observed?

As reported elsewhere [37,38], the boundary structure greatly in-
fluences the structure and dynamics of the water. Specifically, the
hydrophobic apolar surfaces slow down the dynamics [36]. In small
systems, with dimensions of 3–8 Å, the dynamics are slowed signif-
icantly, and the velocity autocorrelation function resembles that of
solid ice, i.e., low frequency populations [37]. Histograms of the spa-
tial dependence of the hydrogen-bond lifetimes show confinement
or local template environmental ordering, and one can infer that
the dynamics are significantly slower near the structured hydrophilic
boundary. Local environment indeed affects the structure and dynamics
of water. The formation of water tunnels built across an alkane mono-
layer requires a minimum diameter in order to get filled and the exis-
tence of water–water hydrogen bonds, a necessary condition for
penetration [27]. From the comparison of the results obtained in the
CH2 region with those of the water bands it is concluded that in the
gel state, CH2 contact (giving place to low frequencies) are concomitant
to lowH bondedwater populations, i.e., small water clusters. Above the
phase transition, CH2 frequency increases denoting isolated populations
with an increase in H-bonding in water molecules. Thus, water do-
mains, at least partially organized byH-bonding, are formed in between
acyl chains in the fluid state.

The appearance of strong H-bonds between water molecules
above the phase transition is consistent with the reinforcement of
water structure in the presence of non polar residues such as the
CH2 groups. Water shows a strengthening of the “local tetrahedral”
structure while confined template environments are formed due to
thermal fluctuations of the acyl chains. For smaller systems, local
order is prevalently dominant, and hence, frequency band of the
water populations shifts to higher values while the larger systems
tend toward bulk-like dynamics. A schematic picture of the state of
lipids and water above the phase transition is shown in Fig. 6.
Taken together the observation in the CH2 frequency values and
the water bands, the increase in isolated CH2 populations is congru-
ent with the small nano environments of water structure. This is
compatible with the formation of water clustering in between the
lipid acyl chains when the bilayer is in the liquid crystalline state
[37,38] and also with the appearance of hydrophobic defects at the
expense of the disappearance of kinks [39].

As observed in Fig. 2 and from the calculation of the area beneath the
curves in Fig. 3, the CH2 isolated populations are not the same for differ-
ent lipids although they are in the same state. Specifically, a significant
increase in isolated populations is found in DOPC.

It has been reported that the bilayer structure of monounsaturated
lipids contains defective, free volume-like places that provide freedom
for phospholipid acyl-tail motions at low temperatures as detected by
Raman spectroscopy [40]. This void volume in DOPC may confine
water in small pools (Fig. 6, right hand) in contrast to the molecularly



Fig. 6. Schematic representation of lipid and water states for DMPC (A) and DOPC (B)
above the phase transition.
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dispersed water in kinks formed between saturated chains (Fig. 6, left
hand).

Therefore, it would be expected that water species in fluid DOPC be
different in comparison to those in fluid DMPC. It is clearly observed in
Figs. 4 and 5 that this is the case.Moreover DOPCwater band spectra are
comparable to those of DMPC in the gel state, i.e., similar to bulk water
bands.

In an extension of the kink model [5], the permeation of
water-soluble non-electrolytes, such as glycerol, erythritol, urea
and others, was explained by the condensation of kinks to form an
aqueous space with the size of the permeant solute. In addition, the
permeation rate was correlated to the ability of the solute to form
hydrogen bonds [41].

The presence of unsaturation in DOPC produces a heterogeneous
media in which void spaceswould be occupied bywater. Thus, in paral-
lel to the increase in isolated populations, the population of bulk water
species increases. This is reasonable since pools will include water mol-
ecules surrounded by other water molecules far from the surface. The
magnitude of the effects of confinement greatly depends on the number
of hydrogen bonds available per water as well as the lifetime of nearby
hydrogen bonds.

Influid saturated lipidmembranes,molecularly homogeneously dis-
persed waters are facing hydrophobic residues. In this regard, some
considerations about H bonds in water in a CH2 matrix should be
done. H bonds are conventionally defined as the intermolecular interac-
tion of X–H—Xwere X and Y are atoms of moderate and strong electro-
negativity [42]. Water may be in contact with the carbonyl groups
forming the \C_O\H association or with the methylene groups
forming the CH\OH. It has been argued that the last one is rather a con-
tact or and an interaction rather than a bond. This last case is classified
as a non-conventional H-bond since the donor atom is not oxygen
[43,44].

Recently, reported rotational spectroscopic studies on small dimers
and oligomers bound by weak hydrogen bonds show that the driving
forces, the spatial arrangement and the dynamical features displayed
are very different from those involved in stronger and conventional hy-
drogen bonds [43]. The very small binding energies (similar to those of
van der Waals interactions) imply that networks of weak hydrogen
bonds often obtain the stabilization of the dimer. Even in the presence
of multiple bonds the partner molecules show a high degree of internal
freedom within the complex. Several examples of molecular adducts
bound by weak hydrogen bonds formed in free jet expansions were re-
cently characterized by rotational spectroscopy. They include weakly
bound complexes of weak donors with strong acceptors (C\H O, N,
S\H O, N), strong donors (O\H, N\H) with weak acceptors such as
the halogen atoms [45,46].

The hydration of some CH group as in ethers produces a shift to blue
and a decrease in the intensity, meaning a decrease in H bonding
[47,48]. This is in complete agreement with our analysis of water in
the fluid state of saturated acyl chains.

Watermolecules in confined pools of fewnanometers in diameter or
at interfaces undergo hydrogen bond structural dynamics that differ
drastically from the dynamics they undergo in bulk water [49]. Orienta-
tion motions of water require hydrogen bond network rearrangement
[50]. It has also been suggested that reorientation of the O\H vector
and hydrogen bonds time correlation is less influenced by hydrophobic
groups than hydrophilic groups do [51]. This is somehow related with
the idea that interfacial effects may dominate the hydration forces
linked to interfacial structural messages [52].

5. Conclusions

Macroscopic disordered state of the lipid phase has, at themolecular
level, different arrangements according to the lipid composition.

Changes in the type of water populations are concomitant with
the shift of methylene vibrational mode frequencies to higher values.

The increase in isolated populations of methylenes is congruent
with the formation of highly orderedwater cluster bonded by hydrogen
bonds.

This is consistent with the formation of water pockets in nano envi-
ronments that accumulates free energy. The low entropy of thesewater
arrangements, compensated by the disorder in the acyl chains, can be
the thermodynamic driving force for peptide insertion intomembranes.
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