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In the classical Cantor topology or in the superset topology, NP and. consequently, classes included
in NP are meagre. However, in a natural combination of the two topologies, we prove that NP — P, if
not empty, is a second category class, while NP-complete sets form a first category class. These
results are extended to different levels in the polynomial hierarchy and to the low and high
hierarchies. P-immune sets in NP, NP-simple sets. P-bi-immune scts and NP-effectively simple sets
all second category (if not f‘mnrv\ It is shown that if ( is any of the above second category
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classes, then for all BeNP there exists an AeC such that 4 is arbitrarily close to B infinitely often.

are

1. Introduction

Since there is strong evidence that NP#P, it is natural to ask how “large” is
NP — P. There are many results which indicate that this class is rich. For example, in
[15] the existence of sets in NP which are neither in P nor NP-compilete is shown, and
in [4] the existence of infinite families of incomparable sets in NP — P under poly-
nomial- tlme reductlbllmes is proved, provided that NP #P. In this paper we lntend
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concepts that are used to tackle such questions: measure and Baire category [18
p. 269]. The first one is not relevant in our case. One can easily see that NP itself has
null measure and, thus, NP — P is trivially of measure zero. There are some difficulties
also from the point of view of Bairc category. In the classical setting, a set in
a topological space is rare if its closure does not contain any nonempty set. A set is of
the first Baire category if it is a finite or denumerable union of rare sets and it is of the
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second Baire category if it is not of the first category. As we deal with algorithmical
objects, it is natural to consider recursive variants of these definitions (see [17]). The
standard procedure goes along the following lines [9]. Let X ={0,1}. Forix=1, let g
be the ith string in the lexicographical order of X*. Thus, X*={a,<a, - <a,...},

where < 1s the lexicographical order on X *. A class 1s a set of languages. We identify
a recursive set A included in X * by its characteristic sequence A(1)A(2)... A(n)...,

where, for each positive integer i, A(r\—l if a. £A4 and Ah\—ﬂ otherwise. Rv this
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codification, Ae X*, where X™ denotes the set of 1nﬁnlte words over the dlphabet X.
For vin X *, we define its support by supp(v)=1{i >1|v(i)= 1}, where v(i) is the ith bit
of v. If v in X™ has finite support then |v|=max{i| zesupp(u); 1s the length of v. We
identify a class 4 of sets with the family of the characteristic sequences of the sets in the
class. In this way, all the classes we are going to study are included in X ®. Since we
need a constructive topology on X ®, it is necessary for the basic neighborhoods to
admit a finite characterization; hence, the basic neighborhoods will be generated by
strings in X * with finite support. Let F be the set of the strings in X ™ with ﬁmte
cods U vin F. A set A i
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X > is recursively rare if there exists a recursive function f which, for every v in F,
produces a witness w in F with we U, —closure(A), i.e. w proves that U, is not included
in the closure of A. There are mainly two ways largely used in the literature for
defining U, v in X * (once again we identify F with X *, by associating witheach vin F,
the finite string v(1)v(2)...v(Jv]) in X*). The first way [17] consists in defining, for
every v in X*,
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This COTTCSponas to cxtensions of ini
used in computational theory [1 ] Unfortunately, under thls deﬁnmon NP is of the
first category and, in consequence, NP — P is trivially of the first category. The second
method [8, 9] consists in defining, for every v in X*,
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where |v| denotes the length of the finite string ve X *. This definition corresponds to
extensions of sets. If we simply require that the witness function produces for every v in
X* a string w of finite support in U, the resulting definitions are again inadequate for
our purposes. In this case, one can see that NP — X * is a class of the first category; so,
NP — P is, again trivially, of the first category. The two methods described above are too

ough in order to distinguish, from a topological point of view, the size of some
interesting classes included in NP. Hence, we propose a mixing of the two variants. The
basic neighborhoods are the ones from the second method, but w has the supplementary
property that v is a prefix of w, as in the first method. The family (U,), v in X *, is closed
under the intersection; so, in the topology generated by it, the open sets consist of
arbitrary unions of basic neighborhoods. If 4 is included in X*, one can see that
closure(4)={weX *|JdveA supp w)<supp(v)}. After some obvious computatlons and
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Definition 1.1. A class A is called recursively rare if there is a recursive function
f:X*— X* such that, for every v in X¥,

(i) v is a prefix of f(v), and

(i) AnU;,=0.

Definition 1.2. (a) A class A is recursively of the first Baire category if there is
a decomposition A={JA; and a recursive function f: N x X*—X* such that, for
every ie N and for every ve X'*,

(1) vis a prefix of f(i, v), and

(i) A;inUsn=0.

(b) A class A is recursively of the second Baire category if it is not recursively of the
first Baire category.

For the sake of brevity, we shall simply say first or second Baire category, or even
first or second category.

Under these definitions we prove that NP—P is of the second Baire category
provided that it is not empty. This is the main result of this paper and is stated in Section
2. In the same section we extend this result to the other levels of the polynomial
hierarchy and to the low hierarchy [19, 20]. We also show here that the class of
NP-hard sets as well as all the levels of the high hierarchy are of the first category. Since
the finite union of first category classes is still a class of the first category, it follows that
the class of sets in NP that are neither in P nor NP-complete is of the second category.
In Section 3 we obtain similar results for classes of sets which realize stronger forms of
separation between NP — P. It 1s shown that the classes of P-immune sets in NP, of
NP-simple sets or of P-bi-immune sets in NP, if not empty, are all of the second Baire
category. Moreover, the class of effectively NP-simple sets is also either empty or of the
second Baire category. This result contrasts strongly with the situation in classical
recursive function theory, where all effectively simple sets are complete for the class of
r.e. sets [22, pp. 79-87]. Many approaches in structural complexity theory have origins
in recursive function theory, by observing the analogy between sets in NP and r.e. sets
on one side and between sets in P and recursive sets on the other. Our result supplies an
example where this analogy does not work and it suggests that our methods may be
used in the investigation of some structural properties of complexity classes. In fact,
Section 4 provides such applications to the study of the density of sets in NP—P. It is
shown that if NP#P, then for an arbitrarily slowly increasing, unbounded and
recursive function r and for any B in NP, there exists 4 in NP—P such that
[{((A—B)u(B— A)<"| <r(n) for infinitely many n. Similarly, one can show [23] that for
any recursive set B and for any increasing and recursive function r, there exists a set in
NP — P such that |(B— 4)<"| <r(n) for infinitely many #. Similar results hold for all the
other classes shown to be of the second Baire category in Sections 2 and 3. We also find
an intrinsic characterization of P which is similar in spirit with the one found by
Ambos-Spies [2] in terms of measure theory. In [2] it is shown that a set 4 is in P if and
only if {B| A <P B} has measure 1 (for other related results see [7]). We prove that 4 is
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in Pifand only if {B| A <% B} is of the second Baire category. In our view, these results
validate the proposed topology for our investigation of sizes of complexity classes based
on Baire category. However, note that an approach based on the topology generated by
the system of basic neighborhoods (U}) has been considered in [16], by restricting the
nplcxuy Ul l[lC Wll[leSS 1u11u1011 lIOiTl DelllllllUIl 1. l
The rest of this section is dedicated to the presentation of some more notation. In

thzQ paper, if not specified otherwise, all sets 4 are of strings over the alphabet

=1{0, 1}. For a set A, A denotes the complement of A. For a finite set included in X *,
let |A] denote the number of strings in A, and let A<" denote the set of strings in
A such that [x|<n. By “:=” we denote the assignation. We assume the reader is
familiar with Turing machines, nondeterministic Turing machines, their time com-
plexity, the classes P, NP and the polynomial hierarchy [5, 19]. We fix enumerations
[P} and {NP.}, of the polynomial-time deterministic and nondeterministic ma-
chines. Sometimes P, (NP, ) wili aiso denote the language accepted by the machine P,
(NP,). From the context it will be clear whether the meaning of P, (NP;) is the kth

m chine in the ahave enumeration or the lanonaoce accented hv it
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We present first a rather technical lemma that will be the core of all our proofs

showing various classes of sets to be of the second Baire category. All these results rely
on the m,-hardness principle brought in evidence mostly by Hartmanis [12, 13]. We
show that if 4 is a class of the first Baire category, then A is included in a set D which is
in the X, level of Kleene’s arithmetical hierarchy and such that Co-Fin is included in
the complement of D. It follows that if A is a class which has a property similar to
being w,-hard (i.e. Tot <, (A4, Co-Fin); see below) then A is necessarily of the second
Baire category.

Let (W),);cn be an enumeration of the class of recursively enumerable sets of strings

nd W, be the set of the strings enumerated in W, within the first s steps of
computatlon [22]. Let Tot={x| W,=X*} and Co-Fin={x| W, is finite}. For a class
A of recursively enumerable sets, we say that Tot <, (A4, Co-Fin) if there is a recursive
function s: N— N such that ie Tot implies W,;,eA and i¢ Tot implies s(i)eCo-Fin.

Lemma 2.1. Let A be a class of recursively enumerable sets of strings with Tot <,
(A, Co-Fin). Then A is of the second category.

Proof. Suppose A is of the first category. This means that there i1s a decomposition
A=\|Ji»0A;and a recursive function f: N x X *— X * such that, for every integer i and
every string we X *, w is a prefix of f(i, w) and U, ,,, " A;=0.

Let D={jeN|(3i)(Vn)(Vs)(FkeN, n<k<|f(i, 0")], a¢ W, )}. Clearly, Co-Fin is
included in D and D is in the X, level of the arithmetic hierarchy [18, 22]. Observe that
W.e A implies jeD. Indeed, if W;e A4 then there exists some i such that W;eA;. Also
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we can conclude that W;eUy; o»), which contradicts the fact that 4; Uy ; on,=0 for
all integers i and n. Now it follows that

ieTot implies W, ; €A, which implies s(i)eD, and

Consequently, Tot <., D, which is a contradiction because Tot is m,-complete [22]
and Disin Z,. [J

We can now proceed to the main result of this paper, i.e. the fact that if NP — P £,
then NP—P is of the second category By Lemma 2.1 we only have to show that
Tot <, (NP —P, Co-Fin). This follows by a standard argument (see [12]) which uses
the delayed diagonalization method of Ladner [15].

Lemma 2.2. If NP—P#0, then Tot <., (NP—P, Co-Fin).
Vi }iewv be an enumeratio
W dom(M) For every Turing machine M; we define a nondeterministic poly-
nomial-time Turing machine NP,;, such that if ieTot, then NP,;,;eNP—P, and if
i¢ Tot, then the language accepted by NPy, is co-finite. The computation of NPy, is
performed in stages, starting with Stage=0. The machine NP, has two kinds of
objectives depending on the parity of Stage. Thus, if Stage=2e, NP, tries to find, in
polynomial time, whether M; accepts a.. If and when this happens, Stage is in-
cremented to 2e+ 1. In case NP,;, does not succeed in determining whether M,
accepts a,, the current input is accepted. In this way, if i¢Tot, then clearly NP,

rriniots o Torin achinac aiich th
rministic 1 ullllé macnines sucn t
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nains stuck in an even Stage and it acCepis a Co-imiic §
Stage=2e+ 1, NPy, looks for a string y such that NP, (y)#P,
found, the current input x is accepted if and only if xe SAT. Con:
failures occur, hen NP,;, begins to look like SAT. Hence, NPy, Wlll eventually find
a string y such that NP, (y)# P.(y), because, otherwise, SAT would be in P, which
contradicts NP #P. When this happens, Stage is incremented to the value 2e+ 2.

The construction of NPg;,: Initially, Stage:=0. On input xeX* of length n, the
computation of NP,;, proceeds as follows:

(a) For n steps, NPS(,, simulates determlmstlcally the previous computations

P g I

1es how manv stases have beet

NPy (a;), NPy, (a3)...and determines how cor ‘1p1 ed so far.
The variable Stage contains the value of the stage that NP, has been able to find
within the allowed time.

(b) Case 1: Stage =2e. For n steps NP, simulates M; on input a,. If M; does not
accept a, in due time, then x is accepted. Otherwise Stage:=2e+ 1, and x is accepted.

Case 2: Stage=2e+ 1. For n steps NP,; looks for a string y<x such that
NP, (y) #P.(y). In doing this NP, ;,, on input y, is simulated deterministically. If such
a yis found then Stage:=2¢+ 2 and x is accepted. Otherwise x is accepted if and only if
xeSAT. End of constructlon of NPS“J
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Claim 2.3. NP, is a polynomial-time nondeterministic algorithm.

Proof. The only nondeterministic step in the computation of NP, on input x occurs
in (b), case 2. In this case NP, has to determine if xeSAT, which can be done in
a polynomial-time nondeterministic computation. All the other computations are
performed in deterministic polynomial time (in fact, linear time). [J

Claim 2.4. If at a certain moment in the construction of NPy, Stage=2¢ and M,
accepts a,, then there exists a later moment when Stage:=2e+ 1.

Proof. For sufficiently long input x, NPy, has enough time to find that M; accepts
a,. [

Claim 2.5. If at a certain moment in the construction of NPy, Stage=2e+1, then
NP # P, and there exists a later moment when Stage:=2e+ 2.

Proof. By the argument presented before the detailed construction of NP;,. [
Claim 2.6. If i¢Tot, then NPy, accepts a co-finite set.

Proof. Let ¢, be the minimal string such that M; does not accept a,.. By Claims 2.4
and 2.5, Stage=2e is reached. Clearly, from this moment on, NP, accepts every
input string. [

Claim 2.7. If i¢Tot, then NP,;,eNP—P.

Proof. By Claim 2.3, NP,;,eNP. Taking into account that ieTot and Claim 2.4, it
follows that the assertion in Claim 2.5 holds for every integer e. [

Theorem 2.8. If NP P #0, then NP —P is of the second Baire category.
Proof. Immediate, from Lemmas 2.1 and 2.2. [

Minor changes in the proof of Lemma 2.2 yield the following generalization of
Theorem 2.8 to higher levels in the polynomial hierarchy.

Theorem 2.9. (a) For all k=0, if i, ~ZF#0, then 7, — X} is of the second Baire
category.
(2) If PSPACE — PH #0, then PSPACE — PH is of the second Baire category.

All these results could lead someone to the idea that everything is of the second
category. This is not true. For example the class of NP-complete sets is of the first
category. Denote by Comp={A4eNP| 4 is <} complete}.

Theorem 2.10. If NP —P #0, then Comp is of the first Baire category.
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Proof. Recall that {P,} is an enumeration of polynomial-time deterministic oracle
machines. Without loss of generality, we assume that the time complexity of P, on an
input of length n is bounded by n*+k. Clearly, Comp={);5>o Comp,, where
Comp;={4eNP|SAT =L(P{)}. Using this decomposition, we show that Comp is of

ot ~ POV < ~

the first Baire category. Note that for every integer i and for every string we X ¥, there

exists a string y such that P“‘| (y);é SAT(y) (otherwise SAT would be in P), where

1|\'| +i Adanntee the cancatenatinn of w with a numher f ’n“_l_r l and D‘- =D &
aenotles tne condcaicnalion o1 w With a4 numoer of |y S ang r ZEA

means that the oracle is the finite set encoded by string z. Consider the recursive
function f: N x X *— X* which, on input (i, w), acts as follows: for all ve X *, with [v]|=
|w]| it finds a corresponding y(v) such that PL1| YOI+ () £ SAT(y(0)), and then it
selects the longest such y(v) over all v with |v|=|w|, let it be y(0). We set
£, w)=w1l"O+ Clearly, w is a prefix of £(i, w). Also U, ;. ,,,»Comp,=0. Indeed, let
AeUy. ., be an infinite set and let v be the initial segment of length |w| of the
characteristic sequence of A. There is a string y(v), | y(v)| < |y(0)] such that P;"i””i‘ o
(y(©))£ASAT(y(v)). As P;, on input y(v), does not ask the oracle for a string longer than
ly(v)|'+i and since v1¥®1"*7 is a prefix of the characteristic sequence of A4, it follows
that PA(y(z/));éSAT( (v)). Consequently, 4¢Comp;. We have shown that Comp; is
hence Comp is of the first category. 0

By inspecting the proof, the result in Theorem 2.10 holds for the class of NP-hard
sets. As a corollary, we obtain a stronger form of a well-known result of Ladner [15]
stating the existence of a set which is neither in P- nor NP-complete, under the
hypothesis that NP # P. The following corollary shows that there exist many sets with
the above property.

Corollary 2.11. If NP #£P, then (NP —P)—Comp is a class of the second category.

Proof. Suppose that (NP —P)—Comp is of the first category. One can easily show
that the union of two classes of first category is still a class of the first category. Then
by Theorem 2.10, it would follow that NP—P is of the first category. But this
contradicts Theorem 2.5. [

We investigate next the topological size of the low and high hierarchies [20],
two hierarchies related to the polynomial hierarchy. For each k<0, L,=
{AeNP|Z} (A) = } the low hierarchy in NP and H,={AeNP|Z},, X[ (4)} is
the high hierarchy in NP. It can be seen that the sets lying in the low hierarchy are
more or less (it depends on the level k) similar to sets in P, while the sets in the high
hierarchy are similar to NP-complete sets. For example, Lo=P, L, =NP~Co-NP,
Ho={A|A is <2-complete for NP}, H ={A4{A is <5"-complete for NP}, where

A <5 B means AeNP(B)nCo-NP(B).

Theorem 2.12. For all k=0, if L, ~Ly#0, then L, — L, is a class of the second
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Proof. By Lemma 2.1 it is sufficient to show that Tot <, (L,.;—L,, Co-Fin). In
order to achieve this, let {Mi},eN be an enumeration of all deterministic Turing
machines such that W, =dom(M;), {R;},.y be an enumeration of all £¥-machines (i.e.
k-alternating machines starting in an existential state [10]) and 4 be a fixed set in
Lise1—Li Thus, £F,,(4A)=X2F., and ZP(4)#Z]. For any set B, let C(B)=
{4 x#0""* the oracle X}-machine R; accepts x, when working with oracle B}, i.e.
C,(B) is the canonical <B-complete set for ZF(B). It is clear that 7 (B)# X} implies

C(B)eX}(B)—ZX}. For every deterministic Turing machine M; we define a nondeter-
ministic polynomial-time Turing machine NP;, such that if ieTot then
NP, el —L, and if i¢ Tot then NP;;, accepts a co-finite language. The condition
NP, el —L, is realized by imposing to NP, to satisfy two requirements: (i)
NP,;, <} A, and (i) C,(NPy;))¢Z}. In this way, 274, (NPyq,) < ¢4, (4)=Z},, and
20 (NP,) #Z7, because C (NPS([-,)EZ"(NPW-,)—Z" Hence, NPy;,eL,,,—L,. The

P A O N T e A P

construction of s(i) is based on the same Lcuuuquc used in Lemma 2.2. The NPS(,»)
performs its computatxons in stages, starting with Stage 0. On input x, of length n,

(a) For n steps NPS(,, simulates in a deterministic way the previous computations
and determines how many stages have been completed so far.

(b) Case 1: Stage=2e. For n steps, NP,;, simulates M, on input a,. If M,(a,) does
not stop within the allowed time or M; rejects a, then NP, accepts x and stops.
Otherwise, x is accepted and Stage:=2e+ 1.

Case 2: Stage=2e+ 1. Let U be the oracle Z}-machine that accepts C, (NP, ;) by

the help of the oracle NP, and let T"be the machine that deterministically simulates
U and that replaces oracle queries by deterministic computation of the sets NP, and

A (we need 4 because NP,;, depends on hv the final nbncp of its construction). For

C LU A Ullaust | s{i) Bepriits O 1 .......... 1dsye O 3w L0 19 4 Vi)

n steps, NP,;, looks for a y such that T'(y) stops (this implicitly means that the
deterministic computation of NP, stops on all strings queried by U} and T'(y) # R(y).
If such a y is found, then the current stage becomes 2e + 1, NP, ;, accepts x and it stops.
If no such y is found in due time, then x is accepted if and only if xe A. This completes
the construction.

Ciearly, NPy, <% 4. One can see that if ieTot then C(NP,;,)¢Z}. Indeed, if the
current stage stabilizes itself at 2e+ 1, then from this stage on NP, looks like A.

However C,(4) differs from R, in infinitely many points since otherwise we get that

Ci(A4)eX} which implies Z}(4)=ZX}. Hence, NP, finds eventually a string y that
satisfies the condition from (b) Case 2. But in this case the value of the current stage is
incremented which contradicts our assumption. On the other hand, if i¢ Tot, then it is
easy to observe that NP, accepts a co-finite set. [J

What is the topological size of the classes H,, k>0, from the high hierarchy? As
expected, they behave like Comp (which in fact is just Hy).

Theorem 2.13. For all k=0, if 1., #XV then Hy is a class of the first category.
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Proof. For all k=0, let C, be a complete set for 7. Then H,={AeNP|Z}(A4)=
e U(i(l).i(Z).“..i(k))eN’( {AeNP| Ci+1=NP;1;(NP;2)) ... (NP (4)...)} (the
union is taken over all k-tuples (i(1),i(2),...,i(k)) in N*) because if AeH, then
Cii 16X 1 =X} (A). Now, by performing some slight and obvious modifications in
the proof of Theorem 2.10, one can see that H, is indeed of the first category. [

Corollary 2.14. For all k=0, if 7, #Z} then NP — (L, uH,) is a class of the second
category.

Proof. If £}, , #X}, then NP #P [5]. In this case SATeNP —L,. Taking SAT in the
place of A4 in the proof of Theorem 2.12, one can show that NP —L, is of the second
category. By Theorem 2.13, H, is a class of the first category. Hence NP — (L, UH,) is
of the second category. [

3. Immunity and simplicity

In this section we investigate the topological size of some classes of sets achieving
the separation of P from NP in a stronger form like the class of P-immune sets or
NP-simple sets. For a class C of sets, a set 4 is C-immune if 4 is an infinite set and no
infinite subset of 4 is in C. A set is C-simple if 4 belongs to C and the complement of
Ais C-immune. A C-simple set A is called effectively C-simple if there exists a recursive
function f: N— N such that C; included in 4 implies |C,| < f(k), where C=(C}),.y is
an effective enumeration of C. If C is the class of r.e. sets, we simply say immune,
simple or effectively simple instead of r.e.-immune a.s.o. All these notions are inherited
from classical recursive function theory [22, 18] and the versions where C is P or NP
have been intensively studied in structural complexity theory [21, 3, 6].

Theorem 3.1. If there exists a P-immune set in NP, then the class of P-immune sets in
NP is of the second category.

Proof. Let A={BeNP|Bis P-immune}. By hypothesis, 4 is not empty, so we fix a set
Hin A. Our intention is to construct for each i a nondeterministic machine NP;;, such
that if ieTot then NP,;,e4 and if i¢Tot then the language accepted by NPy, is
co-finite. Then by Lemma 2.1 the result follows. During the construction we use the
variables Stage, Next-Candidate and a list, called List, which stores indexes of
polynomial-time deterministic machines that have been considered but have not yet
been diagonalized over. List is thought as an array of integers, so we can speak about
the first element of List, about the second a.s.o. Insertions in List are made at the
bottom of List (in the last position), deletions can be made anywhere in List, but after
a deletion the List is compactified so as not to contain any gap. We shall take care not
to increase the size of List too much so that insertions and deletions can be realized in
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linear time. The variable Next-Candidate keeps the index j of the next polynomial-
time deterministic machine P; that we attempt to introduce in List. Stage is a variable
that records the current stage in the construction of NP,;,. If Stage has an even value,
Stage =2e, then NP, tries to find if M; accepts a,. When this happens, Stage is
incremented to the value 2e+ 1. If M; does not accept a,, then Stage remains
perpetually at the value 2e, causing NPy, to accept all its further inputs. If Stage has
an odd value, then NP, tries to find for each k in List a string z such that
zeP, " NPy, In this attempt, NP, offers to each element of List a time which is
proportional to its position in List, without exceeding n steps for the whole operation,
where n is the length of the current input of NP, ;. Specifically, if k is in position j, n/2’
steps are spent in the effort of finding the desired string z. However, as NPy, processes
increasingly longer inputs, if P, is infinite, there will be eventually enough time to
discover a z such that ze P, n NP,;,. The existence of such a string z follows by the P-
immunity of H and by the mechanism of delayed diagonalization which makes NP,
resemble H in case of the failure of discovering the suitable string z.

The construction of NPy;,: NPy, performs its computations in stages. Initially
Stage:=0, Next-Candidate:=0, List:=0. On input xe X*, of length n, NP, runs as
follows:

(a) For n steps NP,;, simulates deterministically the previous computations (i.e. it
computes NP, (@), NP (a;) - for as many inputs the time bound allows) and
determines the current values of Stage, Next-Candidate and the content of List.

(b) Case 1: Stage=2e. The M;(a,.) is simulated for n steps. If M; accepts a, in the
specified time then x is accepted, Stage:=2e+4 1 and NP, stops.

Case 2: Stage =2e+ 1. Let m=|List|, i.e. m is the number of elements in List. If m>n
then x is rejected and NPy;, stops. Otherwise Next-Candidate is inserted in List and
Next-Candidate:= Next-Candidate + 1.

For jel, m, let List[ j] denote the value of the jth element in List. Then for every
jeT, m, for n/27 steps, NPy, looks for a string z such that ze Py ;(;; and z¢ NP;,. In
doing this, NP, is simulated in a deterministic way.

Case 2.1: The search succeeds for some j. Then for all such j’s, List[ j] is deleted
from List, x is accepted and Stage:=2e¢+2.

Case 2.2: The search fails for all j. Then x is accepted if and only if xeH.

End of construction of NP;,.

Now the proof follows by the next series of Claims.
Claim 3.2. NP, is a polynomial-time nondeterministic machine.

Proof. The only nondeterministic step in the computation of NP, (x) occurs in (b)
case 2.2. This step is realized by simulating the polynomial-time nondeterministic
machine that accepts H. All the other operations are performed in a deterministic way
in polynomial time (in fact linear time). Observe that the size of List is not allowed to
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increase too much, so that the operations of insertion and deletion can be realized in
linear time in the size of the input |x|. [

Claim 3.3. Suppose that at a certain moment in the construction of NPy, Stage =2e
and M; accepts a,. Then there exists a later moment when Stage:=2e+ 1.

Proof. This follows immediately because for a long enough string x NP,;, has
sufficient time to simulate the accepting computation of M; on input a,. U

Claim 3.4. Suppose that at a certain moment in the construction of NP, Stage=
2e+ 1. Then there exists a later moment when Stage is increased to 2e+2.

Proof. Let us suppose the contrary. Clearly, there exists a moment when a k, such that
P, is infinite, is inserted in List. Since H is P-immune, P, ~ H #0. Moreover, P, ~ H is
an infinite set. Indeed if P, » H = B, B finite, then P, — B < H, but P, is an infinite set in
P. This contradicts the P-immunity of H. By our assumption, it follows that there
exists a string x, such that for x > x,, NPy, accepts x iff xe H. Hence NP;;,=H a.e. In
this case for a sufficiently long input string x, NP, has enough time to discover
a string z such that ze P, " NP,;,. But this implies the incrementation of Stage to the
value 2e+2. [

Claim 3.5. If ieTot, then NPy, accepts a co-finite language.

Proof. Let e be the minimal with the property that M; does not accept a.. By Claims
3.3 and 3.4, it follows that Stage reaches the value 2e. It is clear that starting with this
moment NP, accepts every input. [

Claim 3.6. If ieTot and P, is infinite, then P, A NP, #0.

Proof. Since ieTot, it follows by Claims 3.3 and 3.4 that there exists a moment when
k is inserted in List. The reasoning in the proof of Claim 3.4 shows that
P.ANP,,,#0. [J

Claim 3.7. NPy, is infinite.

Proof. If i¢ Tot, we use Claim 3.5. If ieTot, then Claims 3.3 and 3.4 show that the
value of Stage passes through all positive integers. But any increase of Stage from an
even value is done in (b), case | and implies also the acceptance of the current input
string x. [

The analogous result for the case of NP-simple sets can be derived more simply.
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Theorem 3.8. Ifthere exists an NP-simple set, then the class of NP-simple sets is a class
of the second Baire category.

Proof. The proof relies again on Lemma 2.1. We fix an NP-simple set H and then for
each integer i we define NPy, such that (a) ieTot in“p ies H is included in NP, and

NPy, is infinite, and (b} i¢Tot implies NP,;, accepts a co-finite set. Note that
situation (a) implies that NPg;, is NP-simple, because if NP, is infinite then
NPkr\H;é(Z), ) NPkmNPS(,-);é@.
Construction of NPg;: (a) For n steps NP, simulates deterministically the
previous computations NP (a,), NPy, (a;),... for as many inputs the time bound
allows. It may happen that on some inputs g, the simulation of NP, (a,) finds
different values for the variable Stage on the originally nondeterministic branches
of the computation of NP, (a,). If this is the case the least such value is selected
for Siage.

(b) Case 1: Stage =2e. Then Stage:=2¢ + | and the polynomial-time nondeterminis-
tic machine N that accepts H is started on input x. If a computation of N(x) that
accepts x is discovered, then NPy, accepts x and Stage comes back to the valuc 2e.
Otherwise NPy, rejects x. After these operations NP;;, stops.

Case 2: Stage =2e+ 1. For n steps NP, simulates M; on input a,. If M, accepts a,
in the specified time, then x is accepted, Stage:=2e+2 and NP, stops. Otherwise
NPy, accepts x and stops.

This completes the construction.

Suppose thai ieTot. Then the vaiue of the variable Stage passes through ail

positive integers k. This is proved by induction on k. Indeed, suppose k=2e. There

exists a moment when the innut x is such that x¢H, because H is infinite. At
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this moment, Stage becomes 2e+ 1 and is never decreased later. In case k=2e+1,
since ie Tot, we conclude that for a sufficiently long input x, NP, has enough time
to discover that M; accepts a. and, consequently, to increase Stage to the value 2e+ 2.
But any permanent increase of Stage in (b) case 1 implies that NP, rejects the
current input. Hence, NPy, is infinite. On the other hand, H is included in NP,
because NP, rejects an input x only in case x¢ H (see (b) case 1). Clearly, NP, is

computed by a polynomiai-time nondeterministic machine. We conciude that NP, is
NP-simpile.

—

Tn case i¢ Tot e ctabilizeg itself to the value 22+ 1. where g
10t € stabilizes itsell to the value Ze+ 1, where g
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is the minimal string that M; does not accept, and from that moment on NP, accepts
all further input strings. Hence, in this case NPy, is co-finite. []

We can strengthen the above results by considering bi-immune for P-sets [5].
An infinite co-infinite set A is bi-immune for P if both 4 and its complement are
P-immune.

Theorem 3.9. If there exists a bi-immune for P set in NP, then the class of bi-immune for

P sets in NP is a class o )f the second category.
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Proof. By a slight modification of the proof of Theorem 3.1, which we sketch here.
This time we use two lists, List] and List2. The construction of NPy, is done in stages
and three situations occur depending on whether the current stage k is of the form 3e,
3e+1 or 3e+2. In case k=3e, NP, simulates M;(a,.) as in (b) case | in the proof of
Theorem 3.1. In case k=3e+ 1, NPy, looks for a z such that zeP,,n NP, for m in
List1, whereas in case k=3e+2, NP, looks for a z such that ze P,, n NPy, for m in
List2. The other details are left to the reader. [

One can observe that the technique used in Theorem 3.1 for the case of P-immune
sets would have worked also for the case of NP-simple sets. We have preferred to
present another proof (which incidentally is more simple) because the method used in

Theorem 3.2 can be applied for the case of effectively NP-simple sets.

Proposition 3.10. [f there exists an effectively NP-simple set in NP, then the class of
effectively NP-simple sets in NP is of the second category.

Proof. Practically, the proof of Theorem 3.8 works here too. [J

Proposition 3.10 has the following interesting consequence. Either there is no

effectively NP-simple set in NP or there are effectively NP-simple sets that are not
NP-complete, because the latter class is of the first Baire category. This statement

oly with the sit

nati n in ive function theorv xrhprn effecti tive ely
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simple sets are complete for the class of r.e. sets [22, pp. 79-87]. This result shows that
our topological analysis has some interesting applications in the study of the struc-
tural properties of some important complexity classes. For example, by combining
Theorem 3.1 with Theorem 2.10, we obtain that if there exists P-immune sets in NP,
then there exists such a set that is not NP-complete. By Theorem 3.8, a similar result
holds for NP-simple sets also. Note that the problem of whether there exist NP-
compiete sets that are NP-simple or NP-hard sets that are NP-immune has been
investigated in [ 14]. It is shown in [14] that if NP is exponentially hard (which is very

! NDP_hard + ND
likely), no NP-hard set can be NP-immune and if NP~ Co-NP is exponentially hard

lha
(which again is very likely), NP-complete NP-simple sets do not exist.

4. Some applications

One may argue that the topology proposed in this paper is exotic and that the
results obtained in the previous sections are not relevant outside the point of view
of this topology. In this section we want to counteract this claim. We show that all
classes C of sets shown to be of second category have a very interesting property:
for every B in NP there ex1sts AeC such that for an arbltrarlly slowly increas-



306 M. Zimand

(A A B)<"|<r(n), for infinitely many n, where AA B is (A—B)u(B— A). We believe
that this property shows that the classes of the second Baire category are really large
and, consequently, the proposed topology is validated by intuitive results. Moreover,
this property is obtained by using a topology similar to the one in the previous
sections.

For the rest of this section we fix a set B in NP. For every we X * we define a basic

eighborhood as

UB={veX™|Vig|w|(a;€B, w(i)=1=v(i)=1) and
(a;¢B, w(i)=0 = v(i)=0))}.

Note that U,=UZX", so that the topology used in the previous sections is just
a particular case of the topology introduced here. The following definition is moti-
A
u

1 th
8

(SN

Definition 4.1. (a) A class C included in X * is recursively of the first Baire category
relative to B if there is a decomposition C=U,~>0 C; and a recursive function
f:N x X*—X* such that, for every natural i and for every we X*,

(i) wis a prefix of f(i, w) and

(i1) U?(i,w)mci=q)~

(b) A class C included in X * is recursively of the second Baire category relative to
B if it is not recursively of the first Baire category relative to B.

As before, we shall drop the words “recursively” and “Baire” in the further use of
this terminology.

A result similar to Lemma 2.1 holds. Indeed, let C included in NP be a class of sets
of the first category relative to B via a function f: N x X*— X * Hence, if AeC, there is
an integer i such that AeC; and, consequently, for every w, A¢U%; . If B(<n) is the
string B(a,)B(a,)... B(a,), we deduce that for every neN there exists xeN, n<x<
| f (i, B(<n))| such that a,e(A4 A B), because, otherwise, AeU%B; 5(<m) Consequently,

if AeC, then

the Kleene s arithmetic hierarchy. In consequence, similarly to Lemm 2.1, we obtain
the following lemma.

Lemma 4.2. Let C be a class included in NP. If for every recursive function f: N x X*
—X* Tot <,(C, Dy), then C is a class of sets of the second category relative to B.

Ali the classes shown to be of the second category in the previous sections are in fact
of the second category relative to any B in NP. We sketch the proof for the case

A=NP—P, but the same modification works in all the other cases.
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Lemma 4.3. Let [N x X*—>X* be a recursive function. Then Tot <,,(NP—P, Df),
provided that NP #P.

Proof. For every Turing machine M; we construct a polynomial-time nondeterminis-
tic machine NPy, such that ieTot implies NP, e NP — P and i¢ Tot implies s(i)eD;,.
The construction of NPy, is performed in stages. On an even Stage =2e, we simulate

M, on input g, and, il M; does not accept a, in the allowed time, then we try to satisfy,
for some he N, the following requirement:

W (3neN)(VxeN, n<x<|f(h, B(<n))|, ax¢(N P.; AB).
To this aim we use the variable Hcrt which stores the value h for which we

try to satisfy R,. For such an h, we store the attempted value of n which appear in
R, in the variable Ncrt. If Nert=0, we have to start satisfying the requirement R,
from the very beginning, ie. for all a, with n<x< f(h, B(<n)). On an odd
stage, Stage=2e+1, we satisfy NP,;,#P, exactly as in Lemma 2.2, by delayed
diagonalization.

The construction of NPy, Initially, Stage:=0, Hert:=0, Nert:=0. On input xe X *,
X=a,, |x|=n, NP, acts as {ollows:

(a) For n steps, NPy, simulates deterministically the previous computations
NP, {(a;), NP (a;), ... and determines the values of the variables Stage. H
Nert.

(b) Case 1: Stage=2e. For n steps, M, is simulated on input a,.

If ‘M; does not accept a, within n steps then NP,;, performs the following
operations:

(b.1) If Ncrt=0 then Ncert:=m

(b.2) NP, computes f(Hecrt, B(<Ncrt)). The computation of B is simulated in

deterministic way. If this computation stops within »n steps and m> f(Hecrt,

o

-
<
<

“
-
<
b

e
t

In case M, accepts a, within n steps then Hert:=0, Ncrt:=0 and Stage:=2e+ 1.

Case 2: Stage =2e+ 1. NP,;, looks for a z < x such that NP, # P, (z) for n steps. In
doing this the computation of NP, ;, on various inputs z is simulated in a deterministic
way. Ifsuch a z is found then x is accepted and Stage:=2e+ 2. Otherwise, x is accepted
if and only if xeSAT.

This completes the construction of NP,.

Claim 4.4. NP, is computed in nondeterministic polynomial time.

Proof. Nondeterministic computations occur for simulating B and SAT on the input

hhcw ctmsme amea Aaien fen 1leannie P £ T 2 m
1Ier btcpb alc UUUC 111 uuca1 UCtClllllulble tllllC |-



308 M. Zimand

Proof. Let e be minimal such that M; does not accept a,. It is easily scen that, starting
with the moment when NP, enters for the first time in Stage =2e after the computa-
tion of (a), NP, satisfies, one after another, all the requirements R,. [J

f ieTot, then NP;;,eNP—P.

. i the value 2e+1 for all ee!
Stage=2e+1, the requirement NP;,,#P, is fulfilled. Taking into consideration
Claim 4.4, it follows that NP,;,,eNP—-P. [

N A+ tha
Y. AL uic

Corollary 4.7. For any BEeNP, NP —P is a class of the second category relative to B,
provided NP#P. T[]

For any infinite set D included in X*, we define the principal function of D,
#D:N.,—>N, by the relation (see [22, p. 81]): D=(aypn<agzpy<- <
aypm< --- }. Observe that for all integer n, among the first # D(n) strings in X ¥, there
are exactly n strings that belong to D. Principal functions are similar to ranking

firnotiong 117
iunctions Ll, 1.

Theorem 4.8. Let BeNP and C included in NP be a class of

relative to B. Then either there exists A in C such that A A B is finite o
function f:N—N there exists A in C such that #(AAB)(n)= f

many nin N.

=
3
=

he

category
category

seco
or for any recursive
(n) for infinitely

Proof. Suppose that for any 4 in C, AAB is infinite and there exists a recursive
function f:N-—N such that #(AAB)(n)< f(n) for sufficiently large n. Let
C;={AeC|4#(AAB)(n)<f(n), Vazi}. Then C={J;5¢ C;. For n=i, in the set

{ay,az,..., a#(AAB)(n } there are exactly n strings from 4 A B for any A4 in C;. Hence,
for n=i, in the set {dy1 1. Gnevay-os GyaaB)mt1)s--- Gpm+1)) there exists at least one

element from A AB, for any A in C;. Now we define g: N x X*—> X * by

o (wB(wI+ D)B(w[+2).. B (wl+ 1), if [w]>i
9 W)_{WIHWB(i+1)...B(f(i+1)), i w|<i.

By the above observation C;nUJ; ,,,=0. This contradicts the fact that C is of the
second category relative to B. [

Corollary 4.9. Let BeP and C included in NP be a class of the second category relative
to B. Then for every r: N— N recursive, increasing and unbounded there exists A€ C such
that |(A A B)S"| < r(n) for infinitely many n.

Proof. If exists 4 in C such that 4 A B is finite, the conclusion is immediate. In
the or\poszte case, we consider the function v’ defined by r'(n)=r'(n— D) if r(n)=r(n—1)
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and r'(n)=r'(n—1)+1 otherwise (ie. r(n)>r(n—1)). It is clear that r':N->N is
surjective and r(n) =r'(n) for all naturals n. We also take a recursive function f such
that f(r'(n))=2""'—1, for all n. From Theorem 4.8 we know that there exists a set
A in C such that # (4AAB) (n)= f(n) for infinitely many », hence #(4AB)(r'(n))=
f(r’(n)) for infinitely many n. By the definition of the principal function in the set

{aj,ay, ..., ay AAB,(,'(” } there are exactly ¥'(n) strings from A A B, hence the cardinal
~F (- ~ A R\ 1A or equs 2l than v/lvn\/ {1} far infinitaly monvy
L (ul, uz,...,uf(r ("))J’t l\/“lI_\U} 15 l\.z vl \_l cu Lllalll \ }\\ \Il} 1V el 11ail 143
Since f(r'(n))=2""1—1, the conclu51on follows. [

Note that if B=0 and C =NP—- P, we obtain the result that there exists a set in
NP — P which is infinitely often sparse. By varying the class C, we deduce the existence
of such a set that is P-immune or NP-simple.

The following theorem is the Baire category analogue of a result of Ambos-Spies
[2], which characterizes the class P in terms of measure theory. It provides one
additional reason for the adequacy of our definitions for the investigation of the
topological size of various complexity classes.

Theorem 4.9. 4 set A is in P if and only if the class {B|AeP(B)} is of the second
category.

Proof. If A isin P then {B| AcP(B)} is a class of the second category since it includes

n /DY

P.If A 1s not 1[1 [ﬂCl'l dS ]I] T neorcm A lU one can SHUW ll'ld[ lb [ AEI"{D} i lb a lebb
of the first category.
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