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In the classical Cantor topology or in the superset topology. NP and. consequently, classes included 

in NP are mccr~~rr. However, in a natural combination of the two topologies. we prove that NP- P, if 

not empty. is a swontl coregor~a class, while NP-complete sets form a first cutegory class. These 

results are extended to different levels in the polynomial hierarchy and to the low and high 

hierarchies. P-immune sets in NP. NP-simple sets. P-bi-immune sets and NP-effectively simple sets 

arc all second category (if not empty). It is shown that if C is any of the above second category 

classes. then for all BENP there exists an AEC such that A is arbitrarily close to B infinitely often. 

1. Introduction 

Since there is strong evidence that NP# P, it is natural to ask how “large” is 

NP - P. There are many results which indicate that this class is rich. For example, in 

[I 51 the existence of sets in NP which are neither in P nor NP-complete is shown, and 

in [4] the existence of infinite families of incomparable sets in NP - P under poly- 

nomial-time reductibilities is proved, provided that NPf P. In this paper we intend 

a more direct investigation of the abundance of sets in NP - P. There are usually two 

concepts that are used to tackle such questions: measure and Baire category [ 18, 

p. 2691. The first one is not relevant in our case. One can easily see that NP itself has 

null measure and, thus, NP - P is trivially of measure zero. There are some difficulties 

also from the point of view of Baire category. In the classical setting, a set in 

a topological space is rare if its closure does not contain any nonempty set. A set is of 

the first Baire category if it is a finite or denumerable union of rare sets and it is of the 
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second Baire category if it is not of the first category. As we deal with algorithmical 

objects, it is natural to consider recursive variants of these definitions (see [17]). The 

standard procedure goes along the following lines [9]. Let X = (0, 1). For i> 1, let ai 

be the ith string in the lexicographical order of X*. Thus, X* = {ur <a, ... <a, . . . ), 

where < is the lexicographical order on X *. A class is a set of languages. We identify 

a recursive set A included in X* by its characteristic sequence A( l)A(2). . . A(n) . , 

where, for each positive integer i, A(i)= 1 if UiEA and A(i)=0 otherwise. By this 

codification, AEX”, where X”’ denotes the set of infinite words over the alphabet X. 

For p in X”, we define its support by supp(tl)= (i > 1 1 c(i)= l}, where v(i) is the ith bit 

of II. If 2’ in X” has finite support then luI =max{i 1 i~supp(~)) is the length of u. We 

identify a class A of sets with the family of the characteristic sequences of the sets in the 

class. In this way, all the classes we are going to study are included in X”. Since we 

need a constructive topology on X”, it is necessary for the basic neighborhoods to 

admit a finite characterization; hence, the basic neighborhoods will be generated by 

strings in X Z with finite support. Let F be the set of the strings in X” with finite 

support and consider the set of basic neighborhoods U,., u in F. A set A included in 

X” is recursively rare if there exists a recursive function .f which, for every u in F, 

produces a witness 1~ in F with IVE U,. - closure(A), i.e. w proves that U,. is not included 

in the closure of A. There are mainly two ways largely used in the literature for 

defining U,, z: in X* (once again we identify F with X*, by associating with each u in F, 

the finite string V( l)t1(2). v( IL’ 1) in X*). The first way [ 173 consists in defining, for 

every c’ in X*, 

U:.= (wEX” / L’ is a prefix of w}. 

This corresponds to extensions of initial finite segments, an operation which is widely 

used in computational theory [ 1 S]. Unfortunately, under this definition, NP is of the 

first category and, in consequence, NP - P is trivially of the first category. The second 

method [8,9] consists in defining, for every u in X*, 

U,={wcX”lVi<lul [u(i)=1 *w(i)=l]}, 

where IuI denotes the length of the finite string VEX *. This definition corresponds to 

extensions of sets. If we simply require that the witness function produces for every u in 

X* a string w of finite support in U,, the resulting definitions are again inadequate for 

our purposes. In this case, one can see that NP - X * is a class of the first category; so, 

NP - P is, again trivially, of the first category. The two methods described above are too 

rough in order to distinguish, from a topological point of view, the size of some 

interesting classes included in NP. Hence, we propose a mixing of the two variants. The 

basic neighborhoods are the ones from the second method, but w has the supplementary 

property that u is a prefix of w, as in the first method. The family (U,,), v in X*, is closed 

under the intersection; so, in the topology generated by it, the open sets consist of 

arbitrary unions of basic neighborhoods. If A is included in X”, one can see that 

closure(A) = {WEX 1 ( 3u~ A, supp(w) < supp(u)}. After some obvious computations and 

keeping into account the above remarks, we obtain the following definitions. 



Definition 1.1. A class A is called recursively rare if there is a recursive function 

.f:X*+X* such that, for every u in X*, 

(i) L’ is a prefix of ,f’(~), and 

(ii) An U,.,,.,=@. 

Definition 1.2. (a) A class A is recursively of the first Baire category if there is 

a decomposition A = U Ai and a recursive function f: N x X*+X* such that, for 

every icN and for every CEX*, 

(i) u is a prefix of ,f(;, u), and 

(ii) A,n Ufci,t,,=@. 

(b) A class A is recursively of the second Baire category if it is not recursively of the 

first Baire category. 

For the sake of brevity, we shall simply say first or second Baire category, or even 

first or second category. 

Under these definitions we prove that NP- P is of the second Baire category 

provided that it is not empty. This is the main result of this paper and is stated in Section 

2. In the same section we extend this result to the other levels of the polynomial 

hierarchy and to the low hierarchy [19, 201. We also show here that the class of 

NP-hard sets as well as all the levels of the high hierarchy are of the first category. Since 

the finite union of first category classes is still a class of the first category, it follows that 

the class of sets in NP that are neither in P nor NP-complete is of the second category. 

In Section 3 we obtain similar results for classes of sets which realize stronger forms of 

separation between NP - P. It is shown that the classes of P-immune sets in NP, of 

NP-simple sets or of P-bi-immune sets in NP, if not empty, are all of the second Baire 

category. Moreover, the class of effectively NP-simple sets is also either empty or of the 

second Baire category. This result contrasts strongly with the situation in classical 

recursive function theory, where all effectively simple sets are complete for the class of 

r.e. sets [22, pp. 79-871. Many approaches in structural complexity theory have origins 

in recursive function theory, by observing the analogy between sets in NP and r.e. sets 

on one side and between sets in P and recursive sets on the other. Our result supplies an 

example where this analogy does not work and it suggests that our methods may be 

used in the investigation of some structural properties of complexity classes. In fact, 

Section 4 provides such applications to the study of the density of sets in NP - P. It is 

shown that if NP# P, then for an arbitrarily slowly increasing, unbounded and 

recursive function Y and for any B in NP, there exists A in NP- P such that 

I((A -B)u(B-A))<” 1 <r(n) for infinitely many n. Similarly, one can show [23] that for 

any recursive set B and for any increasing and recursive function r, there exists a set in 

NP- P such that I(B- A)<” 1 d r(n) for infinitely many ~1. Similar results hold for all the 

other classes shown to be of the second Baire category in Sections 2 and 3. We also find 

an intrinsic characterization of P which is similar in spirit with the one found by 

Ambos-Spies [2] in terms of measure theory. In [2] it is shown that a set A is in P if and 

only if {L? I A <L B) has measure 1 (for other related results see [7]). We prove that A is 
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in P if and only if {B I A d F B} is of the second Baire category. In our view, these results 

validate the proposed topology for our investigation of sizes of complexity classes based 

on Baire category. However, note that an approach based on the topology generated by 

the system of basic neighborhoods (Vh) has been considered in [ 161, by restricting the 

complexity of the witness function from Definition 1.1. 

The rest of this section is dedicated to the presentation of some more notation. In 

this paper, if not specified otherwise, all sets A are of strings over the alphabet 

X = {O, 1). For a set A, A denotes the complement of A. For a finite set included in X*, 

let JAI denote the number of strings in A, and let A4’ denote the set of strings in 

A such that 1x1 <n. By “:=” we denote the assignation. We assume the reader is 

familiar with Turing machines, nondeterministic Turing machines, their time com- 

plexity, the classes P, NP and the polynomial hierarchy [S, 193. We fix enumerations 

(PkJk and {NPkSk of the polynomial-time deterministic and nondeterministic ma- 

chines. Sometimes Pk (NP,) will also denote the language accepted by the machine P, 

(NP,). From the context it will be clear whether the meaning of Pk (NP,) is the kth 

machine in the above enumeration or the language accepted by it. 

2. NP - P, the low and the high hierarchies 

We present first a rather technical lemma that will be the core of all our proofs 

showing various classes of sets to be of the second Baire category. All these results rely 

on the rr,-hardness principle brought in evidence mostly by Hartmanis [ 12, 131. We 

show that if A is a class of the first Baire category, then A is included in a set D which is 

in the CZ level of Kleene’s arithmetical hierarchy and such that Co-Fin is included in 

the complement of D. It follows that if A is a class which has a property similar to 

being rtn,-hard (i.e. Tot drn (A, Co-Fin); see below) then A is necessarily of the second 

Baire category. 

Let (Wi)i~N be an enumeration of the class of recursively enumerable sets of strings 

and IV”,, be the set of the strings enumerated in W, within the first s steps of 

computation [22]. Let Tot = {x I IVY= X*} and Co-Fin= {.x I w, is finite}. For a class 

A of recursively enumerable sets, we say that Tot drn (A, Co-Fin) if there is a recursive 

function s: N-N such that iETot implies Ws,i,EA and i$Tot implies s(I)ECo-Fin. 

Lemma 2.1. Let A he a class of recursively enumerable sets of strings with Tot 6, 

(A, Co-Fin). Then A is of the second category. 

Proof. Suppose A is of the first category. This means that there is a decomposition 

A = uiao A i and a recursive function f: N x X *-+X * such that, for every integer i and 

every string WEX*, w is a prefix of f(i, w) and Ur(i,M,i n Ai=~. 

Let D={j~NI(3i)(Vn)(tis)(3k~N, n<kd If(i,On)(, ak$Wj,S)]. Clearly, Co-Fin is 

included in D and D is in the CZ level of the arithmetic hierarchy [18,22]. Observe that 

YEA implies jED. Indeed, if wj~A then there exists some i such that &EA~. Also 

note that if, for some n, it holds true that, for all k with n < k d I .f(i, On)l, akE Wj:-, then 
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we can conclude that WjEUS(I,O”), which contradicts the fact that A i n U,, (i, on, = 0 for 

all integers i and n. Now it follows that 

iETot implies Ws,i,EA, which implies s(I’)ED, and 

iETot implies s(i)Ko-Fin c 0. 

Consequently, Tot 6, D, which is a contradiction because Tot is rcz-complete [22] 

and D is in CZ. 0 

We can now proceed to the main result of this paper, i.e. the fact that if NP - P 58, 

then NP- P is of the second category. By Lemma 2.1 we only have to show that 

Tot d m (NP - P, Co-Fin). This follows by a standard argument (see [ 121) which uses 

the delayed diagonalization method of Ladner [1.5]. 

Lemma 2.2. [f NP - P ~0, then Tot Grn (NP - P, Co-W. 

Proof. Let jMi)ieN be an enumeration of all deterministic Turing machines such that 

W, =dom(M,). For every Turing machine Mi we define a nondeterministic poly- 

nomial-time Turing machine NP,(i, such that if iETot, then NPs,i,ENP-P, and if 

i$Tot, then the language accepted by NPs(i, is co-finite. The computation of NP,~o, is 

performed in stages, starting with Stage=O. The machine NP,(i, has two kinds of 

objectives depending on the parity of Stage. Thus, if Stage = 2e, NPs(i, tries to find, in 

polynomial time, whether Mi accepts a,. If and when this happens, Stage is in- 

cremented to 2e+ 1. In case NP,(i, does not succeed in determining whether Mi 

accepts a,, the current input is accepted. In this way, if i$Tot, then clearly NP,(i, 

remains stuck in an even stage and it accepts a co-finite set. On the other hand, if 

Stage=2e+ 1, NP,(i, looks for a string y such that NP,,,, (y)#P,(y). If no such y is 

found, the current input x is accepted if and only if .xcSAT. Consequently, if repeated 

failures occur, then NP,,,, begins to look like SAT. Hence, NP,(,, will eventually find 

a string y such that NP,(i, (y)# P,(y), because, otherwise, SAT would be in P, which 

contradicts NP # P. When this happens, Stage is incremented to the value 2e + 2. 

The construction of NPs(i,: Initially, Stage:=O. On input XEX* of length II, the 

computation of NP,,i, proceeds as follows: 

(a) For n steps, NP,,i, simulates deterministically the previous computations 

NPs(i, (al), NP,,i, (u2). . . and determines how many stages have been completed so far. 

The variable Stage contains the value of the stage that NP,(,, has been able to find 

within the allowed time. 

(b) Case 1: Stage=2e. For y1 steps NP,,i, simulates Mi on input a,. If Mi does not 

accept a, in due time, then x is accepted. Otherwise Stage:= 2e + 1. and x is accepted. 

Case 2: Stage =2e+ 1. For n steps NPso, looks for a string y<x such that 

NPs,i,(r) # P?(y). In doing this NPs(i,, on input y, is simulated deterministically. If such 

a y is found then Stage:= 2e + 2 and x is accepted. Otherwise x is accepted if and only if 

XESAT. End of construction of NP,(,,. 

The following claims settle this lemma. 
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Claim 2.3. NP,,i, is a polynomial-time nondeterministic algorithm. 

Proof. The only nondeterministic step in the computation of NP,(,, on input x occurs 

in (b), case 2. In this case NP,,,, has to determine if XESAT, which can be done in 

a polynomial-time nondeterministic computation. All the other computations are 

performed in deterministic polynomial time (in fact, linear time). 0 

Claim 2.4. Jf at a certain moment in the construction of‘ NP,,i,, Stage=2e and Mi 

accepts ue, then there exists a later moment when Stage:=2e+ 1. 

Proof. For sufficiently long input x, NPsti, has enough time to find that Mi accepts 

a,. u 

Claim 2.5. If at a certain moment in the construction of NP,(,,, Stage=2e+ 1, then 

NP,(i, # P, and there exists a later moment when Stage:= 2e + 2. 

Proof. By the argument presented before the detailed construction of NP,,i,. 0 

Claim 2.6. Ifi$Tot, then NP,,i, accepts a co-finite set. 

Proof. Let a, be the minimal string such that Mi does not accept a,. By Claims 2.4 

and 2.5, Stage =2e is reached. Clearly, from this moment on, NPs(ir accepts every 

input string. 0 

Claim 2.7. If i$Tot, then NP,(i,ENP - P. 

Proof. By Claim 2.3, NPs,i,ENP. Taking into account that iETot and Claim 2.4, it 

follows that the assertion in Claim 2.5 holds for every integer e. 0 

Theorem 2.8. If NP-P#@, then NP-P is of the second Baire category. 

Proof. Immediate, from Lemmas 2.1 and 2.2. 0 

Minor changes in the proof of Lemma 2.2 yield the following generalization of 

Theorem 2.8 to higher levels in the polynomial hierarchy. 

Theorem 2.9. (a) For all k 2 0, (f Ci+ 1 - Cf #0, then C,P+ 1 -Xi is of the second Baire 

category. 

(2) If PSPACE - PH #$?I, then PSPACE- PH is of the second Baire category. 

All these results could lead someone to the idea that everything is of the second 

category. This is not true. For example the class of NP-complete sets is of the first 

category. Denote by Camp= {AENP 1 A is <t complete}. 

Theorem 2.10. [f NP- P#@, then Comp is of thejrst Baire category. 



Proof. Recall that {Pk) is an enumeration of polynomial-time deterministic oracle 

machines. Without loss of generality, we assume that the time complexity of Pk on an 

input of length n is bounded by nk+ k. Clearly, Camp= ulaO Comp,, where 

Compi = [AENP 1 SAT = L( PA)}. Using this decomposition, we show that Comp is of 

the first Baire category. Note that for every integer i and for every string M?EX*, there 
,114.1’+i 

exists a string y such that Pi ( y) # SAT(y) (otherwise SAT would be in P), where 

wl I!‘)‘+’ denotes the concatenation of MI with a number of lyl’+ i l’s and P’, ZEX* 

means that the oracle is the finite set encoded by string z. Consider the recursive 

function f‘: N x X*-+X* which, on input (i, w), acts as follows: for all ZIEX*, with ICI = 

Iwl it finds a corresponding y(v) such that P~l’Y(r”’ ci (y(v)) # SAT( y(v)), and then it 

selects the longest such y(u) over all 2: with IuJ = IK/, let it be y(0). We set 
,f(j, ,V)=M’l lYco)l’+l Clearly, \V is a prefix of ,f(i 1~). Also CIfci, w, n Comp, = @. Indeed, let 

AEUf(i.w) be an infinite set and let c’ be the initial segment of length Ibt’l of the 

characteristic sequence of A. There is a string Y(V), ly(u)l< Iy(O)l such that P~l’rc”“’ +’ 

(y(v))#sAT(y(~)). As Pi, on input y(v), does not ask the oracle for a string longer than 

Iy(v)l’+i and since ul Ir’r)i’+r is a prefix of the characteristic sequence of A, it follows 

that P~(~(D))#SAT(~(U)). Consequently, A#Compi. We have shown that Camp, is 

recursively rare; hence Comp is of the first category. 0 

By inspecting the proof, the result in Theorem 2.10 holds for the class of NP-hard 

sets. As a corollary, we obtain a stronger form of a well-known result of Ladner [I 51 

stating the existence of a set which is neither in P- nor NP-complete, under the 

hypothesis that NP # P. The following corollary shows that there exist many sets with 

the above property. 

Corollary 2.11. [f NP # P, then (NP- P)-Comp is a class of the second category. 

Proof. Suppose that (NP- P)-Comp is of the first category. One can easily show 

that the union of two classes of first category is still a class of the first category. Then 

by Theorem 2.10, it would follow that NP- P is of the first category. But this 

contradicts Theorem 2.5. 0 

We investigate next the topological size of the low and high hierarchies [20], 

two hierarchies related to the polynomial hierarchy. For each k<O, L, = 

{AENPIE:((A)~C~:} is the low hierarchy in NP and Hk={A~NPIC~+lcZ,kP(A)} is 

the high hierarchy in NP. It can be seen that the sets lying in the low hierarchy are 

more or less (it depends on the level k) similar to sets in P, while the sets in the high 

hierarchy are similar to NP-complete sets. For example, Lo= P, L, =NPnCo-NP, 

H,=(AIA is <; -complete for NP}, HI = {A / A is <y-complete for NP), where 

A <y B means AENP(B)~CO-NP(B). 

Theorem 2.12. For all k 3 0, if Lk + 1 - Lk # 8, then L k+ 1 - Lk is a class of the second 

category. 



Proof. By Lemma 2.1 it is sufficient to show that Tot Gm(Lk+ 1 -Lk, Co-Fin). In 

order to achieve this, let IMi)i.N be an enumeration of all deterministic Turing 

machines such that Wi = dom(hili), :RjljtN be an enumeration of all C,P-machines (i.e. 

k-alternating machines starting in an existential state [lo]) and A be a fixed set in 

Lk+,-Lk. Thus, Xf+,(A)=C),‘+, and Xt(A)#C,P. For any set B, let C,(B)= 

(i#.X#O “‘+‘I the oracle X:-machine Ri accepts x, when working with oracle B}, i.e. 

C,(B) is the canonical d g-complete set for C:(B). It is clear that C,P(B)#Cr implies 

C,(B)EXL(B)-CE. For every deterministic Turing machine Mi we define a nondeter- 

ministic polynomial-time Turing machine NP,(i,, such that if iETot then 

NP,,i,~Lk+ 1 -L, and if i$Tot then NP,(i, accepts a co-finite language. The condition 

NPh(i,ELk+ I- Lk is realized by imposing to NP,(,, to satisfy two requirements: (i) 

NP,o, < ;A, and (ii) C,(NP,,i,)4C~. In this way, Cf+ 1 (NP,(i,) c CF+, (A)=C,P+ 1 and 

Cf(NP,,i,)#Cf, because Ck(NP,(i,)EC~(NPs,i,)-~~. Hence, NP,(i,ELk+,-L,. The 

construction of s(i) is based on the same technique used in Lemma 2.2. The NP,(,, 

performs its computations in stages, starting with Stage 0. On input x, of length n, 

NP,,i, runs as follows: 

(a) For n steps, NP,,,, simulates in a deterministic way the previous computations 

and determines how many stages have been completed so far. 

(b) Cuse 1: Stage=2e. For n steps, NP,(i, simulates Mi on input a,. If 1Lili(U,) does 

not stop within the allowed time or Mi rejects a, then NP,,,, accepts x and stops. 

Otherwise, x is accepted and Stage:=2e+ 1. 

Case 2: Stage=2e+ 1. Let U be the oracle Xi-machine that accepts C,(NP,(,,) by 

the help of the oracle NP,(i, and let T be the machine that deterministically simulates 

U and that replaces oracle queries by deterministic computation of the sets NPs(i, and 

A (we need A because NP,,i, depends on A by the final phase of its construction). For 

n steps, NPsci, looks for a y such that T(y) stops (this implicitly means that the 

deterministic computation Of NP,,i, stops on all strings queried by U) and T(y) #R(y). 

If such a y is found, then the current stage becomes 2e + 1, NP,,,, accepts x and it stops. 

If no such y is found in due time, then x is accepted if and only if XE A. This completes 

the construction. 

Clearly, NP,,i, <; A. One can see that if iETot then C,(NPs,i,)$CE. Indeed, if the 

current stage stabilizes itself at 2e+ 1, then from this stage on NP,(;, looks like A. 

However C,(A) differs from R, in infinitely many points since otherwise we get that 

Cli(A)~CF which implies Ci(A)=Ci. Hence, NP,(i, finds eventually a string y that 

satisfies the condition from (b) Case 2. But in this case the value of the current stage is 

incremented which contradicts our assumption. On the other hand, if i$Tot, then it is 

easy to observe that NP,(i, accepts a co-finite set. 0 

What is the topological size of the classes Hk, k>O, from the high hierarchy? As 

expected, they behave like Comp (which in fact is just H,). 

Theorem 2.13. For all k>O, f X’kp+ 1 #Xi, then Hk is a class qf the jirst category. 
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Proof. For all k30, let Ck be a complete set for X’kp. Then H,=(AENP 1 CL(A)= 

C~+I) c U~i(l).i,2),....i(k),~~k {AENP Ck+l=NPi,l,(NP~i(2,,...(NP,i(k,)(A)...)} (the 
union is taken over all k-tuples (i(l), i(2), , i(k)) in Nk) because if AEH, then 

Ck+ I EC:+ 1 = C:(A). Now, by performing some slight and obvious modifications in 

the proof of Theorem 2.10, one can see that H, is indeed of the first category. 0 

Corollary 2.14. For all k>O, if’ Ckp+l # Ci then NP - (L, u Hk) is a class of the second 

category. 

Proof. If C,P+, #Xi, then NP # P [S]. In this case SATENP- Lk. Taking SAT in the 

place of A in the proof of Theorem 2.12, one can show that NP- Lk is of the second 

category. By Theorem 2.13, Hk is a class of the first category. Hence NP - (L, u Hk) is 

of the second category. tY 

3. Immunity and simplicity 

In this section we investigate the topological size of some classes of sets achieving 

the separation of P from NP in a stronger form like the class of P-immune sets or 

NP-simple sets. For a class C of sets, a set A is C-immune if A is an infinite set and no 

infinite subset of A is in C. A set is C-simple if A belongs to C and the complement of 

A is C-immune. A C-simple set A is called effectively C-simple if there exists a recursive 

function f: N+ N such that Ck included in A implies 1 Ck 1~ f(k), where C = (Ck)ktN is 

an effective enumeration of C. If C is the class of r.e. sets, we simply say immune, 

simple or effectively simple instead of r.e.-immune a.s.0. All these notions are inherited 

from classical recursive function theory 122, 1 S] and the versions where C is P or NP 

have been intensively studied in structural complexity theory [21, 3, 61. 

Theorem 3.1. !f there exists a P-immune set in NP, then the class of’ P-immune sets in 

NP is of the second category. 

Proof. Let A = {BENP / B is P-immune}. By hypothesis, A is not empty, so we fix a set 

H in A. Our intention is to construct for each i a nondeterministic machine NP,(i, such 

that if iFTot then NP,(,,cA and if i$Tot then the language accepted by NP,,,, is 

co-finite. Then by Lemma 2.1 the result follows. During the construction we use the 

variables Stage, Next-Candidate and a list, called List, which stores indexes of 

polynomial-time deterministic machines that have been considered but have not yet 

been diagonalized over. List is thought as an array of integers, so we can speak about 

the first element of List, about the second a.s.o. Insertions in List are made at the 

bottom of List (in the last position), deletions can be made anywhere in List, but after 

a deletion the List is compactified so as not to contain any gap. We shall take care not 

to increase the size of List too much so that insertions and deletions can be realized in 



linear time. The variable Next-Candidate keeps the index j of the next polynomial- 

time deterministic machine Pj that we attempt to introduce in List. Stage is a variable 

that records the current stage in the construction of NPsci,. If Stage has an even value, 

Stage=2r, then NP,o, tries to find if Mi accepts a,. When this happens, Stage is 

incremented to the value 2e+ 1. If Mi does not accept a,, then Stage remains 

perpetually at the value 2e, causing NP,,i, to accept all its further inputs. If Stage has 

an odd value, then NP,(i, tries to find for each k in List a string z such that 

z~P,nNp,,,,. In this attempt, NP,(,, offers to each element of List a time which is 

proportional to its position in List, without exceeding n steps for the whole operation, 

where II is the length of the current input of NP,,,,. Specifically, if k is in position j, n/2’ 

steps are spent in the effort of finding the desired string z. However, as NP,(,, processes 

increasingly longer inputs, if Pk is infinite, there will be eventually enough time to 

discover a z such that ZE Pk n NP,,i,. The existence of such a string z follows by the P- 

immunity of H and by the mechanism of delayed diagonalization which makes NP,(i, 

resemble H in case of the failure of discovering the suitable string z. 

The construction of NPsti,: NP,(,, performs its computations in stages. Initially 

Stage:=O, Next-Candidate:=O, List:=O. On input XEX*, of length n, NP,,i, runs as 

follows: 

(a) For n steps NP,,i, simulates deterministically the previous computations (i.e. it 

computes NP,,i,(a,), NP,,,,(a,) ... for as many inputs the time bound allows) and 

determines the current values of Stage, Next-Candidate and the content of List. 

(b) Case 1: Stage=2e. The Mi(uE) is simulated for y1 steps. If Mi accepts a, in the 

specified time then x is accepted, Stage:=2e+ 1 and NPs(i, stops. 

Case 2: Stage = 2e + 1. Let m = 1 List 1, i.e. m is the number of elements in List. If m > n 

then .Y is rejected and NP,,i, stops. Otherwise Next-Candidate is inserted in List and 

Next-Candidate:= Next-Candidate + 1. 

For jg 1, m, let List [ j] denote the value of the jth element in List. Then for every 

je 1, m, for n/2’ steps, NP,,,, looks for a string z such that ZEP~~~,,~, and z$NPs(i,. In 

doing this, NPso, is simulated in a deterministic way. 

Cuse 2.1: The search succeeds for some j. Then for all such j’s, List [j] is deleted 

from List, x is accepted and Stage:= 2e + 2. 

Cuse 2.2: The search fails for all j. Then x is accepted if and only if XEH. 

End of construction of NPs,i,. 

Now the proof follows by the next series of Claims. 

Claim 3.2. NPsci, is a polynomial-time nondeterministic machine. 

Proof. The only nondeterministic step in the computation of NPs,i,(x) occurs in (b) 

case 2.2. This step is realized by simulating the polynomial-time nondeterministic 

machine that accepts H. All the other operations are performed in a deterministic way 

in polynomial time (in fact linear time). Observe that the size of List is not allowed to 



increase too much, so that the operations of insertion and deletion can be realized in 

linear time in the size of the input 1x1. 0 

Claim 3.3. Suppose that ut a certain moment in the construction of NP,,,,, Stage=2e 

and ML accepts a,. Then there exists a later moment when Stage:= 2e + 1. 

Proof. This follows immediately because for a long enough string x NP,ol has 

sufficient time to simulate the accepting computation of Mi on input a,. 0 

Claim 3.4. Suppose that at a certain moment in the construction of NP,(i,, Stage= 

2e+ 1. Then there exists a later moment when Stage is increased to 2e+2. 

Proof. Let us suppose the contrary. Clearly, there exists a moment when a k, such that 

P, is infinite, is inserted in List. Since H is P-immune, P, n s # 0. Moreover, Pk n fi is 

an infinite set. Indeed if P, n G = B, B finite, then Pk - B c H, but Pk is an infinite set in 

P. This contradicts the P-immunity of H. By our assumption, it follows that there 

exists a string x,, such that for x 3 x,,, NP,,i, accepts x iff xEH. Hence NP,(i,= H a.e. In 

this case for a sufficiently long input string x, NP,(,, has enough time to discover 

a string z such that ZEP,~NP,~~,. But this implies the incrementation of Stage to the 

value 2e + 2. 0 

Claim 3.5. [f iETot, then NPsci, accepts a co-jinite lanyuaye. 

Proof. Let e be the minimal with the property that Mi does not accept a,. By Claims 

3.3 and 3.4, it follows that Stage reaches the value 2e. It is clear that starting with this 

moment NP,(i, accepts every input. 0 

Claim 3.6. !f‘i~Tot and P, is injinite, then PknNP,(i,#O. 

Proof. Since ieTot, it follows by Claims 3.3 and 3.4 that there exists a moment when 

k is inserted in List. The reasoning in the proof of Claim 3.4 shows that 

P,nNP,,i,#‘J. 0 

Claim 3.7. NP,(i, is infinite. 

Proof. If i$Tot, we use Claim 3.5. If iETot, then Claims 3.3 and 3.4 show that the 

value of Stage passes through all positive integers. But any increase of Stage from an 

even value is done in (b), case 1 and implies also the acceptance of the current input 

string x. 0 

The analogous result for the case of NP-simple sets can be derived more simply. 
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Theorem 3.8. Jf there exists an NP-simple set, then the class of NP-simple sets is a class 

of the second Baire category. 

Proof. The proof relies again on Lemma 2.1. We fix an NP-simple set H and then for 

each integer i we define NP,,,, such that (a) iETot implies H is included in NP,(,, and 

NPs(i, is infinite, and (b) i$Tot implies NPs(i, accepts a co-finite set. Note that 

situation (a) implies that NPstiJ is NP-simple, because if NPI, is infinite then 

NP,nH#& SO NP,nNP,,i,#@. 

Construction qf NP,,i,: (a) For n steps NP,(,, simulates deterministically the 

previous computations NP,(,, (al), NP,(,, (a,), . . . for as many inputs the time bound 

allows. It may happen that on some inputs ak the simulation of NP,,,, (uk) finds 

different values for the variable Stage on the originally nondeterministic branches 

of the computation of NP,Y(i, (uk). If this is the case the least such value is selected 

for Stage. 

(b) Cuse 1: Stage = 2e. Then Stage:= 2e + 1 and the polynomial-time nondeterminis- 

tic machine N that accepts H is started on input x. If a computation of N(x) that 

accepts x is discovered, then NP,,,, accepts x and Stage comes back to the value 2e. 

Otherwise NP,(i, rejects x. After these operations NPs(i, stops. 

Cuse 2: Stage = 2e + 1. For n steps NP,(,, simulates Mi on input a,. If Mi accepts a, 

in the specified time, then x is accepted, Stage:=2e+2 and NP,(,, stops. Otherwise 

NPA(i, accepts x and stops. 

This completes the construction. 

Suppose that igTot. Then the value of the variable Stage passes through all 

positive integers k. This is proved by induction on k. Indeed, suppose k=2e. There 

exists a moment when the input x is such that x$H, because fi is infinite. At 

this moment, Stage becomes 2e + 1 and is never decreased later. In case k = 2e + 1, 

since icTot, we conclude that for a sufficiently long input x, NP,(,, has enough time 

to discover that Mi accepts a, and, consequently, to increase Stage to the value 2e + 2. 

But any permanent increase of Stage in (b) case 1 implies that NP,(,, rejects the 

current input. Hence, NP,(i, is infinite. On the other hand, H is included in NP,(i, 

because NPsci, rejects an input x only in case x$H (see (b) case 1). Clearly, NPs,i, is 

computed by a polynomial-time nondeterministic machine. We conclude that NP,(i, is 

NP-simple. 

In case i$Tot, it is easy to see that Stage stabilizes itself to the value 2e+ 1, where a, 

is the minimal string that Mi does not accept, and from that moment on NP,,i, accepts 

all further input strings. Hence, in this case NP,(i, is co-finite. 0 

We can strengthen the above results by considering bi-immune for P-sets [S]. 

An infinite co-infinite set A is bi-immune for P if both A and its complement are 

P-immune. 

Theorem 3.9. If there exists a bi-immune for P set in NP, then the class of hi-immune for 

P sets in NP is a class of the second category. 
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Proof. By a slight modification of the proof of Theorem 3.1, which we sketch here. 

This time we use two lists, List 1 and List2. The construction of NP,(,, is done in stages 

and three situations occur depending on whether the current stage k is of the form 3e, 

3r-t 1 or 3e+2. In case k= 3e, NP,(,, simulates Mi(u,) as in (b) case 1 in the proof of 

Theorem 3.1. In case k=3e+ 1, NP,,,, looks for a z such that z~P,nNp,(,,, for m in 

Listl, whereas in case k= 3e+2, NP,(i, looks for a z such that z~P,nNP,(i, for m in 

List2. The other details are left to the reader. 0 

One can observe that the technique used in Theorem 3.1 for the case of P-immune 

sets would have worked also for the case of NP-simple sets. We have preferred to 

present another proof (which incidentally is more simple) because the method used in 

Theorem 3.2 can be applied for the case of effectively NP-simple sets. 

Proposition 3.10. If there exists an effectively NP-simple set in NP, then the class of 

efictiaely NP-simple sets in NP is of‘the second category. 

Proof. Practically, the proof of Theorem 3.8 works here too. 0 

Proposition 3.10 has the following interesting consequence. Either there is no 

effectively NP-simple set in NP or there are effectively NP-simple sets that are not 

NP-complete, because the latter class is of the first Baire category. This statement 

contrasts sharply with the situation in recursive function theory where effectively 

simple sets are complete for the class of r.e. sets [22, pp. 79-871. This result shows that 

our topological analysis has some interesting applications in the study of the struc- 

tural properties of some important complexity classes. For example, by combining 

Theorem 3.1 with Theorem 2.10, we obtain that if there exists P-immune sets in NP, 

then there exists such a set that is not NP-complete. By Theorem 3.8, a similar result 

holds for NP-simple sets also. Note that the problem of whether there exist NP- 

complete sets that are NP-simple or NP-hard sets that are NP-immune has been 

investigated in [ 141. It is shown in [ 141 that if NP is exponentially hard (which is very 

likely), no NP-hard set can be NP-immune and if NP n Co-NP is exponentially hard 

(which again is very likely), NP-complete NP-simple sets do not exist. 

4. Some applications 

One may argue that the topology proposed in this paper is exotic and that the 

results obtained in the previous sections are not relevant outside the point of view 

of this topology. In this section we want to counteract this claim. We show that all 

classes C of sets shown to be of second category have a very interesting property: 

for every B in NP there exists AEC such that for an arbitrarily slowly increas- 

ing, unbounded and recursive function Y: N-+N, there exists AEC such that 
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I(AAB)G”Idr(n), for infinitely many n, where AAB is (A-B)u(B-A). We believe 

that this property shows that the classes of the second Baire category are really large 

and, consequently, the proposed topology is validated by intuitive results. Moreover, 

this property is obtained by using a topology similar to the one in the previous 

sections. 

For the rest of this section we fix a set B in NP. For every WEX* we define a basic 

neighborhood as 

Ufl={v~X”IV’~lwl(a,~B, w(i)=1 *u(i)=l) and 

(Ui4B, W(i)=0 ~ V(i)=O))}. 

Note that U,= Uf*, so that the topology used in the previous sections is just 

a particular case of the topology introduced here. The following definition is moti- 

vated as in the Introduction. 

Definition 4.1. (a) A class C included in X Oci is recursively of the first Baire category 

relative to B if there is a decomposition C= ui a 0 Ci and a recursive function 

f’: N x X*+X* such that, for every natural i and for every WEX*, 

(i) ~1 is a prefix of f(i, w) and 

(ii) UT(i,,V)nCi=@. 

(b) A class C included in X” is recursively of the second Baire category relative to 

B if it is not recursively of the first Baire category relative to B. 

As before, we shall drop the words “recursively” and “Baire” in the further use of 

this terminology. 

A result similar to Lemma 2.1 holds. Indeed, let C included in NP be a class of sets 

of the first category relative to B via a function f: N x X*-+X*. Hence, if AEC, there is 

an integer i such that AEC~ and, consequently, for every w, A$UT,i.W). If B( <n) is the 

string B(a,)B(a,) . B(a,), we deduce that for every neN there exists HEN, n<x< 

If(i, B( <n))l such that u,E(A AB), because, otherwise, AEUT(~,B(~,,)). Consequently, 

if AEC, then 

AEDf={ jl(3igN)(VnEN)(3xEN, n<x< If(i, B(<n))l, U,ENPjAB)} 

Here NP, denotes the language accepted by the machine NPj. Observe that D+C, in 

the Kleene’s arithmetic hierarchy. In consequence, similarly to Lemma 2.1, we obtain 

the following lemma. 

Lemma 4.2. Let C be a class included in NP. Zfj” or every recursive function f : N x X* 

-+X* Tot <,(C, o,), then C is a class of sets of the second category relative to B. 

All the classes shown to be of the second category in the previous sections are in fact 

of the second category relative to any B in NP. We sketch the proof for the case 

A = NP- P. but the same modification works in all the other cases. 



Lemma 4.3. Let f: N x X*+X* he a recursive function. Then Tot d m (NP- P, of), 

provided that NP # P. 

Proof. For every Turing machine hrli we construct a polynomial-time nondeterminis- 

tic machine NP,(i, such that igTot implies NP,,,,ENP- P and i$Tot implies Sofia. 

The construction of NP,,,, is performed in stages. On an even Stage = 2e, we simulate 

Mi on input a, and, if Mi does not accept a, in the allowed time, then we try to satisfy, 

for some hEN, the following requirement: 

Rh: (3nEN)(VxEN, n<xd If(h, B(<n))l, a,$(NP,(i,AB). 

To this aim we use the variable Hcrt which stores the value h for which we 

try to satisfy R,,. For such an h, we store the attempted value of n which appear in 

R, in the variable Ncrt. If Ncrt =O, we have to start satisfying the requirement R, 

from the very beginning, i.e. for all a, with n<x<f(h,B(<n)). On an odd 

stage, Stage= 2e+ 1, we satisfy NP,(i, # P, exactly as in Lemma 2.2, by delayed 

diagonalization. 

The construction ofNP,(,,: Initially, Stage:=O, Hcrt:=O, Ncrt:=O. On input XEX*, 

.~=a,, Ix =n, NP,(,, acts as follows: 

(a) For n steps, NP,(,, simulates deterministically the previous computations 

NPs,i,(ai), NP,,i,(az), ... and determines the values of the variables Stage. Hcrt and 

Ncrt. 

(b) Case 1: Stage=2e. For n steps, Mi is simulated on input a,. 

If Mi does not accept a, within n steps then NP,(,, performs the following 

operations: 

(b.1) If Ncrt =0 then Ncrt:=m. 

(b.2) NP,(i, computes f(Hcrt, B( <Ncrt)). The computation of B is simulated in 

a deterministic way. If this computation stops within n steps and m>f(Hcrt, 

B( GNcrt)), then Hcrt:=Hcrt + 1, Ncrt:=O and NP,(,, accepts and stops. Otherwise, 

x is accepted if and only if XEB. 

In case A4i accepts a, within n steps then Hcrt:=O, Ncrt:=O and Stage:=2e+ 1. 

Case 2: Stage = 2e + 1. NP,(i, looks for a z < x such that NPsci, # P,(z) for n steps. In 

doing this the computation of NP,(,, on various inputs z is simulated in a deterministic 

way. If such a z is found then x is accepted and Stage:= 2e + 2. Otherwise, x is accepted 

if and only if XESAT. 

This completes the construction of NPsti,. 

Claim 4.4. NP,(i, is computed in nondeterministic polynomial time. 

Proof. Nondeterministic computations occur for simulating B and SAT on the input 

string x. All other steps are done in linear deterministic time. Cl 

Claim 4.5. !f i$Tot, then for all naturals h the requirement Rh is fuljilled. 
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Proof. Let e be minimal such that Mi does not accept a,. It is easily seen that, starting 

with the moment when NP,,i, enters for the first time in Stage = 2e after the computa- 

tion of (a), NPsti, satisfies, one after another, all the requirements R,. 0 

Claim 4.6. Zf iETot, then NP,(i,ENP-P. 

Proof. If isTot, then the variable Stage takes the value 2e+ 1 for all ecN. At the 

Stage = 2e + 1, the requirement NP,(,, # P, is fulfilled. Taking into consideration 

Claim 4.4, it follows that NP,,,,cNP- P. 0 

Corollary 4.7. For any BENP, NP- P is a class of the second category relative to B, 

provided NP # P. 0 

For any infinite set D included in X*, we define the principal function of D, 

#D:N++N+ by the relation (see [22, p. 811): D=(a++D(l)<a#0,2)< ... < 

a++o,,,)< ... f. Observe that for all integer II, among the first #D(n) strings in X*, there 

are exactly n strings that belong to D. Principal functions are similar to ranking 

functions [ 1, 111. 

Theorem 4.8. Let BENP and C included in NP be a class of the second category 

relative to B. Then either there exists A in C such that A A B isfinite orfor any recursive 

function f‘: N+ N there exists A in C such that #(A AB)(n)a f (n) for infinitely 

many n in N. 

Proof. Suppose that for any A in C, A AB is infinite and there exists a recursive 

function ,f: N+N such that # (A AB)(n) < f(n) for sufficiently large n. Let 

Ci=jAECI#(AAB)(n)<f(n), Vn>i}. Then C=IJi,a Ci. For n>i, in the set 

{ar,a z>-v~~~,~A~~~n~) h t ere are exactly n strings from A AB for any A in CL. Hence, 

for n>i, in the set {an+l, an+2,..., a+(A~n)(~+l),... Q~(~+~)} there exists at least one 

element from A AB, for any A in Ci. Now we define g: N x X*-+X* by 

g(i, w) = 
i 

wB(lwl+l)B(lwl+2)...B(f(lwl+l)), if Iwl>i 

wl’-l”iB(i+l)...B(f(i+l)), if Iwl<i 

By the above observation Gin T.Jf(i.w)= @ This contradicts the fact that C is of the 

second category relative to B. 0 

Corollary 4.9. Let BEP and C included in NP be a class of the second category relative 

to B. Then for every r : N+ N recursive, increasing and unbounded there exists AE C such 

that I(A AB)<” < r(n) for infinitely many n. 

Proof. If there exists A in C such that A AB is finite, the conclusion is immediate. In 

the opposite case, we consider the function r’ defined by r’(n) = r’(n - 1) if r(n) = r(n - 1) 



and r’(n)=r’(n-I)+ 1 otherwise (i.e. u(n)>r(n-1)). It is clear that r’:N+N is 

surjective and r(n) > r’(n) for all naturals n. We also take a recursive function f such 

that .f’(r’(n)) B 2”+ ’ - 1, for all ~1. From Theorem 4.8 we know that there exists a set 

A in C such that # (A AB) (n)>f(n) for infinitely many IZ, hence # (A A B) (r’(n))3 

,f(r’(n)) for infinitely many ~1. By the definition of the principal function in the set 

(01, a2, ... > ~#(,~~B)(v’(JI))J 1 there are exactly r’(n) strings from A A B, hence the cardinal 

Of(al,az,...,as(,,(,,, } n (A A B) is less or equal than r’(n) d r(n) for infinitely many n. 

Since ,f(v’(fl)) 3 2”+ ’ - 1, the conclusion follows. [I 

Note that if B=@ and C=NP- P, we obtain the result that there exists a set in 

NP - P which is infinitely often sparse. By varying the class C, we deduce the existence 

of such a set that is P-immune or NP-simple. 

The following theorem is the Baire category analogue of a result of Ambos-Spies 

[2], which characterizes the class P in terms of measure theory. It provides one 

additional reason for the adequacy of our definitions for the investigation of the 

topological size of various complexity classes. 

Theorem 4.9. A set A is in P (f and only if the class {B 1 AEP(B)) is qf the second 

cateqory. 

Proof. IfAisinPthen{BIAEP(B)}’ 1s a class of the second category since it includes 

P. If A is not in P, then as in Theorem 2.10, one can show that [B / AcP(B)l is a class 

of the first category. 
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