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Codon bias is the phenomenon in which distinct synonymous codons are used with different frequencies. We
define here the “codonome value” as the total number of codons present across all the expressed mRNAs in a
given biological condition. We have developed the “CODONOME” software, which calculates the codon bias
and, following integration with a gene expression profile, estimates the actual frequency of each codon at
the transcriptome level (codonome bias) of a given tissue. Systematic analysis across different human tissues
and multiple species shows a surprisingly tight correlation between the codon bias and the codonome bias.
An aneuploidy and cancer condition such as that of Down Syndrome-related acute megakaryoblastic leuke-
mia (DS-AMKL), does not appear to alter this relationship. The law of correlation between codon bias and
codonome emerges as a property of the distribution and range of the number, sequence and expression
level of the genes in a genome.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Codon bias is the well-known phenomenon in which distinct syn-
onymous codons (different codons encoding the same amino acid)
are used with different frequencies (reviewed in [1]). This has been
observed in species from all taxa.

The codons that are used more frequently are also referred to as
preferred codons or “optimal codons” [2]. Previously, optimal and
non-optimal codons for each amino acid had been shown to differ be-
tween species [3], in particular between distantly related species.

Codon bias can be explained by two hypotheses: the mutational
(or neutral) explanation and the selectionist (or natural selection) ex-
planation [4]. According to the mutational explanation, codon bias
originates from basal mutational processes, which cause neither ad-
vantage nor damage. The selectionist explanation asserts that synon-
ymous mutations influence the fitness of an organism, and can thus
be promoted (or repressed) throughout evolution. These two types
of mechanisms are not mutually exclusive, and both are useful to un-
derstanding the phenomenon within and between species. In partic-
ular, the latter explanation is typically cited to explain variation in
codon usage across a genome or across a gene [4].

In eukaryotic genes, the most frequently used codons have a bigger
content of G+C at the third codon position [5], especially in human
vesan), lorenza.vitale@unibo.it
pierluigi.strippoli@unibo.it

rights reserved.
genes, according to the mutational (or neutral) explanation of the
intra-genomic heterogeneity of the human genome [6]. Preferred co-
dons also vary between genes of the same organism: expressed genes
have a codon usage pattern, different from poorly expressed genes, op-
timized to increase translational efficiency [5] and to minimize the cost
of nonsense errors during protein translation [7]. For example, optimal
codons are recognized by more abundant transfer RNA molecules in
several unicellular organisms [8] and in several eukaryotes [9]. These
findings support the selectionist explanation (natural selection).

Intriguingly, Plotkin et al. [10] studied the role of codon usage be-
tween tissue-specific human genes. Comparing testis- to uterus-
specific genes and brain- to liver-specific genes, they reported a charac-
teristic codon usage in genes expressed in one tissue as compared to
those expressed in another. Other comparisons (e.g. liver versus uterus)
do not exhibit any significantly different codon usage. However, the
authors suggested that codon bias might optimize translation of
tissue-specific genes.

Furthermore Sémon et al. [11], analyzing 2,126 human tissue-
specific genes expressed in 18 different tissues, found that the differ-
ence in synonymous codon usage between tissue-specific genes
expressed in different tissues is significant, but weak, as the intra-
tissue variability of synonymous codon usage is much smaller than
the inter-tissue variability. Additionally, these authors correlated the
synonymous codon usage variability to inter-gene G+C content at
the third position differences, also affecting introns and intergenic re-
gions, due to the isochore scale variation of substitution patterns [11].

At present several indexes are used to analyze codon bias, e.g.
“Fop” [2], “CAI” [12], “E-CAI” [13], “CBI” [14], “Nc” [15], “G+C content
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of the third codon position” [6]. Several software programs for calcu-
lating these indexes are available free of charge on the internet (e.g.
CodonW, [16]; JCat, [17]; INCA, [18]).

Codon bias is usually related to the genome at the level of genome
sequence. We wondered if the proportion of used codons could vary
during the expression of a whole transcriptome, introducing the new
concept of determining the actual pool of codons borne by all the
messenger RNAs (mRNAs) in the cell. To this end, the codon bias
should be multiplied by the relative estimated number of molecules
of that mRNA in the transcriptome. This would offer the possibility
of searching for relationships between codon usage at the genome
and transcriptome levels. Here we define the “codonome value” as
the total number of codons (n) present across all the transcriptome
mRNAs each expressed at a certain level (x) in a given biological con-
dition (cv = Σ(n × x) for the mRNAs pool). We have developed the
innovative “CODONOME” software, which is able to calculate the fre-
quency of each codon in any reference (RefSeq) mRNA sequence
and, following integration with a profile of gene expression values,
to estimate the actual frequency of each codon in the mRNA pool de-
rived from a specific tissue of a given organism (Fig. 1). In addition,
to investigate a possible cell adaptation aimed to optimize the transla-
tion process, we grouped these frequencies by encoded amino acid,
each being related to its specific aminoacyl-tRNA synthetase (aaRS),
to determine whether some relationships exist between codon usage
and aaRS mRNA expression level, a still unexplored field.

We used gene expression values obtained from independent
transcriptome datasets for a certain condition available in the Gene
Expression Omnibus (GEO) database [19,20] following intra- and
inter-sample normalization using TRAM software [21].

We performed a systematic analysis, varying the tissue examined
within human species and investigating a pool of representative
species from bacteria to humans. We also tested the codonome
values in a pathological condition with a general disturbance of gene
Fig. 1. Pipeline of the “CODONOME” software. For each RefSeq (“NM_” type) entry considere
codon for the whole gene set (the per mil frequencies of each codon sum in relation to the
codon count for each gene by the normalized expression value of that gene. Finally, we sum
each codon sum in relation to the sum of all codons for the whole gene set give the transcript
genes “A,” “B” and “C,” assuming the existence of nine codons).
expression, i.e. the aneuploid blast fromDown Syndrome (DS)-related
acute megakaryoblastic leukemia (AMKL), as well as in an extremely
differentiated tissue with a remarkable expression preponderance of
a very small number of proteins (human circulating blood erythro-
cytes samples). Moreover, we compared the same tissue (brain)
from two different organisms (Homo sapiens and Danio rerio). In addi-
tion, we determined the codonome values in lower organisms
(Caenorhabditis elegans, Saccharomyces cerevisiae and Escherichia
coli) in order to search for general laws governing the structure of
the codonome.

The significance of the correlation coefficients was determined
for: the per mil frequencies of codons (codon bias) vs. the per mil fre-
quencies of the codons number multiplied by expression value
(codonome bias); the per mil frequencies of codons (codon bias)
grouped by aaRS vs. the aaRS expression values, and the per mil fre-
quencies of the codons number multiplied by expression value
(codonome bias) grouped by aaRS vs. the aaRS expression values.

While we did not see a significant relationship between codonome
values and aaRS mRNA expression level, our findings clearly show
that the codon frequency in the genome is reflected proportionally in
the transcriptome, irrespective of the considered tissue, species, or
pathological state. This implies that transcriptome codonome values re-
main in excellent correlationwith genome codon bias in awide range of
conditions, thus allowing the transcription of any gene subset at any
level of abundance without altering the tight bond between codon
bias at genome level and codonome at transcriptome level.

2. Results

2.1. Database construction and computational analysis

Following importation of the normalized expression data, we
found an available expression value for: 27,850 out of 29,538 NM
d, we counted the occurrence of each codon. We then calculated the count sum of each
sum of all codons for the whole gene set gives the codon bias). We then multiplied the
med the total number of each codon for the whole gene set. The per mil frequencies of
ome codonome bias (example simulation for a hypothetical gene set composed of three



Table 1
The ten human genes with the highest and the lowest expression values in the studied
datasets. The units of expression are given, following intra- and inter-sample normali-
zation by the TRAM software, as percentage of the mean value.

Homo sapiens

Brain Erythrocytes DS-AMKL cells

Gene symbol Value Gene symbol Value Gene symbol Value

UBC 3088.81 HBA2 47816.17 RPS18 6592.43
TUBA1B 3044.12 SLC25A39 43176.51 RPL41 6588.66
TUBA1C 2634.12 HBA1 36616.34 EEF1A1 6583.97
UBB 2591.82 HBB 31649.48 RPS10 6233.13
CALM2 2577.65 UBB 25239.87 RPS3A 6175.32
RPL41 2549.75 RPL21 20966.99 RPL23A 6078.20
GAPDH 2316.03 HBM 18959.67 RPS23 5836.76
RPL23A 2170.38 STRADB 18836.62 TPT1 5814.83
SPARCL1 2075.33 HBG2 15431.72 RPS3 5769.17
CFL1 2019.56 GYPC 12556.57 RPLP0 5579.53
C7orf72 7.07 RBL1 2.19 AWAT1 1.15
FBXO47 7.06 C14orf105 2.14 DSG4 1.14
FABP12 7.04 AHR 2.12 UBL4B 1.14
ACER2 6.73 ZNF165 1.96 MAS1L 1.14
CXorf51 6.23 C17orf75 1.92 KCTD21 1.13
PTPRQ 5.82 TMEM232 1.63 TTC16 1.11
SLC36A2 5.75 IFT74 1.59 TSSK3 1.09
RSPH4A 5.33 SLC16A4 1.29 DEFB118 1.07
TAS2R20 4.41 ZNF674 1.28 SERINC2 1.04
C5orf52 4.36 DMXL1 1.13 CCDC135 1.04
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RefSeq entries for human brain tissue; 26,589 out of 29,538 NM en-
tries for human circulating blood erythrocyte; 27,506 out of 29,538
NM entries for human DS AMKL cells; 6,642 out of 14,174 NM entries
in D. rerio; 19,281 out of 23,894 NM for C. elegans; 4,673 out of 5,882
Table 2
The per mil frequencies of codons (codon bias) and the per mil frequencies of the
codon counts multiplied by the respective expression value (codonome bias) in the
human studied datasets.

Brain Erythrocytes DS-AMKL cells

Codon Codon
bias

Codonome
bias

Codon
bias

Codonome
bias

Codon
bias

Codonome
bias

AAA 25.88 24.46 25.83 22.04 25.84 27.86
AAC 18.90 19.18 18.94 19.37 18.93 18.89
AAG 32.30 34.17 32.41 35.26 32.32 37.13
AAT 17.58 16.52 17.52 14.76 17.56 17.74
ACA 15.41 14.58 15.36 13.51 15.42 14.95
ACC 18.40 19.06 18.42 21.55 18.44 18.12
ACG 5.96 6.19 5.98 5.92 5.97 5.41
ACT 13.53 12.97 13.49 12.77 13.52 14.10
AGA 12.23 11.30 12.14 10.54 12.18 12.40
AGC 19.72 19.73 19.74 20.38 19.75 17.55
AGG 11.64 11.34 11.56 11.51 11.61 10.93
AGT 12.87 12.19 12.85 11.36 12.83 12.39
ATA 7.60 6.72 7.51 5.59 7.58 6.89
ATC 20.06 21.16 20.13 22.21 20.13 20.65
ATG 21.45 22.00 21.49 22.13 21.48 22.78
ATT 16.20 15.67 16.18 13.94 16.22 17.41
CAA 12.84 11.63 12.74 10.99 12.80 12.06
CAC 14.80 14.79 14.77 16.03 14.81 13.74
CAG 34.76 35.29 34.83 35.46 34.76 34.31
CAT 11.12 10.40 11.05 9.87 11.10 10.72
CCA 17.67 17.03 17.69 16.64 17.63 17.52
CCC 19.81 20.50 19.84 22.17 19.81 18.67
CCG 6.97 7.32 6.97 7.48 6.96 6.34
CCT 18.17 17.86 18.19 18.20 18.13 18.41
CGA 6.28 6.34 6.33 6.21 6.28 6.81
CGC 10.10 10.98 10.13 11.46 10.12 10.33
CGG 11.47 12.14 11.56 13.05 11.49 11.24
CGT 4.54 4.82 4.56 4.81 4.53 5.67
CTA 7.09 6.57 7.07 6.43 7.08 6.82
CTC 18.51 18.68 18.48 19.81 18.54 17.10
CTG 38.38 39.51 38.39 43.61 38.43 36.10
CTT 13.33 12.57 13.28 11.88 13.30 13.64
NM for S. cerevisiae; 2,426 out of 4,319 NM for E. coli. A summary of
the range in the expression data and of the main genes with the
highest and lowest expression values for the considered datasets is
given in Table 1 for H. sapiens and Supplementary Table 1 for the
other investigated species available at http://apollo11.isto.unibo.it/
suppl/.

The frequency of each codon at genome level corresponds to the
codon bias values already known for each genome [22]. In addition,
codon sums at transcriptome level (codonome value), accounting for
the abundance of each mRNA bearing that codon, has been calculated
as per mil frequencies of each codon, obtaining the codonome bias
(see Tables 2 and 3 for H. sapiens, Supplementary Table 2 for the
other investigated species and Supplementary Table 3 for human
simulations).

We also grouped per mil frequencies for each codon (at genome
level and at transcriptome level) by the corresponding aaRS and
then loaded their expression values from the same normalized files
as before. With the exception of H. sapiens, we could not find expres-
sion values for some aaRS for any of the investigated species (see
Table 4 for H. sapiens and Supplementary Table 4 for the other inves-
tigated species).

2.2. Statistical analysis

We exported the following results in order to submit them to sta-
tistical analysis using first default and then test calculations: a) codon
bias, b) codonome bias, c) codon bias grouped by aaRS, d) codonome
bias grouped by aaRS, and e) the aaRS expression values (“a,” “b,” “c”
and “d” are expressed as per mil frequencies). An example of correla-
tion graphs for human brain is shown in Fig. 2 (see Supplementary
Table 3
The per mil frequencies of codons (codon bias) and the per mil frequencies of the
codon counts multiplied by the relative expression value (codonome bias) in the
human studied datasets.

Brain Erythrocytes DS-AMKL cells

Codon Codon
bias

Codonome
bias

Codon
bias

Codonome
bias

Codon
bias

Codonome
bias

GAA 31.28 30.18 31.26 26.45 31.21 32.33
GAC 25.23 26.43 25.34 26.67 25.27 24.65
GAG 40.42 42.76 40.54 41.98 40.41 40.03
GAT 22.88 22.85 22.97 20.38 22.90 24.79
GCA 16.32 16.14 16.34 15.02 16.30 16.89
GCC 27.43 28.96 27.48 31.43 27.48 27.10
GCG 7.13 7.63 7.12 8.25 7.12 6.81
GCT 18.45 18.91 18.48 18.39 18.43 20.92
GGA 16.70 16.16 16.68 15.15 16.70 17.12
GGC 21.80 22.88 21.87 25.27 21.83 21.68
GGG 15.96 16.27 15.96 16.46 15.97 14.96
GGT 10.73 10.91 10.76 11.13 10.73 12.51
GTA 7.30 6.88 7.30 6.13 7.29 7.69
GTC 13.99 14.29 14.01 14.67 14.03 13.88
GTG 27.22 28.26 27.32 31.29 27.30 27.21
GTT 11.23 10.86 11.25 9.83 11.23 12.49
TAA 0.66 0.74 0.66 0.96 0.66 1.00
TAC 14.58 15.00 14.61 15.29 14.60 14.16
TAG 0.49 0.52 0.49 0.52 0.49 0.53
TAT 12.12 11.61 12.08 10.92 12.11 12.44
TCA 12.78 11.83 12.70 11.27 12.73 11.93
TCC 17.41 17.63 17.39 18.29 17.41 16.43
TCG 4.45 4.65 4.46 4.66 4.46 4.04
TCT 15.38 14.74 15.36 14.18 15.35 15.59
TGA 1.10 1.17 1.10 1.48 1.10 1.19
TGC 11.78 11.57 11.70 11.59 11.79 10.11
TGG 12.09 11.78 12.05 12.39 12.09 11.20
TGT 10.38 9.53 10.26 9.23 10.34 9.38
TTA 7.96 7.05 7.94 5.74 7.94 7.56
TTC 19.09 19.39 19.07 20.83 19.12 18.36
TTG 12.89 12.38 12.88 11.55 12.88 13.06
TTT 17.20 16.35 17.16 15.66 17.19 17.25
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Table 4
The per mil frequencies of codons grouped by aminoacyl-tRNA synthetase (codon bias by aaRS), the per mil frequencies of the expressed codon grouped by aminoacyl-tRNA
synthetase (codonome bias by aaRS), and the aminoacyl-tRNA synthetases expression values in human studied datasets.

Brain Erythrocytes DS-AMKL cells

Gene symbol Codon bias Codonome bias Expression value Codon bias Codonome bias Expression value Codon bias Codonome bias Expression value

AARS 69.33 71.62 340.77 69.43 73.21 111.55 69.25 71.43 182.57
CARS 22.19 21.13 171.68 22.01 20.82 65.49 22.24 19.61 112.81
DARS 48.08 49.27 90.51 48.29 47.04 27.13 48.00 49.33 265.46
EPRS 134.34 135.65 97.28 134.55 132.93 45.11 134.03 133.57 139.06
FARSA 36.30 35.73 116.50 36.24 36.50 45.93 36.31 35.49 88.23
FARSB 36.30 35.73 83.59 36.24 36.50 96.01 36.31 35.49 72.70
GARS 65.26 66.21 240.98 65.33 68.30 78.81 65.04 65.97 350.40
HARS 25.92 25.20 192.71 25.83 25.88 8.31 25.97 24.50 116.31
IARS 49.10 49.88 246.07 49.10 49.92 21.82 49.08 50.17 357.47
KARS 58.19 58.65 202.52 58.24 57.26 227.30 58.16 64.99 629.51
LARS 98.21 96.84 141.49 98.08 98.94 51.21 98.19 94.30 169.68
MARS 16.17 15.64 122.54 16.14 13.92 48.41 16.22 17.36 97.31
NARS 36.43 35.66 425.68 36.43 34.20 20.20 36.47 36.56 291.97
QARS 47.63 46.94 162.10 47.58 46.40 23.15 47.59 46.46 863.36
RARS 56.30 56.97 78.05 56.32 57.59 11.25 56.38 57.85 87.05
SARS 82.57 80.85 255.34 82.48 79.96 60.12 82.71 78.21 187.42
TARS 53.20 52.67 76.46 53.15 53.56 79.01 53.30 52.36 144.87
VARS 59.71 60.30 75.19 59.81 61.83 72.68 59.72 61.00 64.98
WARS 12.08 11.75 137.52 12.03 12.40 29.93 12.16 11.23 135.00
YARS 26.70 26.58 172.73 26.68 26.34 87.21 26.65 26.67 267.99
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Fig. 1 for human circulating blood erythrocyte graphs, Supplementary
Fig. 2 for human DS-AMKL cells graphs and Supplementary Figs. 3–6
for the other investigated species, D. rerio, C. elegans, S. cerevisiae
and E. coli, respectively). Correlation coefficients and p values for
each comparison are listed in Table 5.

The comparisons between the codon bias and the codonome bias,
as well as these values grouped by aaRS, show correlation coefficients
Fig. 2. Correlation graphs in human brain “a”: the per mil frequencies of each codon at geno
sion value (codonome bias); “c”: the per mil frequencies of codons grouped by aminoacyl-
codons grouped by aaRS (codonome bias by aaRS); “e”: the aaRS expression values. See Ta
ellipse at 0.50.
very close to 1, with a p value always b0.0001, for all the investigated
tissues and species. When random and permuted numbers are used
instead of human real expression values, the pattern does not change;
rather, the correlation coefficient is often even closer to 1.

When grouped by aaRS, codon bias and codonome bias, when com-
pared to aaRSmRNA expression values, showno correlation,with really
low coefficients (sometimes even negative ones), and p values of at
me level (codon bias); “b”: the per mil frequencies of each codon multiplied by expres-
tRNA synthetase (codon bias by aaRS); “d”: the per mil frequencies of real expressed
ble 5 for correlation coefficients and p values. The elliptic line represents the density

image of Fig.�2


Table 5
Correlation coefficients (r) and p values of comparisons. a) The per mil frequencies of codons (codon bias), b) the per mil frequencies of codons number multiplied by expression
value (codonome bias), c) the per mil frequencies of codons grouped by aminoacyl-tRNA synthetase (codon bias by aaRS), d) the per mil frequencies of real expressed codon
grouped by aminoacyl-tRNA synthetase (codonome bias by aaRS), e) the aminoacyl-tRNA synthetases mRNA expression values (aaRS expression). NS, not significant.

Subset X variable Y variable (r) p Value

Human brain a) Codon bias b) Codonome bias 0.996517 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999457 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.022970 NS
d) Codonome bias by aaRS e) aaRS expression −0.021290 NS

Human brain with
absolute numbers instead
of per mil frequencies

a) Codon bias b) Codonome bias 0.996546 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999457 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.051980 NS
d) Codonome bias by aaRS e) aaRS expression −0.050950 NS

Human brain with a first permutation of the
expression values

a) Codon bias b) Codonome bias 0.999838 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999937 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.024030 NS
d) Codonome bias by aaRS e) aaRS expression −0.022320 NS

Second human brain with a second permutation
of the expression values

a) Codon bias b) Codonome bias 0.999943 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999982 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.023000 NS
d) Codonome bias by aaRS e) aaRS expression −0.023420 NS

Human brain with non-normalized
expression values

a) Codon bias b) Codonome bias 0.998791 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999925 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.052180 NS
d) Codonome bias by aaRS e) aaRS expression −0.050720 NS

Human brain with random expression values
from 1 to 10^4

a) Codon bias b) Codonome bias 0.999990 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.999996 b0.0001
c) Codon bias by aaRS e) aaRS expression −0.052180 NS
d) Codonome bias by aaRS e) aaRS expression −0.051980 NS

Human circulating blood erythrocytes a) Codon bias b) Codonome bias 0.979111 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.998358 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.119425 NS
d) Codonome bias by aaRS e) aaRS expression 0.126501 NS

Human circulating blood erythrocytes with random
expression values from 1 to 10^5

a) Codon bias b) Codonome bias 0.998791 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.937790 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.074207 NS
d) Codonome bias by aaRS e) aaRS expression 0.027150 NS

Human brain from patients affected by Trisomy 21
and Acute Megakaryoblastic Leukemia

a) Codon bias b) Codonome bias 0.990428 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.996594 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.015140 NS
d) Codonome bias by aaRS e) aaRS expression 0.041824 NS

Danio rerio brain a) Codon bias b) Codonome bias 0.986128 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.992635 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.384812 >0.1743
d) Codonome bias by aaRS e) aaRS expression 0.431892 >0.1230

Caenorhabditis elegans a) Codon bias b) Codonome bias 0.979831 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.991042 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.026048 NS
d) Codonome bias by aaRS e) aaRS expression 0.026811 NS

Saccharomyces cerevisiae a) Codon bias b) Codonome bias 0.991204 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.996790 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.224813 >0.3698
d) Codonome bias by aaRS e) aaRS expression 0.217939 >0.3850

Escherichia coli a) Codon bias b) Codonome bias 0.988796 b0.0001
c) Codon bias by aaRS d) Codonome bias by aaRS 0.996650 b0.0001
c) Codon bias by aaRS e) aaRS expression 0.510390 >0.0519
d) Codonome bias by aaRS e) aaRS expression 0.502108 >0.0565
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least >0.1 (p values at least >0.05 only in the case of E. coli dataset),
even when using random and permuted expression values.

3. Discussion

Codon bias is a well-known phenomenon, observed in species
from bacteria to mammals. Preferred codons can differ dramatically
between species and also within a genome. The direct application of
this phenomenon is usually the optimization of the heterolog expres-
sion of a protein exploiting the codon bias of the guest. It has been
demonstrated that the use of particular codons can increase the ex-
pression of a transgene by over 1,000-fold [23].

However, codon bias is often studied among few genes, and al-
ways at the genome level. Here we have presented a computational
system capable of studying codon bias in a new way. We developed
software useful for studying codon bias at mRNA level, which counts
each time that a given codon is represented in the transcriptome, thus
accounting for the abundance of each mRNA bearing that codon
(Fig. 1).

We refer to the total number of codons (n) present across all the
mRNAs pool, each expressed at a certain level (x) in a given biological
condition as its codonome value (cv = Σ(n × x) for the mRNAs pool).
This is an entirely new concept in genomics, which allows us to deter-
mine the consistence of the actual pool of codons physically existent
in the mRNA space of a cell, rather than the codon frequency at the
level of the gene sequence. The innovative “CODONOME” software
is able to calculate these parameters, offering the possibility to test
whether there are limits that constrain representation of a codon in
the whole transcriptome given its frequency at the genome level
(codon bias). We used as reference data input gene expression pro-
files calculated by integration and normalization of different datasets
for a given tissue, following the demonstration that this approach
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gives a more accurate representation of a reference transcriptome as
compared to the use of platform- or experimental-skewed datasets
[21]. As expected, the normalized expression profiles show that the
genes with the highest expression values are housekeeping genes
(see Table 1 and Supplementary Table 1). In addition, the human cir-
culating blood erythrocytes expression profile highlights the prepon-
derance of the most frequently expressed hemoglobin subunits.
These findings emphasize the consistence of the reference gene ex-
pression profiles we have calculated with the known biology of the
considered tissues.

In addition, the “CODONOME” software may show the codons
grouped in relation to the aaRS that recognize each group, to explore
whether cells organized in such a way optimize the translation process,
expressing preferentially aaRS that recognize most frequent codons.

Our findings highlight some new concepts of general relevance
about the relationship between the codon bias at genome level and
the transcriptome output in term of pool of codons.

First, we demonstrate a surprisingly tight correlation (r > 0.97,with
the exception of a single case with r > 0.93) between the frequency of
each codon at genome level (codon bias) and the proportion of that
codon in the transcriptome (codonomebias) in different human tissues.
This is not trivial because, due to the highly skewed representation of
particular gene subsets in various differentiated tissues and to codon
bias alteration in singular gene sequence, a more or less relevant loss
of correlation could be expected. It seems that a global compensation
may exist between codon bias of highly and of poorly expressed
genes, even in extremely differentiated tissues with a remarkable ex-
pression preponderance of a small number of proteins, as we found in
human circulating blood erythrocytes analysis.

Moreover, this high correlation level is maintained across multiple
species, from bacteria to humans. This finding clearly implies that the
proportional representation of each codon in the DNA andmRNA pool
is a general law of nature. It is reasonable to hypothesize that this cor-
relation, resulting from the interaction of the gene number, the
skewing of genome codon bias for each gene, and the allowed gene
expression value range, allows for a maximal optimization of the
transcription and translation processes. Indeed, replacement of actual
expression values by random numbers in different ranges shows that
the universal law of correlation between codon bias and codonome at
a genome scale is not limited to the real gene subsets expressed in na-
ture, but emerges as a general property of the distribution and range
of the number, sequence, and expression level of the genes included
in a genome. This also implies the important conclusion that there
is no constraint, in terms of codon bias, for the global distribution of
gene expression values during transcription of a genome.

An additional key finding of this study is the demonstration that
the codon bias/codonome correlation is not disrupted by a profound
alteration of normal gene expression profile such as may be found
in aneuploidy or cancer. We tested the transcriptome of DS-AMKL
cells, a condition grouping an aneuplody state with a cancer state,
and confirmed the universal value of this correlation.

On the other hand, we found no correlation between aaRS mRNA
level expression and their respective recognized codons in the
codonome, so it would seem that cells do not use this process to op-
timize the translation. The explanation may be that aaRS, essential
enzymes, are usually in molar excess in the translation machinery
and that fine-tuning of their expression in relation to the codonome
to be translated is not needed. An alternative explanation could be a
tuning of an aaRS expression at translation level of their mRNAs rath-
er than at the transcription level investigated here.

4. Conclusion

In this study we have presented a novel biological concept in ge-
nomics, the codonome, indicating the codon pool in the mRNA mole-
cules of a cell. We have also developed a freely available software
program, “CODONOME,” which is able to calculate the parameters
connected to codon bias and codonome concepts. Systematic analysis
across multiple tissues, species, and conditions shows that represen-
tation of codon bias in the transcriptome (codonome) is tightly linked
to the genome bias at codon level, and that codon bias/codonome cor-
relation is a general property of natural genomes.
5. Materials and methods

5.1. Database construction

We developed the “CODONOME” software to parse and integrate
RefSeq entries and expression values data and to then calculate how
many codons are actually represented in the transcriptome of a given
tissue of an organism. We based our software on the FileMaker Pro 10
Advanced (FileMaker, Santa Clara, CA) database management system
for both Windows and Macintosh. We made stand-alone software, in-
cluding the FileMaker runtime with a user guide included, freely avail-
able to basic users at http://apollo11.isto.unibo.it/software/.

We investigated the transcriptomes from the following species:
H. sapiens, D. rerio, C. elegans, S. cerevisiae and E. coli in order to obtain
data from higher- and lower-vertebrates as well as from inverte-
brates, unicellular eukaryotes, and prokaryotes.

First, we downloaded the RefSeq mRNA flat files of the desired
species from the NCBI ftp site (H. sapiens version May 7, 2010;
D. rerio version June 16, 2010; C. elegans and S. cerevisiae versions
January 18, 2011; E. coli version March 1, 2011). Each text file was
edited and imported into the appropriate “CODONOME” database
table (see the software user guide) to obtain a specific local RefSeq
database.

Following the execution of the “CODONOME” command, all but
the “NM_” type entries were deleted, thus excluding non-reviewed,
predicted mRNA entries (H. sapiens: 29,538 NM entries; D. rerio:
14,174 NM entries; C. elegans: 23,894 NM entries; S. cerevisiae:
5,882 NM entries; E. coli: 4,319 NM entries). The same script also
counted each codon for each mRNA individually, then summed
these values to obtain the total number of each codon for the whole
mRNAs pool (Fig. 1) and then calculated their per mil frequencies.

We downloaded the expression data files for each species from the
GEO web site. The Table 6 and the Supplementary Table 5 list the inves-
tigated tissues and organisms and the numbers of considered samples
and experiment series. For human brain, we searched for “brain” in
GEO datasets, and arbitrarily selected 24 samples from 7 different series
in order to integrate representation fromdifferent platforms (Affymetrix
microarrays types), different authors, and different investigated sub-
jects, thus obtaining an integrated summarized gene expression profile
that best represents the general biological transcriptome map for that
tissue following both universal assignment of each probe to a specific
locus via UniGene data parsing [38] and intra- and inter-sample ad-
vanced normalization [21]. We performed a similar process to obtain
gene expression profiles for other human tissues, including leukemic
cells, as well as for other species (Table 6 and Supplementary Table 5).
For D. rerio and C. elegans, for which fewer studies are available, we
chose the platform used in most experiments: GPL1319 and GPL200,
respectively.

We processed each expression data file using TRAM software [21].
We performed “Set up” and “Importing the expression data files” soft-
ware sections according to the software user guide. Then we exported
gene symbols with the corresponding normalized expression values in
a text file for each investigated species and imported it into the appro-
priate “CODONOME” database table. “CODONOME” may also accept as
input data any data file in text (tab-delimited) format containing two
columns separated by a “TAB” key (ASCII9): the official gene symbol
and the corresponding numerical (linear) gene expression value,
respectively.

http://apollo11.isto.unibo.it/software/


Table 6
Samples selected: Homo sapiens (pool “A,” “B” and “C”). All Sample IDs and Platform IDs are related to GEO database. Sample type: BM, bone marrow; PB, peripheral blood.
Microarray: U133A: Affymetrix Human Genome U133A Array; U95 Version 2: Affymetrix Human Genome U95 Version 2 Array; U95B: Affymetrix Human Genome U95B Array;
U95C: Affymetrix Human Genome U95C Array; U95D: Affymetrix Human Genome U95D Array; U95E: Affymetrix Human Genome U95E Array; U133 Plus 2.0: Affymetrix
Human Genome U133 Plus 2.0 Array; U133B: Affymetrix Human Genome U133B Array; HG-Focus: Affymetrix Human HG-Focus Target Array.

Study ID Sample ID Sample type Platform Microarray Spots Ref.

Pool “A” — healthy adults
(n = 24)

A1…A8
(n = 8)

GSM123271…78 Human post-mortem
brain tissue

GPL96 U133A 22,283 [24]

A9
(n = 1)

GSM44690 Normal brain GPL96 U133A 22,283 [25]

A10–A11
(n = 2)

GSM12688, GSM12708 Normal brain GPL8300 U95 Version 2 12,625 [26]

A12–A13
(n = 2)

GSM12689, GSM12709 Normal brain GPL92 U95B 12,620 [26]

A14–A15
(n = 2)

GSM12690, GSM12710 Normal brain GPL93 U95C 12,646 [26]

A16–A17
(n = 2)

GSM12691, GSM12711 Normal brain GPL94 U95D 12,644 [26]

A18–A19
(n = 2)

GSM12692, GSM12712 Normal brain GPL95 U95E 12,639 [26]

A20
(n = 1)

GSM52556 Normal brain GPL96 U133A 22,283 [27,28]

A21–A22
(n = 2)

GSM76949, GSM76999 Whole brain GPL570 U133 Plus 2.0 54,675 [29]

A23
(n = 1)

GSM136140 Human control
brain tissue

GPL96 U133A 22,283 [30]

A24
(n = 1)

GSM112030 Brain GPL570 U133 Plus 2.0 54,675 [31]

Pool “B” — healthy adult
(n = 41)

B1…B14
(n = 14)

GSM143572…85 Normal human adult
red blood cells

GPL96 U133A 22,283 [32]

B15…B28
(n = 13)

GSM143671…76,
GSM143703,
GSM143706…11

Normal human adult
red blood cells

GPL97 U133B 22,645 [32]

B29…B35
(n = 7)

GSM83897,
GSM85205…10

Erythrocytes GPL201 HG-Focus 8,793 [33]

B36…B41
(n = 6)

GSM440234…39 Reticulocytes from adult
periperal blood

GPL570 U133 Plus 2.0 54,675 [34]

Pool “C” — DS-AMKL children
(n = 31)

C1…C3
(n = 3)

GSM491372…4 BM
Sorted leukemic blasts

GPL570 U133 Plus 2.0 54,675 [35]

C4…C25
(n = 22)

GSM94245,
GSM94272…92

BM or PB GPL96 U133A 22,283 [36]

C26…C31
(n = 6)

GSM417985…90 BM or PB
Sorted leukemic blasts

GPL570 U133 Plus 2.0 54,675 [37]
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5.2. Computational analysis

For each “NM_” mRNA-type entry considered, we counted how
many times each codon occurred; we then calculated the count sum
of each codon for the whole gene set and the per mil frequency of
each codon sum in relation to the sum of all codon for the whole ge-
nome gene set (codon bias). We then multiplied the codon count for
each gene by the normalized expression value of that gene. Finally,
we summed the count of each codon for the whole gene set and the
per mil frequency of each codon sum in relation to the sum of all
codon for the whole genome gene set (codonome bias). With these
values, it is possible to search for relationships between codon
usage at genome and at transcriptome level.

To test the requirements for maintaining these relationships, we
simulated casual changes in the expression values of real genes in
several tests. For the human brain subset we twice permuted the
real genes' expression values. We performed another test importing
non-normalized expression values exported from TRAM. In the last
test, we substituted the actual gene expression values with random
numbers from 1 to 104, reflecting the order of magnitude of the orig-
inal dataset, thereby executing a script.

For the human circulating blood erythrocytes subset, we performed
another test with random numbers (from 1 to 105, bigger than the
actual maximum genes expression value) using the random numbers
generator at www.randomizer.org, with these parameters: 1 set of
26,589 unique and unsorted numbers per set, from 1 to 105. We then
exported the created numbers that we manually imported in place of
the real expression values in a text file.

Lastly, we created a list of the twenty aaRS with the respective rec-
ognized codons for H. sapiens, D. rerio, C. elegans, S. cerevisiae and
E. coli. We then grouped codon and codonome frequencies by aaRS
with the relative expression values (using the same expression data
file as before; see details in the software documentation).

5.3. Statistical analysis

We exported actual and simulated analyses results in text files and
submitted them to statistical analysis using statistical software for
Mac OS X (“JMP software” 5.1.2, SAS Institute Inc., Cary, USA). We
then analyzed the correlation between paired variables through linear
regression. We set the density ellipse at 0.50. In the statistical analysis
results “r” is the correlation coefficient and “p” represents the p value.
We studied the correlation among the following parameters: a) codon
bias, b) codonome bias, c) codon bias grouped by aaRS, d) codonome
bias grouped by aaRS and e) the aaRS expression values (“a,” “b,” “c”
and “d” are expressed as per mil frequencies).

http://www.randomizer.org
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Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.ygeno.2013.02.009.
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