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Rings of invariants can have nice homological properties even if they do not have
global dimension. Watanabe’s Theorem [W] gives conditions when the fixed subrin
commutative ring under the action of a finite group is a Gorenstein ring. The Gore
condition was extended to noncommutative rings by a condition explored by Idun R
in the 1970s, calledk-Gorenstein in [FGR]. This condition, also known as the Ausland
Gorenstein condition, has proved to be a very useful one, and now has been gene
further in the notion of an Auslander dualizing complex (see e.g. [YZ]). Artin and Sch
defined another Gorenstein condition for connected graded rings (see [AS]); this con
is now called the Artin–Schelter Gorenstein condition.

Noncommutative versions of Watanabe’s Theorem, giving conditions when a fixe
satisfies a Gorenstein condition, were proved by Jørgensen and Zhang [JoZ], and e
by Jing and Zhang [JZ2]. These conditions involve the “homological determinant” o
automorphisms in the group, as defined in [JoZ]. In this paper we apply these res
down–up algebras, their extensions, and certain generalized Weyl algebras, and t
pand the class of algebras for which the homological determinant can be easily com
The fact that rings of invariants in some cases give algebras that are Artin–Schelter
was one motivation for this paper.

The homological determinant defines a group homomorphism from the group of g
automorphisms of a connected gradedK-algebraA to the multiplicative group of the
field K∗; its name is due to the fact that whenA = K[x1, . . . , xn] is a commutative poly
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nomial ring each graded automorphismg is associated to an element ofGLn(K), and the
homological determinant ofg is the usual (matrix) determinant of this linear map.

Let g be an automorphism of an algebraA over a fieldK , letV be theK-space spanne
by a set of generators ofA as an algebra, and assume thatg|V is a linear automorphism
For many classes of regular algebras, including the Weyl algebras, universal enve
algebras of finite-dimensional Lie algebras, the 4-dimensional Sklyanin algebras, a
nth quantum Weyl algebraAn(q,pi,j ) (cf. [GZ, Section 2.3]) the homological determina
of a filtered (with respect to the filtration induced byV ) automorphismg is the usual deter
minant of the linear mapg|V , and for a graded automorphism of the exterior algebraΓ (V )

the homological determinant is(detg|V )−1 (see [JZ2]). Jing and Zhang gave example
show that the homological determinant is not always either(detg|V ) or (detg|V )−1 [JZ2,
Examples 2.8 and 2.9]. We show that for graded down–up algebras using the usu
erating setV = {u,d} the homological determinant ofg is (detg|V )2. The homologica
determinants of certain automorphisms of generalized Weyl algebras are also comp

First we recall the basic definitions. A Noetherian connected gradedK-algebraA is
called Artin–Schelter Gorenstein (AS–Gorenstein) ifA has finite right and left injective di
mensionsd and if there is an integer� such that the graded Ext-group Exthas the property
that ExtiA(K,A) = ExtiA◦(K,A) = 0 for i �= d and ExtdA(K,A) = ExtdA◦(K,A) = K(�),
whereK(�) is the�th degree shift of the trivial moduleK . An AS–Gorenstein ring is calle
AS-regular if it has finite global dimension.

Let f be aK-linear homomorphism from anA-moduleM to an A-moduleN , and
let g be a graded automorphism ofA. We say thatf is g-linear if f (ma) = f (m)g(a)

for all m ∈ M and all a ∈ A. The mapf is g-linear if and only if f is an A-module
homomorphism fromM to theg-twisted moduleNg . If g is a graded automorphism ofA

theng is g-linear. LetAk be the vector space of degreek elements ofA, A�n = ⊕
k�n Ak

andm = A�1 be the graded maximal ideal ofA, and letH ∗
m denote the local cohomolog

functors, so

Hi
m(M) = lim−→

n

ExtiA(A/A�n,M).

A g-linear map can be extended to an injective (or projective) resolution, and the
cohomology functorH ∗

m can be applied tog-linear maps. IfA is a graded AS–Gorenste
ring with injective dimensiond then by [JoZ, Sections 2.2 and 2.3]g :A → A induces
a g-linear mapHd

m(g) :A′(�) → A′(�), where� is the integer in the definition of AS
Gorenstein and′ is the graded vector space dual. Moreover,Hd

m(g) = c(g−1)′ for some
constantc. The constantc−1 is called the homological determinant ofg, and we denote
this fact by hdetg = c−1.

The trace ofg onA (see [JZ1]) is defined to be

TrA(g, t) =
∑
n�0

tr(g|An)t
n,

where tr is the usual trace of the linear mapg on An. As an example, the Hilbert serie

of A is the trace of the identity map. It follows from [JoZ, Lemma 2.6 and Theorem 4.2]
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that whenA is an AS-regular algebra then the hdetg can be computed from the trace ofg:
since TrA(g, t) is a rational function int it can be written as a Laurent series int−1, and
we can write

TrA(g, t) = (−1)d(hdetg)−1t−� + lower degree terms,

whered and� are as in the definition of AS-regular.
For a (not necessarily graded) ringA the grade of anA-moduleM is defined to be

j (M) = min{i: ExtiA(M,A) �= 0} or ∞ if no suchi exists. We say thatA satisfies the
Auslander–Gorenstein condition ifA has finite left- and right-injective dimension, and f
every NoetherianA-moduleM , all i � 0, and all submodulesN ⊆ ExtiA(M,A) the relation
j (N) � i holds. The ringA is called Auslander-regular if it satisfies the Ausland
Gorenstein condition and has finite global dimension.

Throughout we will use [JoZ, Theorem 3.3] that guarantees that ifG is a finite group
of graded automorphisms acting on an AS–Gorenstein (Auslander–Gorenstein)A
with |G| �= 0 ∈ K , and if the homological determinant ofg satisfies hdetg = 1 for all
g ∈ G, then the fixed subringAG is AS–Gorenstein (Auslander–Gorenstein). Furtherm
by [JoZ, Theorems 1.2(5) and 3.5] ifA is a filtered algebra,G is a group of automorphism
preserving the filtration, and the associated graded ring gr(A) is a Noetherian Auslander
Gorenstein ring, then the fixed subringAG satisfies the Auslander–Gorenstein conditio

In Section 1 we consider the case whenA is a down–up algebra, hence an Ausland
regular (and AS-regular when graded) algebra of dimension 3; we determine the fi
automorphismsg of A that are of the formg(u) = wu + yd + r1 andg(d) = xu + zd + r2
for elementsri,w,x, y, z ∈ K . We use results of Jing and Zhang, and of Jørgensen
Zhang, to give conditions when the fixed ring will satisfy a Gorenstein condition. In
tion 2 we consider the fixed ringsRG whenR is a particular regular extension of a down–
algebra, as considered by Benkart and Roby [BR], Bauwens [Bau], and Cassidy [C
In Section 3 we consider a more general class of rings, generalized Weyl algebrasR(σ,h).
A down–up algebra is a generalized Weyl algebra over the commutative polynomia
K[x, y], and its defining homomorphismσ is a linear mapσ . We show that there is
generalized Weyl algebra overK[x, y] with a linear mapσ and linear polynomialh in
R = K[x, y] whereR(σ,h) is not isomorphic to a down–up algebra. We consider fi
rings of some generalized Weyl algebrasR(σ,h) under certain groups of automorphism
that preserve the generalized Weyl algebra structure ofR(σ,h).

1. Down–up algebras

LetK be a field, and fix parametersα,β, γ ∈ K . In [B] and [BR] Benkart and Roby con
sidered algebrasA(α,β, γ ) that they called down–up algebras. The algebraA = A(α,β, γ )

is defined by generatorsu andd and relations:

d2u = αdud + βud2 + γ d and du2 = αudu + βu2d + γ u.

The algebraA has a Poincare–Birkhoff–Witt type basis overK of the formui(du)j dk .

It follows from results in [KMP,KK] thatA(α,β, γ ) is a Noetherian ring if and only if it
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is Auslander-regular if and only ifβ �= 0. Whenγ = 0 the ringA(α,β,0) is a connected
graded algebra with degree(u) = degree(d) = 1; we will refer to a down–up algebra wit
γ = 0 as a graded down–up algebra. The algebraA(α,β,0) is of typeS1 in the classifica-
tion of regular algebras of dimension 3 [AS]. The representation theory of graded dow
algebras was studied in [BW], and the enveloping algebra of the three-dimensional H
berg Lie algebraA(2,−1,0) is one example. As another example, consider the quan
enveloping algebraUq(sl3), which has generatorsEi,Fi,K

±1, i = 1,2, and defining re
lations as in e.g. [Ja]. Then the subalgebraU+(sl3) generated byE1,E2 is the down–up
algebraA([2],−1,0), where for a scalarq �= 0∈ K we define[n] = (qn −q−n)/(q −q−1).
The algebraA([2],−1,0) was calledHq in [KS1], and the algebraH ′

q of [KS1] is the

down–up algebraA(2q,−q2,0). In [KMP] it is shown that when an arbitrary down–u
algebraA(α,β, γ ) is filtered in the generatorsu andd , the associated graded algebra is
graded down–up algebraA(α,β,0). Forγ �= 0, the down–up algebraA(α,β, γ ) is isomor-
phic toA(α,β,1). Some examples of down–up algebras withγ �= 0 includeA(2,−1, γ ),
which is isomorphic to the enveloping algebra of the Lie algebrasl2, andA(0,1, γ ), which
is isomorphic to the enveloping algebra of the Lie superalgebraosp(1,2).

We fix the notation we will use throughout this section. LetA be a down–up algebra.
A is graded andg is a graded automorphism ofA, we can restrictg to the graded vecto
spaceV = Ku ⊕ Kd ; we will represent this linear map by

g|V =
[

w x

y z

]
,

whereU = g(u) = wu + yd andD = g(d) = xu + zd . For any down–up algebraA an
invertible linear mapg as defined above will extend to a graded (filtered) automorph
of A if and only if U andD satisfy the same relations asu andd . ExpressingU andD in
terms ofu andd we see that the equation

D2U = αDUD + βUD2 + γD

holds if and only if the coefficients of each of the different monomials inu andd in the
PBW-basis ofA are equal. This leads to the following equations (“theD2U equations”):

• u3 coefficient:(1− α − β)wx2 = 0,
• d3 coefficient:(1− α − β)yz2 = 0,
• u2d coefficient:(1− β2)x2y = α(1+ β)wxz,
• udu coefficient:(1+ α − α2 − β)wxz = α(1+ β)x2y,
• ud2 coefficient:(1− α − αβ − β2)xyz = 0,
• dud coefficient:(1− β − αβ − α2)xyz = 0,
• u coefficient:γ x((1− α)wz − βxy − 1) = 0,
• d coefficient:γ z(wz − (α + β)xy − 1) = 0.

Similarly the equation
DU2 = αUDU + βU2D + γU
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holds if and only if the following equations (“theDU2 equations”) hold:

• u3 coefficient:(1− α − β)w2x = 0,
• d3 coefficient:(1− α − β)y2z = 0,
• u2d coefficient:(1− α − αβ − β2)wxy = 0,
• udu coefficient:(1− β − αβ − α2)wxy = 0,
• ud2 coefficient:(1− β2)xy2 = α(1+ β)wyz,
• dud coefficient:(1+ α − α2 − β)wyz = α(1+ β)xy2,
• u coefficient:γw(wz − (α + β)xy − 1) = 0,
• d coefficient:γy((1− α)wz − βxy − 1) = 0.

We use these relations to determine the graded (filtered) automorphisms of do
algebras that are of the form above; the results are described in the following propo
(which is also true ifA is not Noetherian). Notice that the down–up algebras that
non-diagonal graded automorphisms include some of the examples of down–up a
mentioned above.

Proposition 1.1. All of the automorphisms of down–up algebrasA = A(α,β, γ ) given by
g(u) = wu + yd andg(d) = xu + zd are described below.

1. The diagonal mapg|V = [
w 0
0 z

]
with wz �= 0 is an automorphism of anyA(α,β,0).

Whenγ �= 0 the diagonal mapg|V = [
w 0
0 w−1

]
is an automorphism of anyA(α,β, γ ).

2. The mapg|V = [ 0 x
y 0

]
with xy �= 0 is an automorphism ofA(0,1,0) or A(α,−1,0) for

anyα ∈ K . Whenγ �= 0 the algebraA(0,1, γ ) has the automorphismg|V = [ 0 x
−x−1 0

]
,

and for anyα ∈ K the algebraA(α,−1, γ ) has the automorphismg|V = [ 0 x
x−1 0

]
.

3. An arbitrary invertible linear mapg|V = [
w x
y z

]
is an automorphism ofA(0,1,0) or

A(2,−1,0). Whenγ �= 0 anddet(g|V ) = 1 theng is an automorphism ofA(0,1, γ ).

Proof. It is clear that the diagonal automorphism will always preserve the relations
γ = 0. Whenγ �= 0 theu coefficient from theDU2 equations (and also thed coefficient
from theD2U equations) givewz = 1, and then all equations are satisfied.

Next consider the case whenw = z = 0 andxy �= 0. Equatingu2d coefficients in the
D2U equations givesβ2 = 1, and equating coefficients ofudu givesα(1+ β) = 0; hence
we have described the two classes of algebras in case 2. Furthermore, one can ch
under these necessary conditions both theD2U equations and theDU2 equations hold in
the caseγ = 0, so that these possible maps are algebra automorphisms. Whenγ �= 0 the
u coefficient from theD2U equations (or thed coefficient from theDU2 equations) gives
−βxy = 1, and the stated automorphisms follow.

If g|V is not as described in cases 1 or 2 theng|V has at least 3 nonzero entries since i
nonsingular; hence eitherwx �= 0 oryz �= 0. Equating the coefficient ofu3 (whenwx �= 0)
or d3 (whenyz �= 0) in theD2U equations givesα + β = 1. If x = 0 thenwyz �= 0 and

the coefficient ofud2 in theDU2 equations gives 0= wyz(α + αβ), soα(1+ β) = 0, and
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eitherα = 0 (and henceβ = 1) or β = −1 andα = 2. Hence we may assume thatx �= 0.
Equating the coefficient ofudu in theD2U equations gives

x2yα(1+ β) = wxz
(
1+ α − α2 − β

)
,

and the coefficient ofu2d gives

x2y
(
1− β2) = wxz(1+ β)α.

Dividing by x, subtracting equations, and using the relationα = 1− β gives

(wz − xy)α(1+ β) = xy
(
1− β2) − wz

(
1+ α − α2 − β

)
,

so that

0= xyα(1+ β) − wz
(
2α − α2) = xyα(1+ β) − wzα(2− α)

= xyα(1+ β) − wzα(1+ β) = −(wz − xy)α(1+ β).

Sincewz − xy �= 0, we again getα(1 + β) = 0 and the cases described in case 3. F
thermore, one can check that in these cases whenγ = 0 the maps satisfy both theD2U

and theDU2 equations, so that these maps are algebra automorphisms. Whenγ �= 0 and
wx �= 0 we get(1 − α)wz − βxy − 1 = 0 from theu coefficient of theD2U equations.
Either y or z must also be non-zero, and hence from the other linear coefficients w
wz − (α + β)xy − 1) = 0. Subtracting these two equations we getα(wz − xy) = 0, and
henceα = 0, which meansβ = 1 from above. Then the linear term coefficient conditio
all are satisfied if detg = 1. The caseyz �= 0 is similar. �

1.2. More generally one can consider linear filtered automorphismsg of A =
A(α,β, γ ) that are of the formg(u) = wu + yd + r1 andg(d) = xu + zd + r2 for ri ∈ K .
Using an analysis similar to the above, one can show that eitherri = 0 for i = 1,2, orA =
A(2,−1,0), and then for arbitraryri ∈ K and arbitrary elementsw,x, y, z ∈ K that satisfy
wz − xy �= 0 the linear map defined byg(u) = wu + yd + r1 andg(d) = xu + zd + r2
give automorphisms ofA(2,−1,0), the enveloping algebra of the Heisenberg Lie al
bra. There are automorphisms of this form that have finite order: e.g.g(u) = d + 1 and
g(d) = u − 1 has order two.

Example 1.3. Consider the graded automorphismg|V = [
0 a

a−1 0

]
of A(0,1,0) or

A(2,−1,0) (Proposition 1.1(2)). As a linear mapg is diagonalizable with eigenvecto
T1 = u + a−1d andT2 = u − a−1d that generateA(0,1,0) (respectivelyA(2,−1,0)) as
an algebra and satisfyg(T1) = T1 andg(T2) = −T2. Furthermore, by Proposition 1.1(
we know that the change of basis matrixh|V = [ 1 1

a−1 −a−1

]
is also an automorphism o

A(0,1,0) (respectivelyA(2,−1,0)) and the proof of Proposition 1.1 showed that the e
mentsT1 andT2 satisfy the same relations asu andd in the algebraA(0,1,0) (respectively

A(2,−1,0)), so that the set of monomialsT i

1(T2T1)
j T k

2 for i, j, k � 0 form a PBW-type
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basis ofA(0,1,0) (respectivelyA(2,−1,0)). Hence the subalgebra ofA(0,1,0) (respec-
tively A(2,−1,0)) invariant underG = 〈g〉 hasK-basisT i

1(T2T1)
j T k

2 with j + k even,
and hence is generated as aK-algebra byT1, (T2T1)T2, andT 2

2 .

Example 1.4. Forγ �= 0 consider the filtered automorphismg|V = [ 0 a
−a−1 0

]
of A(0,1, γ )

= U(osp(1,2)) (Proposition 1.1(2)). As a linear mapg is diagonalizable with eigenvecto
T1 = ia2−1u − 2−1d andT2 = u − ia−1d satisfyingg(T1) = iT1 andg(T2) = −iT2 and
with change of basis matrix

h|V =
[

ia2−1 1
−2−1 −ia−1

]
,

which is also an automorphism ofA(0,1, γ ) by Proposition 1.1, case 3, since deth = 1.
Furthermore the elementsT1 andT2 satisfy the same relations asu andd , so that the mono
mialsT i

1(T2T1)
j T k

2 form aK-basis ofA(0,1, γ ). Hence aK-basis of the subalgebra ofA

invariant underG = 〈g〉 is monomials of the formT i
1(T2T1)

j T k
2 with i + 3k ≡ 0 mod 4.

Notice that the form of the fixed ringAG under the cyclic groupG = 〈g〉 of order 4 is
independent ofa for anya �= 0, and so theAG are all isomorphic for anya.

Theorem 1.5. Letg be a graded automorphism of a Noetherian graded down–up alge
If the matrix ofg|V with respect to the basis{u,d} of V is

[
w x
y z

]
, then

Tr(g, t) = 1

(1− λt)

1

(1− µt)

1

(1− λµt2)
= 1

p(t)

whereλ andµ are the(not necessarily distinct) eigenvalues ofg|V , and

p(t) = 1− (w + z)t + (w + z)(wz − xy)t3 − (wz − xy)2t4

= (
1− tr(g|V )t + det(g|V )t2)(1− det(g|V )t2).

The homological determinanthdetg is det2(g|V ) = λ2µ2.

Proof. We use a minimal free resolution ofK to compute the Tr(g, t) and hence the ho
mological determinant hdetg.

The Noetherian graded down–up algebraA(α,β,0) is regular of global dimension
and generated by two degree 1 elements. By [AS], the trivial moduleK has a minimal free
resolution

0→ A(−4) → A⊕2(−3) → A⊕2(−1) → A → K → 0.

By [JZ1, Theorem 3.1], TrA(g, t) = 1/p(t) wherep(t) is a polynomial of degree 4. W
can findp(t) = 1 + a1t + a2t

2 + a3t
3 + a4t

4 from the first 5 terms of the trace functio
Tr(g, t) = 1+ b1t + b2t

2 + b3t
3 + b4t

4 + · · · using the standard method of undetermin

coefficients to get:
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1.1]),
a1 = −b1, a2 = −b2 + b2
1, a3 = −b3 + 2b1b2 − b3

1,

a4 = −b4 + 2b1b3 + b2
2 − 3b2

1b2 + b4
1.

We proceed to calculate thebi = tr(g|Ai
), i = 1, . . . ,4. Clearlyb1 = w + z, andb2 =

(w + z)2, so thata1 = −(w + z) anda2 = 0 as claimed. It can be checked that

b3 = w3 + 2w2z + 2wz2 + z3 + xy(w + z)(α + β)

= (w + z)3 − wz(w + z) + xy(w + z)(α + β)

and

b4 = w4 + 2w3z + 3w2z2 + 2wz3 + z4 + (
2β + α2 + α + αβ

)
xyw2

+ (3α + 2β + αβ)xywz + β2x2y2 + (
2β + α2 + α + αβ

)
xyz2.

Hence in the diagonal case (case 1),b3 = (w + z)3 −wz(w + z) andb4 = w4 +2w3z+
3w2z2 + 2wz3 + z4 = (w + z)4 − 2wz(w + z)2 + z2w2, and thep(t) is as given. In the
second casew = z = 0 andβ2 = 1, sob3 = 0 andb4 = x2y2 and the trace function is a
given. In the third case we getb3 = w3 + 2w2z + 2wz2 + z3 + xy(w + z), andb4 = w4 +
2w3z+3w2z2+2wz3+z4+2xyw2+2xywz+x2y2+2xyz2, and a laborious calculatio
shows that the trace function is as given. However, in the third case the trace function
calculated more easily by noting that by Proposition 1.1, case 3, any linear map onV gives
an automorphism ofA, so if we change basis onV , the new set of basis elements{U,D}
will satisfy the same relations asu andd . Without loss of generality we can assume thaK

is algebraically closed and thatg|V is triangular with respect to a set of generatorsU , D

satisfying the original relations. We have a monomial basis{Ui(DU)jDk}, with i + 2j +
k = n, for An the terms of degreen. Since the relations ofA preserve degree inU andD in
each term, and since applyingg gives either the same terms, or monomials withU factors
replaced byD factors, then after all monomials are put in standard form we have

g
(
Ui(DU)jDk

) = (
λi(λµ)jµk

)(
Ui(DU)jDk

) + possibly other terms.

Hence, just as in the case of commutative polynomial rings (see [JZ1, Proposition
we can easily compute the tr(g|An) and get

Tr(g, t) =
∑
n�0

( ∑
i+2j+k=n

λi(λµ)jµk

)
tn = 1

(1− λt)

1

(1− µt)

1

(1− λµt2)
.

The computation of the leading term of the Laurent series int−1 follows easily, giving
2
the value of the homological determinant equal to det(g|V ). �
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1.6. Jing and Zhang [JZ2] extended their results to the filtered case. Ifg is an au-
tomorphism of a filtered ringA that preserves the filtration onA, theng induces a ho-
momorphismg on the associated graded ring GrA. The homological determinant ofg
is defined to be hdetGrA g. If G is a finite group of automorphisms,|G| �= 0 in K , and
if hdetg = 1 for all g ∈ G, then it follows from [JZ2, Theorem 3.5] that when GrA is
AS–Gorenstein (respectively Auslander–Gorenstein) then Gr(AG) is AS–Gorenstein (re
spectively Auslander–Gorenstein). It follows from [Bj, Theorem 4.1] thatAG satisfies the
Auslander–Gorenstein condition. Notice in Proposition 1.1 that all the automorphismg of
down–up algebras withγ �= 0 have hdetg = 1, and the groupsG of Examples 1.3 and 1.
both satisfy the condition of the Corollary below.

Corollary 1.7. Let G be a finite group of graded automorphisms ofA(α,β,0) for β �= 0,
with (not necessarily distinct) eigenvaluesλ,µ satisfyingλ2µ2 = 1 and|G| �= 0∈ K , then
the ring of invariantsAG satisfies the Artin–Schelter and Auslander–Gorenstein co
tions. IfG is a finite group of automorphisms ofA(α,β, γ ) with β,γ �= 0 having the form
above, then the ring of invariantsAG satisfies the Auslander–Gorenstein condition.

The ring of invariants need not have finite global dimension. In fact, in Example
we show that for any down–up algebraA(α,β, γ ) with β �= 0, and any root of unityλ,
the diagonal mapΘλ :A → A with Θλ(d) = λd , Θλ(u) = λ−1u is an automorphism with
fixed ring having infinite global dimension, but satisfying the Gorenstein condition.

Note that the down–up algebraA = A(2,−1, γ ) is the enveloping algebra of a thre
dimensional Lie algebraL with basis u, d , and [u,d], where [u, [u,d]] = γ u and
[[u,d], d] = γ d . Under the filtration onA in u,d , a filtered automorphismg is of the
form:

g(u) = a1,1u + a1,2d + b1, g(d) = a2,1u + a2,2d + b2.

Let M be the matrixM = (ai,j ). It is not difficult to check thatg([u,d]) = (detM)[u,d],
and the homological determinant hdet(g) = (detM)2, which is the same as determinant
the matrix ofg|L (cf. [JZ2, Lemma 6.1]).

1.8. Kraft and Small [KS] have called an algebraA an FCR-algebra if every finite
dimensionalA-module is completely reducible (i.e. a direct sum of simpleA-modules),
and if the intersection of the annihilators of all the finite-dimensional simpleA-modules is
zero. The down–up algebras that are FCR-algebras are known (see e.g. [KS2, Theo
and Proposition 1.4]) and includeA(−2,1, γ ) ∼= U(sl2)) andA(0,1, γ ) ∼= U(osp(2,1))

for γ �= 0 (see e.g. [KS2, Theorem 2.12]). It follows from [KS, Proposition 1] that ifR is a
Noetherian FCR-algebra overK andG is a finite group of automorphisms ofR, where|G|
and the characteristic ofK are relatively prime, then the ring of invariantsA = RG is also
an FCR-algebra. Hence one can consider invariants of finite groups of the automor
described in Proposition 1.1 for FCR down–up algebras. The case Proposition 1.1(
considered by Jordan and Wells in [JW]. Proposition 1.1(2) applies toU(sl2), and Propo-
sition 1.1 shows that any finite subgroupG of SL(K,2) acts onU(osp(1,2)), and hence i

follows that(U(osp(1,2)))G is also an FCR-algebra.
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2. Dimension four extensions of down–up algebras

M. Artin, J. Tate, and M. Van den Bergh [ATV] have given a complete characteriz
of connected graded Artin–Schelter regular algebras of dimension three, generated
gree one; this work has been extended by D. Stephenson [S1,S2] for algebras ge
in other degrees. Dimension four is less well understood. Work initiated by L. Le B
S.P. Smith, and M. Van den Bergh [LSV] on producing AS-algebras of dimension 4 a
tral extensions of AS-algebras of dimension three has been generalized by T. Cassid
Cassidy considers extensionsH by a normal elementz whereA = H/〈z〉 is an AS-regular
algebra of global dimension 3. Cassidy’s results give sufficient conditions for such a
tensionH to be AS-regular of global dimension 4 when degreez = 1 (in this casez is
central, and by [C1, Remark 3.13] any normal extension by an element of degree
Zhang-twist of a central extension) [C1, Theorem 1.2], degreez = 2 [C1, Theorem 1.4]
degreez = 3 [C1, Theorem 3.10], and degreez > 3 [C1, Theorem 3.8].

Cassidy’s results can be used to produce connected graded Artin–Schelter regul
brasH of dimension 4 generated byu,d, z, wherez is a normalizing element ofH and
H/〈z〉 ∼= A(α,β,0) = A. Specifically consider the algebrasH = H(α,β, γ ) satisfying:

d2u − αdud − βud2 − γ dz2 = 0,

du2 − αudu − βu2d − γ uz2 = 0,

uz = zu, and dz = zd. (1)

These algebras have been considered by Benkart and Roby [BR, open proble
Bauwens [Bau] (see also [CM, Section 6.2]), and Cassidy [C2]. Whenβ �= 0 thenH is
an AS-regular algebra of global dimension 4 (see e.g. [C2, Proposition 3.2]). Note t
[C2, Lemma 4.2]H has a basis of elements of the formui(du)j dkz�.

Let g be a graded automorphism ofH that when restricted to the span of{u,d, z} is
given by the matrix

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
;

that is,

U = g(u) = a11u + a21d + a31z,

D = g(d) = a12u + a22d + a32z, and

Z = g(z) = a13u + a23d + a33z.

We will show thata13 = a23 = a31 = a32 = 0. Sincez is central, so isg(z) andg(z)u =
ug(u). Hencea13u

2+a23du+a33zu = a13u
2+a23ud +a33zu, and thusa23(du−ud) = 0,

which implies thata23 = 0. In a similar manner, commuting withd yields thata13 = 0, and

hencea33 �= 0.
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Sinceg is an automorphism,U,D andZ must satisfy the relations

D2U − αDUD − βUD2 − γDZ2 = 0, (2)

DU2 − αUDU − βU2D − γUZ2 = 0. (3)

Substituting and calculating the coefficient ofz3 (in the original basis) yields the equ
tions

a2
32a31(1− α − β) − γ a32a

2
33 = 0

a2
31a32(1− α − β) − γ a31a

2
33 = 0.

If either a31 �= 0 or a32 �= 0 we have thatγ = a31a32(1− α − β)/a2
33. If α + β = 1 then

sinceγ �= 0 we havea32 = a31 = 0. Thus we may assume thatα + β �= 1.
Sinceg leaves〈z〉 invariant,g induces an automorphism ofH/〈z〉. This is isomorphic

to the down–up algebraA(α,β,0). Except for the case thatβ = −1, Proposition 1.1 gives
thatg must be given by a matrix of the form

[
a11 0 0
0 a22 0

a31 a32 a33

]

andU = g(u) = a11u+ a31z, D = g(d) = a22d + a32z, andZ = g(z) = a33z. Substituting
in Eq. (2) and calculating the coefficient ofd2z, we obtain the equation

a2
22a31 − αa2

22a31 − βa2
22a31 = 0.

Sincea22 �= 0 and(1−α −β) �= 0, we have thata31 = 0. Calculating the coefficient ofuz2

we obtain the equation

a2
32a11 − αa2

32a11 − βa2
32a11 = 0.

This implies thata32 = 0.
In the final case withβ = −1, H/〈z〉 is the down–up algebraA(α,−1,0) with α �= 2.

This admits automorphismsg having matrix

[ 0 a12 0
a21 0 0
a31 a32 a33

]
;

that is,U = g(u) = a21d + a31z,D = g(d) = a12u + a32z, andZ = g(z) = a33z. Substi-
tuting in Eq. (2) and calculating the coefficient ofdz2 gives the equation

a2
32a21 − αa2

32a21 + a2
32a21 = 0.

Sincea21 �= 0 andα �= 2 we havea32 = 0. In a similar manner calculating the coefficie

of u2z yields thata31 = 0.
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Hence a graded automorphismg of H hasg(z) = λz for 0 �= λ ∈ K , andg induces an
automorphism ofA = H/〈z〉, and so by [JZ2, Proposition 2.4] hdetH g = (hdetA g)λ =
(detg|V )2λ. We will show that this computation can be used to produce examples of
of invariants of dimension 4 that satisfy the Gorenstein property. It is a straightfor
exercise to find the graded automorphisms ofH of the type above.

Proposition 2.1. LetH = H(α,β, γ ) be the homogenization ofA = A(α,β, γ ) defined by
the relations(1) above withβ �= 0 andγ �= 0. The graded automorphisms ofH are as listed
below; in each case the conditions that guaranteeg has finite order and thathdetg = 1
are given.

1. For anyα andβ the mapsg(u) = ru, g(d) = wd , andg(z) = λz for r,w,λ ∈ K give
graded automorphisms ofH if and only if λ2 = rw. The elementg is of finite order
with hdetg = 1 if and only ifλ5 = 1 andr,w are roots of unity.

2. Whenβ = −1 the mapsg(u) = td , g(d) = su and g(z) = λz for s, t, λ ∈ K give
graded automorphisms ofH if and only if λ2 = st . The elementg is of finite order
with hdetg = 1 if and only ifλ5 = 1 ands and t are roots of unity.

3. Whenα = 0, β = 1 the linear mapg(u) = ru + td , g(d) = su + wd , andg(z) = λz

for r, t, s,w,λ ∈ K gives a graded automorphism ofH if and only ifλ2 = detg|V =
rw − st . An elementg of finite order hashdetg = 1 if and only ifλ5 = 1.

Example 2.2. Next consider [C1, Example 5.1], which gives a normal AS-regular ex
sion H of the down–up algebraA = A(2,−1,0), the enveloping algebra of the thre
dimensional Heisenberg Lie algebra. Letf1 = d2u − αdud − βud2 and f2 = du2 −
αudu − βu2d . The connected graded algebraH is generated byx = u,y = d, z, where
z has degree 2, and the relations inH are:

f1 + (x + y)z = 0, f2 + (x + y)z = 0, xz = zy, and yz = zx.

In Cassidy’s notation we have

M =
[

y2 xy − 2yx

yx − 2xy x2

]
, X =

[
x

y

]
, Q =

[
1 0
0 1

]
,

N =
[

0 1
1 0

]
, E =

[
1 1
1 1

]
, and G =

[
0 1
1 0

]
.

Let g be a graded automorphism ofH of the formg(x) = a1,1x +a2,1y, g(y) = a1,2x +
a2,2y, andg(z) = λz. Sincexz = zy we have

g(x)λz = λzg(y),

(a1,1x + a2,1y)z = z(a1,2x + a2,2y),
a1,1xz + a2,1yz = a1,2yz + a2,2xz.
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The condition thatyz = zx adds no new restriction. Henceg|K〈x,y〉 is the linear map with
coordinate matrixΣ of the form:

Σ =
[

a b

b a

]
.

Sinceg(x) = ax + by andg(y) = bx + ay, one can check that inK〈x, y〉

g(f1) = (
a2 − b2)(af1 − bf2) and g(f2) = (

a2 − b2)(−bf1 + af2)

and henceg applied to the relations ofH gives the following equations inK〈x, y, z〉:

g
(
f1 + (x + y)z

) = (
a2 − b2)(af1 − bf2) + (a + b)λ(x + y)z,

g
(
f2 + (x + y)z

) = (
a2 − b2)(−bf1 + af2) + (a + b)λ(x + y)z,

which must be linear combinations off1 + (x + y)z andf2 + (x + y)z. This forcesλ =
(a−b)2. Henceg gives a graded automorphism ofH whena �= b. Furthermore, the invers
of such ag is an automorphism of this form. The hdetΣ = (a + b)2(a − b)2, and hdetg =
(a − b)4(a + b)2. Next we find the finite order automorphisms of this form, wherea and
b are chosen so hdetg = 1. Sinceg has finite order,λ and hencea − b must be a root o
unity, and sinceΣ has finite order, detΣ = (a − b)(a + b) and hencea + b must be roots
of unity. Hence letω = a − b be any primitive root of unity; thena + b = ±ω−2. This
leads to two parameterized families of automorphisms. First those witha = (ω + ω−2)/2,
b = (ω−2 − ω)/2, andλ = ω2; second those witha = (ω − ω−2)/2, b = (−ω−2 − ω)/2,
andλ = ω2. The eigenvalues ofΣ area − b = ω anda + b = ±ω−2 and hence any matri
of this form has finite order. Hence there are a countable number of matrices of finite
of this form with hdet= 1. Matrices of the form ofΣ commute, so any finite group of suc
automorphisms must be an Abelian group. As one example the Klein-4 group actsH

as the matrices {[
1 0
0 1

]
,

[−1 0
0 −1

]
,

[
0 −1

−1 0

]
,

[
0 1
1 0

]}

with λ = 1, and each element of the group has hdetg = 1. The fixed rings ofH under these
groups are rings satisfying the AS–Gorenstein condition.

3. Generalized Weyl algebras

Let R be a ring,h an element in the center ofR, andσ an automorphism ofR. The
ring A = R(σ,h) generated overR by two generatorsX+ andX− subject to the relation
X−X+ = h,X+X− = σ(h), X+r = σ(r)X+,X−r = σ−1(r)X− is called a generalize
Weyl algebra (or hyperbolic ring). These rings were studied by V.V. Bavula, D.A. Jo
and A.L. Rosenberg (see, for example, [Ba1,J1,R]). In [KMP] it is shown that Noeth

down–up algebrasA(α,β, γ ), with β �= 0, are generalized Weyl algebrasR(σ,h), where
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R = K[s, t], h = s, andσ is the automorphism given byσ(s) = t andσ(t) = αt + βs + γ

(namely takeX+ ↔ d , X− ↔ u, h = s ↔ ud , andt ↔ du). The homogenization ofA in
Proposition 2.1 is a generalized Weyl algebra whereR = K[s, t, z], h = s, andσ is the
automorphism given byσ(s) = t , σ(t) = αt +βs + γ z2, andσ(z) = z. Jordan has define
a closely related notion of ambiskew polynomial ring; over an algebraically closed fi
Noetherian down–up algebra is also an ambiskew polynomial ring [J2]. We first not
the class of generalized Weyl algebras withR = K[s, t], σ a linear map, andh a linear
polynomial inR is larger than the class of down–up algebras.

Example 3.1. Let R = K[s, t], σ (s) = r1s, σ (t) = r2t for ri ∈ K with ri �= 1 for i = 1,2,
andh = s. We will show thatA = R(σ,h) is not isomorphic to a down–up algebra
considering the largest commutative imageA/I of A (as in [CM, Section 4.2]). First not
that the relations inA are

X−X+ = s and X+X− = r1s,

X−s = r−1
1 sX− and X−t = r−1

2 tX−,

X+s = r1sX
+ and X+t = r2tX

+.

Hences ∈ I . SinceX−t − tX− = (r−1 − 1)tX− we havetX− ∈ I andX−t ∈ I , and simi-
larly tX+ andX+t ∈ I . Note thatA/〈tX−,X−t, tX+,X+t, s〉 is commutative. Then it fol
lows thatA/I is isomorphic toB = K[a, b, c]/〈ab, ac, bc〉 where under the isomorphis
a ↔ t, b ↔ X−, andc ↔ X+. We claim thatB has exactly three minimal prime idea
P1 = 〈a, b〉,P2 = 〈b, c〉, andP3 = 〈a, c〉; this follows sinceB/P1 ∼= K[c], so it is prime
(similarly for P2 andP3), andP1P2P3 = 0 implies that these idealsPi are all the minimal
prime ideals ofB. By [CM, Proposition 4.2] no Noetherian down–up algebraA(α,β, γ )

has this property. The algebraA is an iterated Ore extensionK[t][X+; τ ][X−; τ−1], so is
a graded AS-regular algebra of dimension 3.

More generally note that any generalized Weyl algebraA = R(σ,h) with R = K[s, t],
σ(s) = r1s, σ (t) = r2t andh = a0s + a1t + a2 for ai, ri ∈ K can be written as an ite
ated Ore extension of the formA = K[t][X+; τ ][X−; τ−1, δ], whereτ(t) = r2t , τ(X+) =
r1X

+, δ(t) = 0, andδ(X+) = a1(r2 − r1)t + (1 − r1)a2; hence such a generalized We
algebraA has finite global dimension. It follows from [Ba2, Theorem 3.7] that since〈s, t〉
is an ideal of height 2 invariant underσ that the global dimension ofA = R(σ,h) is 3.

In this section we consider certain automorphisms of generalized Weyl algebras
that if R is a connected graded ring,σ is a graded homomorphism, and if degreeX+ and
degreeX− can be chosen so that degreeX++ degreeX− = degree(h), thenR(σ,h) is
a graded ring. We first note that generalized Weyl algebras often satisfy the Ausla
Gorenstein conditions.

Proposition 3.2. If R is Noetherian and satisfies the Auslander–Gorenstein condit
then the generalized Weyl algebraA = R(σ,h) satisfies the Auslander–Gorenstein con
tions. If, in addition,A is a connected graded ring, then it satisfies the Artin–Sche

Gorenstein conditions.



E. Kirkman, J. Kuzmanovich / Journal of Algebra 288 (2005) 463–484 477

lyno-

d

ns.
] that

stein

ng
d),
nsions

e gen-
Proof. As is shown in [Ba2, pp. 88–89] (or see [J1]), a generalized Weyl algebraR(σ,h)

is always a factor ring of an iterated skew polynomial extension (this iterated skew po
mial ring is also an ambiskew polynomial extension) ofR in the following way. First form
the polynomial ringR[z], and consider the generalized Weyl algebraR[z](σ,h+ z), where
σ is extended toR[z] by takingσ(z) = z. It can be checked thatR[z](σ, x + z) is an iter-
ated skew polynomial ring extension ofR; R[z](σ,h+ z) ∼= R[X−;σ−1][X+;σ, δ], where
the automorphismσ is extended toR[X−;σ−1] by σ(X−) = X−, and theσ -derivationδ

is defined byδ(r) = 0 for all r ∈ R andδ(X−) = σ(h)−h. Furthermore, it can be checke
z is in the center ofR[z](σ,h + z), z is regular, andR[z](σ,h + z)/(z) ∼= R(σ,h).

By [Ek, Theorem 4.2]R[z](σ,h + z) satisfies the Auslander–Gorenstein conditio
But z is a central regular element, so we can conclude from [ASZ, Proposition 2.1
the Auslander–Gorenstein conditions carry over to the factor ringR[z](σ,h + z)/(z) ∼=
R(σ,x) ∼= A. If A is a connected graded ring it satisfies the Artin–Schelter Goren
conditions by [L, Theorem 6.3]. �

As noted in [Ba2] ifR has finite global dimension it is possible thatA = R(σ,h)

has infinite global dimension. But in cases such as [Ba2, Theorem 5.1], whereR is an
Auslander-regular ring butA has infinite global dimension, it follows from the precedi
result that the injective dimension ofA is finite (and the Auslander condition is satisfie
so these rings have some nice homological properties, even though their global dime
are infinite. In [Ba2, Theorem 3.5] necessary and sufficient conditions are given forR(σ,h)

to have finite global dimension. Sufficient conditions for the global dimension ofR(σ,h)

to be infinite are given in [Ba2, Lemma 3.6].
Next we consider automorphisms of generalized Weyl algebras that preserve th

eralized Weyl structure. Letg be an automorphism ofA = R(σ,h) such thatg|R is an
automorphism of aK-algebraR. LetV = 〈X−,X+〉 be theK-vector space spanned byX−
andX+. Supposeg|V is represented by the matrix

[
w x
y z

]
for elementsw,x, y, z ∈ K ; that

is, g(X−) = wX− + yX+ andg(X+) = xX− + zX+.
Sinceg must preserve the relationX−X+ = h, we must have

g(h) = g(X−X+) = (wX− + yX+)(xX− + zX+)

= wx(X−)2 + wzX−X+ + xyX+X− + yz(X+)2

= wx(X−)2 + wzh + xyσ(h) + yz(X+)2. (4)

BecauseA is Z-graded in powers ofX− andX+ andg(h) ∈ R, it follows thatwx = 0 and
yz = 0. Consequently,

g|V =
[

w 0
0 z

]
or g|V =

[
0 x

y 0

]
.

Case 1. Assumeg|V = [
w 0
0 z

]
.

From equation (4) we see thatg(h) = wzh. Applying g to the relationX+r = σ(r)X+

yieldsg(X+r) = g(X+)g(r) = zX+g(r) = zσ (g(r))X+ andg(σ (r)X+) = g(σ (r)X+) =
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zg(σ (r))X+, so thatg(σ (r)) = σ(g(r)) for all r ∈ R. The other relations yield no add
tional requirements. Conversely, if these two conditions hold,g will preserve the relation
of the generalized Weyl algebra and hence define an automorphism.

Case 2. Assumeg|V = [ 0 x
y 0

]
.

We proceed in a manner analogous to that in Case 1, and obtaing(h) = g(X−X+) =
xyX+X− = xyσ(h). If r ∈ R, theng(X+r) = g(X+)g(r) = xX−g(r) = xσ−1(g(r))X−
and g(σ (r)X+) = g(σ (r))g(X+) = xg(σ (r))X−. Consequently, we must haveg(h) =
xyσ(h) andg(σ (r)) = σ−1(g(r)) for all r ∈ R. As in Case 1, these two conditions a
necessary and sufficient.

Summarizing we have the following proposition.

Proposition 3.3. Let g be an automorphism of aK-algebraR. The nonsingular matrix[
w 0
0 z

]
with w,z ∈ K can be used to extendg to an automorphism(still called g) of A =

R(σ,h) that preserves the generalized Weyl algebra structure ofA if and only if g(h) =
wzh andg(σ (r)) = σ(g(r)) for all r ∈ R. The nonsingular matrix

[ 0 x
y 0

]
with x, y ∈ K can

be used to extendg to an automorphism(still calledg) of A that preserves the generalize
Weyl algebra structure ofA if and only ifg(h) = xyσ(h) andg(σ (r)) = σ−1(g(r)) for all
r ∈ R.

Example 3.4. First note that a graded generalized Weyl algebra can have graded au
phisms that do not preserve the generalized Weyl structure, and hence are not as d
in Proposition 3.3. For example, the graded automorphisms of Proposition 1.1, p
and 2, satisfy the appropriate conditions of Proposition 3.3 but the automorphis
Proposition 3.3, part 3, do not preserve the generalized Weyl structure ofA(0,1,0) or
A(−2,1,0).

Example 3.5. Some cases of the diagonal automorphisms described in Proposition 3.
been considered before. WhenA is an arbitrary generalized Weyl algebraR(σ,h) andg|R
is the identity onR then the commuting conditiong(σ (r)) = σ(g(r)) of Proposition 3.3
is satisfied. If the conditiong(h) = h = wzh is also satisfied then the diagonal autom
phisms of Proposition 3.3 are the class of automorphisms of generalized Weyl al
studied by Jordan and Wells. More generally ifλ ∈ R is a central unit ofR, it is shown
in [BJ,JW] that the mapΘλ :A → A defined byΘλ(X

+) = X+λ, Θλ(X
−) = λ−1X−, and

Θλ(r) = r is an automorphism ofA = R(σ,h). WhenR is a commutative algebra over a
algebraically closed field,λ ∈ K is a primitive nth root of unity, andG = 〈Θλ〉, then the
ring of invariantsAG is calculated in [JW, Section 2.7] (and some specific example
given in Section 2.8); in this case the fixed subringAG is shown to be isomorphic to th
generalized Weyl algebraR(σn,hn), where

hn =
n−1∏

σ−j (h).
j=0
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It follows from Proposition 3.2 that whenR satisfies the Auslander–Gorenstein conditio
andG = 〈Θλ〉 thenAG satisfies the Auslander–Gorenstein conditions. This extends re
of Hodges [H, Theorem 2.1], who showed that a class of fixed rings of generalized
algebras (including the ring of invariants of the usual Weyl algebra under the group
erated by this diagonal automorphismΘλ) satisfy the Auslander–Gorenstein conditio
Furthermore, Hodges [H, Theorem 4.4] calculates the global dimensions of the cl
generalized Weyl algebras withR = K[x] andσ(x) = x − 1. It follows from this calcu-
lation (as well as from the fact thatA1(K) is a simple ring) that the ring of invariants
the Weyl algebra under this cyclic group of diagonal automorphisms has global d
sion 1. However, in general, the global dimension of the invariant subring underG = 〈Θλ〉
will not be finite. In fact whenR is a graded ring,σ is a graded automorphism, andh
has positive degree, it follows from [Ba2, Lemma 3.6(ii)] that forG = 〈Θλ〉 the global
dimension of the fixed ringAG is infinite. WhenA is a down–up algebra withγ �= 0, since
σ(h) = σ(s) = t andσ−1(s) = β−1(t − αs − γ ), it follows thath andσ−1(h) are factors
of hn with Rh + Rσ−1(h) �= R, so that forG = 〈Θλ〉 the fixed ringAG has infinite global
dimension by [Ba2, Lemma 3.6(ii)]. However, the results of [H] can be used to produc
amples of rings of invariants with finite global dimension whenA is not simple by takingR
to beK[x1, . . . , xn], σ(x1) = x1 −1,σ(xj ) = xj and choosingh as in [Ba2, Theorem 5.1
Then forG = 〈Θλ〉 bothA andAG will have global dimensionn.

An interesting feature of Example 3.5 is that the fixed ring ofR(σ,h) under the group o
automorphisms is again a generalized Weyl algebra. One can view this fact as a nonc
tative analogue of the Shephard–Todd–Chevalley theorem (see e.g. [ST,C], [S, p. 4
[AP]), which states that the algebra of invariants of a finite groupG acting on the symmetri
algebra of a finite-dimensional vector spaceV over a fieldK (= R or C) is a polynomial al-
gebra overK if (and only if) G is generated by pseudo-reflections (linear homomorph
that can be diagonalized with exactly one eigenvalue (of multiplicity one) that is not
to 1). Next we create other examples of groups acting on generalized Weyl algebra
fixed rings that are also generalized Weyl algebras.

Example 3.6. Let R = C[s, t] be a commutative polynomial ring, leth = s and letσ be
a diagonal mapσ(s) = σ1s andσ(t) = σ2t for scalarsσi in C. Let G = Zn × Zn be the
group generated by the pseudo-reflections

g1 =
[

ω 0
0 1

]
and g2 =

[
1 0
0 ω

]
,

whereω is a primitiventh root of 1. Letgi(s) = ωs andgi(t) = t . Thengi satisfy the
conditions of Propositions 3.3 and so define automorphisms ofA = R(σ,h). The fixed
ring AG is isomorphic toRG(σn,hn), where

hn =
n−1∏

σ−j (h).
j=0



480 E. Kirkman, J. Kuzmanovich / Journal of Algebra 288 (2005) 463–484

nal

n 3.3.

irst

d

-

uc-

t

r

uto-

cribed
The ring A is isomorphic to the iterated Ore extensionK[t][X+, σ ][X−, σ−1]; when
σn−1

i = 1 the ringsA andAG are isomorphic.

Example 3.7. The usual Weyl algebraA1(C) also has automorphisms of the skew-diago
type that preserve the generalized Weyl structure. If the Weyl algebra is given byX−X+ −
X+X− = 1 it is a generalized Weyl algebra withR = C[t], h = t , andσ(t) = t − 1. De-
fine g as the linear automorphism ofR with g(t) = 1 − t andg(X−) = aX+, g(X+) =
−a−1X− for any a �= 0 ∈ C. Theng(t) = a(−a−1)σ (t), andσ(g(σ (r))) = g(r) for all
r ∈ R, g4 = 1, and hence these automorphisms satisfy the conditions of Propositio
As in Example 1.4 the elementsT1 = X− − iaX+ andT2 = X− + iaX+ generateA1(C)

and haveg(T1) = iT1, g(T2) = −iT2. Furthermore, replacingT1 byT1/(
√−2ia) andT2 by

T2/(
√−2ia) these generators satisfy both the relationT2T1 − T1T2 = 1 andg(T1) = iT1,

g(T2) = −iT2. Hence by [JW] the fixed ringAG under the cyclic groupG generated byg is
the ring generated byT2T1, T 4

1 andT 4
2 , and it is the generalized Weyl algebraC[s](σ 4, h4),

wheres = T2T1, σ(s) = s − 1 andh4 = (s + 3)(s + 2)(s + 1)s.
Moreover, the fixed ring ofA1(C) under the binary dihedral groupG of order 4n gen-

erated by matrices

g1 =
[

ω 0
0 ω−1

]
and g2 =

[
0 i

i 0

]
,

whereω is a 2nth root of unity (see [AHV, p. 84]) can be described as follows. F
form the fixed ringB under the cyclic groupG1 generated byg1; by [JW] B is the
C-algebra generated byt , (X+)2n, and (X−)2n, andB can be written as a generalize
Weyl algebraB = C[t](σ 2n,h2n), whereh2n = ∏2n−1

j=0 (t + j). The automorphismg2
restricts to an automorphism onC[t] whereg2(t) = 1− t , andg2 restricts to an automor
phism ofB, whereg2((X

+)2n) = (−1)n(X−)2n andg2((X
−)2n) = (−1)n(X+)2n. One can

check thatσ 2n(g2(σ
2n(r))) = g2(r) for all r ∈ C[t] andg2(h2n) = (−1)n(−1)nσ 2n(h2n),

so thatg2 restricts to an automorphism ofB that preserves the generalized Weyl str
ture ofB. SinceA1(C)G = BG2 it suffices to describeBG2. First we claim that the fixed
ring C[t]G2 is C[t2 − t], the commutative polynomial ring int2 − t . To see this note tha
tm = tm−2(t2 − t) + tm−1 for m � 2, so by induction any polynomial inC[t] can be writ-
ten in the forma1(t

2 − t) + a2(t
2 − 1)t whereai(t

2 − t) are polynomials inC[t2 − t].
If a1(t

2 − t) + a2(t
2 − 1)t is fixed underg2 thena2(t

2 − t) = 0, soC[t]G2 is C[t2 − t].
The generalized Weyl algebraA1(C)G1 is graded in powers of(X+)2n and(X−)2n, with
zero degree componentC[t], so it follows that its fixed ring underG2 is generated ove
C[t2 − t] by ((X+)2n)m + ((X−)2n)m andt ((X+)2n)m + (1− t)((X−)2n)m for m � 1. By
induction one can show thatBG2 is generated overC[t2 − t] by (X+)2n + (X−)2n and
t (X+)2n + (1− t)(X−)2n.

Any element ofSL(C,2) acts on the Weyl algebra, so there are also finite order a
morphisms ofA1(C) that do not preserve its generalized Weyl structure.

Next we compute the homological determinant of the graded automorphisms des

above. These results extend the results of Theorem 1.5 for graded down–up algebras when
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the automorphisms preserve the generalized Weyl structure (R = K[du,ud], h = ud ,
σ(ud) = du, andσ(du) = αdu + β(ud)).

Theorem 3.8. Let R be a commutative graded ring of finite global dimensiond1, σ be a
graded automorphism ofR, andh be a homogeneous element ofR of degree2. Then by
defining degreeX+ and degreeX− to be1, thenA = R(σ,h) is a graded ring. IfA is a
Artin–Schelter regular ring of dimensiond2, thend2 = d1 + 1. The graded automorphism
g(X+) = wX+ andg(X−) = zX− of case1 of Proposition3.3hashdetg = hdetg|R . The
graded homomorphismg(X+) = yX− andg(X−) = xX+ as in case2 of Proposition3.3
hashdetg = −hdetg|R .

Proof. First consider the diagonal mapg(X+) = wX+ andg(X−) = zX−. We will show
that hdetg = (−1)d2−d1−1 hdetg|R for any graded automorphismg. It follows from [Ba2,
Theorem 2.7] thatd2 − d1 = 0 or 1. Then applying the result to the identity map, wh
has hdetg = hdetg|R = 1, we concluded2 − d1 = 1. Then we shall show that in the ske
diagonal case hdetg = −hdetg|R. SinceA is Artin–Schelter regular, the homologic
determinant ofg can be computed using the trace ofg.

Under the given grading we haveA0 = R0, A1 = R1 ⊕ R0X
+ ⊕ R0X

−, A2 = R2 ⊕
R0(X

+)2 ⊕ R1X
+ ⊕ R1X

− ⊕ R0(X
−)2, and in general

An = Rn ⊕
[

n−1⊕
i=0

Ri(X
+)n−i

]
⊕

[
n−1⊕
j=0

Rj (X
−)n−j

]
.

Computing the trace of the linear mapg|An we get

tr(g|An) = tr(g|Rn) +
(

n−1∑
i=0

trg|Ri
wn−i

)
+

(
n−1∑
j=0

trg|Rj
zn−i

)
.

Hence the trace function ofg as a map onA is

Tr(g, t) = Tr(g|R, t) + tr(g|R0)wt + [
tr(g|R0)w

2 + tr(g|R1)w
]
t2 + · · ·

+
[

n−1∑
i=0

tr(g|Ri
)wn−i

]
tn + · · · + tr(g|R0)zt + [

tr(g|R0)z
2 + tr(g|R1)z

]
t2 + · · ·

+
[

n−1∑
j=0

tr(g|Rj
)zn−j

]
tn + · · ·

= Tr(g|R, t) + wt
[
tr(g|R0) + tr(g|R1)t + tr(g|R2)t

2 + · · ·][1+ wt + w2t2 + · · ·]
+ zt

[
tr(g|R0) + tr(g|R1)t + tr(g|R2)t

2 + · · ·][1+ zt + z2t2 + · · ·]
wt zt
= Tr(g|R, t) + Tr(g|R, t)

1− wt
+ Tr(g|R, t)

1− zt
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= Tr(g|R, t)

[
1+ −1

1− t−1/w
+ −1

1− t−1/z

]

= Tr(g|R, t)
[−1+ ∗t−1 + ∗t−2 + · · ·].

Hence

Tr(g, t) = Tr(g|R, t)[−1+ · · ·],

and

(−1)d2(hdetg)−1t−�2 + · · · = [
(−1)d1(hdetg|R)−1t−�1 + · · ·][−1+ · · ·].

Hence

(−1)d2(hdetg)−1 = (−1)d1+1(hdetg|R)−1,

so that hdetg = (−1)d2−d1−1 (hdetg|R). Wheng is the identity hdetg = 1 so thatd2 =
d1 + 1, and hence hdetg = hdetg|R as claimed.

In the second case

tr(g|An) = tr(g|Rn),

so Tr(g, t) = Tr(g|R, t) and hence

(−1)d1+1(hdetg)−1t−�2 + · · · = (−1)d1(hdetg|R)−1t−�1 + · · · ,

so

(−1)d1+1(hdetg)−1 = (−1)d1(hdetg|R)−1

and hence hdetg = −hdetg|R. �
Example 3.9. Let A be the coordinate ring of quantum 2× 2 matrices, i.e. theK-algebra
generated bya, b, c, d satisfying the following relations:

ab = qba, bd = qdb, ac = qca, cd = qdc,

bc = cb, ad − da = (q − q−1)bc

for q ∈ K∗. The ringA is an AS-regular and Auslander-regular ring of global dim
sion 4. It is an iterated Ore extension of the formK[b, c][a : τ ][d; τ−1, δ] and a generalize
Weyl algebraR(σ,h) with R the commutative polynomial ringR = K[b, c,h],X− = a,

X+ = d,h = ad,σ (b) = q−1b,σ (c) = q−1c, andσ(h) = h + (q−1 − q)bc (σ is a graded
homomorphism ofR where we giveh degree 2). The mapg with g(b) = −c, g(c) = −b,
g(a) = a, andg(d) = d is a graded automorphism ofA of order 2. The mapg|K[b,c,h]

is a pseudo-reflection (there is only one eigenvalue not equal to 1), so the fixed subring
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of K[b, c,h] under the group generated byg|K[b,c,h] is the commutative polynomial rin
K[b2 + c2, bc,h]. The fixed ring ofA under the groupG generated byg is the ring gener-
ated bya, b2 + c2, bc, d ; it can be described as the ring generated bya, b′, c′, d satisfying
the relations:

ab′ = q2b′a, b′d = q2db′, ac′ = q2c′a, c′d = q2dc′,

b′c′ = c′b′, ad − da = (
q − q−1)c′

for q ∈ K∗. The ringAG can be graded by taking generatorsa, b′, d in degree 1. This ring
AG can also be described as the generalized Weyl algebraK[b′, c′, h](σ ′, h) whereσ ′ is
the graded automorphism withσ ′(b) = q−2b,σ ′(c) = q−2c, andσ ′(h) = h+ (q−1 − q)c′.
The ringAG is also an iterated Ore extension of a commutative polynomial ring so i
finite global dimension and satisfies the AS–Gorenstein condition (though by Theore
hdetg = −1). Hence the fixed ring is an AS-regular ring of dimension 4. The ringAG is
not isomorphic toA whenq = −1 sinceAG is commutative butA is not.
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