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The sensitivity of halfspace depth values and contours to perturbations of the
underlying distribution is investigated. The influence function of the halfspace depth
of any point x # R p is bounded and discontinuous; it is constant and positive when
the perturbing observation z is placed in any optimal halfspace and it is constant
and negative when z is placed in any non-optimal halfspace. When the optimal
halfspace is unique a von Mises expansion allows an easy derivation of the
asymptotic distribution of the sample halfspace depth. In the sampling case, in
general, addition of a single observation outside the convex hull of the sample alters
all the depth regions but only the outer region can be arbitrarily expanded. To
obtain the same effect on the inner regions the size of the perturbation is required
to be not less than the depth orders. Numerical illustrations of the results are
given. � 2001 Academic Press
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1. INTRODUCTION

A depth function is a device to measure the degree of centralness of
points in p-dimensional space with respect to a probability distribution F
or an observed data set. Two specific definitions are Tukey's halfspace and
Liu's simplicial depth [9, 22]. These depth functions do not assume a
particular class of distributions (e.g., elliptically symmetric) and so they
provide a distribution-free location ordering of multivariate data. This
property is exploited in several applications. For example, the set of
deepest points (with respect to halfspace or simplicial depth) has the mean-
ing of median region and the center of gravity of this set can be used as a
location parameter or estimator instead of the classical centroid (Donoho
and Gasko [4], Rousseeuw and Ruts [16]). More generally, the contours
of constant depth are interpreted as generalized quantile surfaces (Masse�
and Theodorescu [10]). Romanazzi [13] and Rousseeuw et al. [18] plot
selected contours of halfspace depth to graphically display location, spread
and shape of a bivariate sample and to reveal outliers.
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In the mentioned applications it is often claimed that the inner contours
of halfspace depth are resistant to substantial contamination of the under-
lying distribution. This follows in part from the results of Donoho and
Gasko [4] who derive the breakdown point of the deepest point and other
location estimators based on halfspace depth. The breakdown point of the
simplicial median is investigated by Chen [2]. In the present paper we use
the influence function to study the sensitivity to local perturbations of the
ordering induced by halfspace depth. Notations and definitions are estab-
lished in Section 2. The theoretical (population) influence function is
derived in Section 3 and a corresponding sample version is derived in
Section 4. Here the leave-one-out effects on the depth contours are
investigated and a sample version of the influence function of simplicial
depth is given. Section 5 contains some numerical illustrations and
Section 6 is devoted to an overall discussion of the results.

2. HALFSPACE AND SIMPLICIAL DEPTH

Let F be a probability distribution on p-dimensional Euclidean space R p.
For any point x # R p we denote with HS(x) and Hx , respectively, any
closed halfspace including x and the set of all such halfspaces. We also
write PF (HS(x))#PF (z # HS(x)) for the probability, under F, of the
halfspace HS(x). Tukey's halfspace depth is the functional of the probability
distribution F defined as follows.

Definition 1. The halfspace depth of x # R p with respect to F is

dHS(x; F )=inf
Hx

PF (HS(x)).

Any closed halfspace HS(x) satisfying PF (HS(x))=dHS(x; F ) will be called
``optimal'' halfspace.

Definition 2. Fix a value d of halfspace depth, 0<d�d� =supx # Rp

dHS(x; F ). The depth region of level d is the set

DHS(d; F )=[x # R p : dHS(x; F )�d ].

Each set DHS(d; F ) is the intersection of all closed halfspaces with probabil-
ity greater than 1&d. This implies that [DHS(d; F ), 0<d�d� ] is a family
of nested convex bodies of R p.

Consider a sample X1 , ..., Xn of n independent and identical distributed
(iid) observations from F and denote with F� n the corresponding empirical
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distribution. The sample halfspace depth dHS(x; F� n), obtained by substitut-
ing F� n for F in Definition 1, is proportional to the minimum number of
sample observations contained in any closed halfspace including x.
Donoho and Gasko [4, p. 1817] show that, for any distribution F,
dHS(x; F� n) � dHS(x; F ), almost surely, as n � �. The sample depth region
DHS(d; F� n) is the subset of R p whose elements are all the points with
sample depth at least equal to d. Its properties are investigated by Donoho
and Gasko [4], Masse� and Theodorescu [10] and He and Wang [7].

Like halfspace depth, the simplicial depth is a functional of F, and its
definition is based on the geometric notion of simplex. Let X1 , ..., Xp+1 be
p+1 iid observations from F and let S(X1 , ..., Xp+1) be the random open
simplex with vertices at X1 , ..., Xp+1 .

Definition 3. The simplicial depth of x # R p with respect to F is

dS(x; F )=PF (S(X1 , ..., Xp+1) : x # S(X1 , ..., Xp+1)).

A sample version of dS(x; F ) is obtained by considering all possible sub-
samples (sampling without replacement) of p+1 observations Xi1

, ..., Xip+1

from the random sample X1 , ..., Xn . The sample simplicial depth dS(x; F� n)
is equal to the number of the simplices including x, divided by ( n

p+1), the
number of possible simplices. If F is absolutely continuous with bounded
density, then supx # Rp |dS(x; F� n)&dS(x; F )| � 0, almost surely, as n � �
[9, Theorem 5]. Simplicial depth regions, defined in exactly the same way
as for halfspace depth, could be envisaged, but they are not convex subsets
of R p [7, Example 3.2].

3. INFLUENCE FUNCTION

Let F� =(1&=) F+=$z , where $z is the point-mass distribution concen-
trated at z. Here F is interpreted as the reference theoretical distribution
contaminated by a perturbation located at z. If T(F ) is a functional defined
for all distributions in a suitable class F, then the influence function of T
at F is [6]

I(z; T(F ))= lim
= � 0+

T((1&=) F+=$z)&T(F )
=

,

provided this limit exists for every z # R p.

3.1. Influence function of halfspace depth. Let x be a fixed point of R p

and let dHS(x; F ) be the value of the halfspace depth function at x. For any
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z # R p, z{x, we can partition the set Hx of closed halfspaces including x
into two mutually exclusive subsets by putting

Hx, z=[HS(x) # Hx : z # HS(x)],

Hx, z� =[HS(x) # Hx : z � HS(x)].

Clearly, Hx, z is the set of all closed halfspaces including both x and z,
whereas Hx, z� =Hx & Hx, z is the set of all closed halfspaces including x but
not z. Then Hx, z & Hx, z� =< and Hx, z _ Hx, z� =Hx . Putting

d (z)
HS(x; F )= inf

Hx, z

PF (HS(x)),

d (z� )
HS(x; F )= inf

Hx, z�

PF (HS(x)),

it follows dHS(x; F )=min[d (z)
HS(x; F ), d (z� )

HS(x; F )]. Now, the probability of
any halfspace HS(x) with respect to the perturbed distribution F� is

PF� (HS(x))={(1&=) PF (HS(x))+=,
(1&=) PF (HS(x)),

if HS(x) # Hx, z ,
if HS(x) # Hx, z� .

To obtain the expression of dHS(x; F� ), and the influence function, it is
convenient to distinguish three cases.

1. If d (z� )
HS(x; F )�d (z)

HS(x; F ), then dHS(x; F )=d (z� )
HS(x; F ) and

dHS(x; F� )=(1&=) d (z� )
HS(x; F)=(1&=) dHS(x; F ).

Using the definition of influence function it follows

I(z; dHS(x; F ))= lim
= � 0+

(1&=) d (z� )
HS(x; F )&d (z� )

HS(x; F )
=

=&d (z� )
HS(x; F )=&dHS(x; F ).

2. If d (z� )
HS(x; F )>d (z)

HS(x; F ) and (1&=) d (z� )
HS(x; F )�(1&=) d (z)

HS(x; F )
+=, then dHS(x; F )=d (z)

HS(x; F ) and

dHS(x; F� )=(1&=) d (z)
HS(x; F )+==(1&=) dHS(x; F )+=.

Hence

IF(z; dHS(x; F ))= lim
= � 0+

(1&=) d (z)
HS(x; F )+=&d (z)

HS(x; F )
=

=1&d (z)
HS(x; F )=1&dHS(x; F ).
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3. Finally, if d (z� )
HS(x; F )>d (z)

HS(x; F) and (1&=) d (z� )
HS(x; F )<(1&=)

d (z)
HS(x; F )+=, then dHS(x; F )=d (z)

HS(x; F ) and

dHS(x; F� )=(1&=) d (z� )
HS(x; F ).

Moreover, when the size of the perturbation = tends to 0, there must exist
=0>0 satisfying

(1&=) d (z� )
HS(x; F )�(1&=) d (z)

HS(x; F )+=

for all =<=0 . This implies

IF(z; dHS(x; F ))=1&dHS(x; F )=1&d (z)
HS(x; F ),

as in the second case.
The overall expression of the influence function turns out to be

IF(z; dHS(x; F ))={&dHS(x; F),
1&dHS(x; F ),

if d (z� )
HS(x; F )<d (z)

HS(x; F );
otherwise.

If z=x, then Hx, z=Hx , Hx, z� =<, PF� (HS(x))=(1&=) PF (HS(x))+=
for any closed halfspace including x, which implies dHS(x; F� )=(1&=)
dHS(x; F )+=. Hence IF(x; dHS(x; F ))=1&dHS(x; F ).

3.2. Properties of the influence function.

1. Since dHS(x; F ) is a probability, IF(z; dHS(x; F )) is bounded and,
for all z # Rp, &1�IF(z; dHS(x; F ))�1.

2. Putting an additional infinitesimal mass at a point z in an optimal
halfspace has a positive influence on dHS(x; F ), that is, the degree of
centralness of x increases. Conversely, if z does not belong to an optimal
halfspace, the perturbation has a negative influence, and the degree of
centralness of x decreases. More specifically, since

dHS(x; F� )={dHS(x; F )&=dHS(x; F ),
dHS(x; F )+=(1&dHS(x; F )),

if d (z� )
HS(x; F )<d (z)

HS(x; F );
otherwise,

the halfspace depth of x can be arbitrarily augmented (reduced) by
concentrating enough mass on a point z in an optimal (non-optimal)
halfspace.

3. IF(z; dHS(x; F )) is a step function. For all z belonging to optimal
halfspaces, IF(z; dHS(x; F )) is constant and equal to 1&dHS(x; F ), whereas
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for z belonging to non-optimal halfspaces, IF(z; dHS(x; F )) is constant and
equal to &dHS(x; F ). It follows that the influence function is discontinuous
at the boundary between optimal and non-optimal halfspaces. The jump is
equal to 1, irrespective of the value of dHS(x; F ). This implies that, in
general, the local-shift sensitivity of dHS(x; F ) is infinite. A notable excep-
tion are the deepest points because in this case the union of the optimal
halfspaces is R p [17, Proposition 12], hence IF(z; dHS(x; F )) is everywhere
continuous and the local-shift sensitivity is equal to zero. Appendix 1
shows some pictures of the influence function for a bivariate Pareto
distribution.

4. According to intuition, the depth measure of peripheral points is
more exposed to contamination of the theoretical distribution than the
depth measure of central points. Consider, for example, the uniform dis-
tribution with positive density on the points of the unit square
[x=(x1 , x2)T # R2 : 0�xi�1, i=1, 2]. The deepest point is the centroid
x=(1�2, 1�2)T and dHS((1�2, 1�2)T; F )=1�2. Since the union of the optimal
halfspaces is R2, IF(z; dHS((1�2, 1�2)T; F )) is constant and equal to 1�2 for
all z # R2 and supz # R2 |IF(z; dHS((1�2, 1�2)T; F ))|=1�2. Moreover, for
any point on the boundary of the square, dHS(x; F )=0 and supz # R2

|IF(z; dHS(x; F ))|=1. This confirms, though in an indirect way, the
robustness of statistical functionals using inner contours of halfspace depth.

5. For any fixed point x # R p, IF(z; dHS(x; F )) defines a two-values
random number whose distribution depends on F. By definition of
halfspace depth, the probability px of this random number being equal to
1&dHS(x; F ) is the total probability of points z belonging to the optimal
halfspaces, that is, px=�Ax

dF(z), where Ax=[z # R p : z belongs to optimal
halfspaces]. Then

EF (IF(z; dHS(x; F )))=(1&dHS(x; F )) px&dHS(x; F )(1& px)

=px&dHS(x; F ),

and

VarF (IF(z; dHS(x; F )))=(1&dHS(x; F ))2 px+d 2
HS(x; F )(1& px)

&( px&dHS(x; F ))2

=px(1& px).

If the optimal halfspace is unique, then px=dHS(x; F ) and in such a case
EF (IF(z; dHS(x; F)))=0, VarF (IF(z; dHS(x; F )))=dHS(x; F)(1&dHS(x; F )).
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6. For probability distributions F satisfying suitable regularity condi-
tions (e.g., [21, Chap. 6]), if the optimal halfspace associated to x is
unique, we can write the von Mises expansion

dHS(x; F� n)&dHS(x; F )=
1
n

:
n

i=1

IF(Xi ; dHS(x; F ))

+remainder term.

Therefore the sample depth dHS(x; F� n) could be asymptotically Normal,
with mean dHS(x; F ) and variance dHS(x; F )(1&dHS(x; F ))�n. The remainder
term is investigated in Appendix 2. This result suggests that the distribution
of sample depth could be more dispersed for points with halfspace depth
near to 1�2.

4. SAMPLE INFLUENCE

When the available information is a random sample of n iid observations
Xi from F, several estimators of the theoretical influence function can be
used (e.g., [3]). In this work we consider the sample influence values

SI(Xi ; T(F ))=&(n&1)(T(F� (i)
n&1)&T(F� n)),

where F� (i)
n&1 is the empirical distribution of the subsample of size n&1

obtained by discarding the i th observation Xi . Up to the normalization
factor &(n&1), the SI values give the leave-one-out effect of each data
point on the estimate T(F� n).

4.1. Halfspace depth. Fix x # R p and let dHS(x; F� n) be the sample
halfspace depth of x. Identifying z with the i-th sample observation Xi and
assuming Xi {x, the derivation of the sample influence values of dHS(x; F )
closely parallels Section 3.1. Here Hx, Xi

is the set of closed halfspaces
including both x and Xi , whereas Hx, X� i

is the set of closed halfspaces
including x, but not Xi . Moreover, we denote with d (Xi)

HS (x; F� n)#l(x)�n and
d (X� i)

HS (x; F� n)#m(x)�n the sample depth of x conditional on halfspaces
including and not including Xi , respectively.

If m(x)<l(x), then dHS(x; F� n)=m(x)�n and dHS(x; F� (i)
n&1)=m(x)�(n&1)

because d (X� i)
HS (x; F� (i)

n&1)=m(x)�(n&1)�d (Xi)
HS (x; F� (i)

n&1)#(l(x)&1)�(n&1).
This implies

SI(Xi ; dHS(x; F ))=&(n&1) \m(x)
n&1

&
m(x)

n +
=&

m(x)
n

=&dHS(x; F� n).
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If m(x)�l(x), then dHS(x; F� n)=l(x)�n, dHS(x; F� (i)
n&1)=(l(x)&1)�(n&1)

and

SI(X i ; dHS(x; F ))= &(n&1) \l(x)&1
n&1

&
l(x)

n +
=1&

l(x)
n

=1&dHS(x; F� n).

In the practical applications, interest often centers on the values
SI(Xi ; dHS(Xj ; F )), j=1, ..., n, j{i, which describe the effect of deleting the
i-th observation on the depth measure of the remaining observations. As in
Section 3.2, the variation of the halfspace depth of Xj is positive or negative
according to whether Xi belongs to optimal halfspaces or not. Note that
SI(Xi ; dHS(Xi ; F ))=1&dHS(X i ; F� n)>0.

4.2. Halfspace regions. When the i th sample observation is discarded,
the (absolute) depth ndHS(x; F� n) either remains unchanged or is reduced by
one. This suggests a regular pattern of variation of the perturbed halfspace
regions DHS(d; F� (i)

n&1) with respect to the unperturbed regions DHS(d; F� n).
A few properties are described in Proposition 1.

For x # R p, the empirical depth dHS(x; F� n) is a rational number k�n,
k # [0, 1, ..., kn*]. For data sets in general position Wn�( p+1)X�kn*�Wn�2X
[4, Proposition 2.3], where Wn�2X is the smallest integer not less than n�2.

Proposition 1. Suppose the observation Xi , i # [1, ..., n], with halfspace
depth dHS(Xi ; F� n)=k�n, is discarded from the sample. For h # [1, ..., kn*], the
depth regions DHS(h�(n&1); F� (i)

n&1) satisfy

(a) DHS(h�(n&1); F� (i)
n&1)�DHS(h�n; F� n) and DHS(h�(n&1); F� (i)

n&1)
=DHS(h�n; F� n) if h<k;

(b) DHS((h+1)�n; F� n)�DHS(h�(n&1); F� (i)
n&1)�DHS(h�n; F� n).

Proof. (a) Let H( j ), j # [n&h+1, n&h+2, ..., n] be the family of
closed halfspaces containing j sample points chosen from [Xl , l=1, ..., n]
and let K( j ), j # [n&h, n&h+1, ..., n&1] be the family of closed
halfspaces containing j sample points chosen from [Xl , l=1, ..., n, l{i].
Then DHS(h�n; F� n) is the intersection of all closed halfspaces belonging to
the sets H(n&h+1), ..., H(n) and DHS(h�(n&1); F� (i )

n&1) is the intersection
of the halfspaces belonging to the sets K(n&h), ..., K(n&1). Consider a
closed halfspace HS( j ) belonging to H( j ). If Xi # HS( j ), then HS( j ) #
K( j&1), otherwise HS( j ) # K( j ). Moreover, any closed halfspace
HS(n&h) # K(n&h) which does not include Xi can not belong to any set
H( j ). Thus DHS(h�(n&1); F� (i )

n&1)�DHS(h�n; F� n).
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If h<k, the discarded observation Xi must be an inner point of the
closed halfspaces containing n&h+1 sample observations. Otherwise there
would exist a closed halfspace with h sample observations and containing
Xi and the halfspace depth of Xi with respect to F� n would be equal to
h�n<k�n. Then, for j # [n&h+1, n&h+2, ..., n], H( j )=K( j&1) which
implies DHS(h�(n&1); F� (i )

n&1)=DHS(h�n; F� n).

(b) We have only to show that DHS((h+1)�n; F� n)�DHS(h�(n&1);
F� (i )

n&1). Note that DHS((h+1)�n; F� n) is the intersection of the closed
halfspaces belonging to H( j ), j # [n&h, n&h+1, ..., n]. Let HS( j ) be any
closed halfspace belonging to K( j ). If Xi # HS( j ), then HS(J ) # H( j+1),
otherwise HS( j ) # H( j ). Further, any closed halfspace HS(n&h) #
H(n&h) which includes Xi can not belong to any set K( j ). K

By interchanging the rôles of F� n and F� (i )
n&1 in Proposition 1, it is easy to

describe what happens when a new observation Xn+1 is added to the
sample. We denote with F� (Xn+1)

n+1
the distribution function of the augmented

sample [X1 , ..., Xn , Xn+1].

Proposition 2. Let dHS(Xn+1 ; F� (Xn+1)
n+1

)=k�(n+1), k # [1, ..., k*n+1]. For
h # [1, ..., k*n+1], the depth regions DHS(h�(n+1); F� (Xn+1)

n+1
) satisfy

(a) DHS(h�n); F� n)�DHS(h�(n+1); F� (Xn+1)
n+1 ) and DHS(h�n; F� n)=DHS

(h�(n+1); F� (Xn+1)
n+1

) if h<k;

(b) DHS(h�n; F� n)�DHS(h�(n+1); F� (Xn+1)
n+1

)�DHS((h&1)�n; F� n), where
DHS(0; F� n)#R p.

According to Proposition 2, a single new observation Xn+1 outside the
convex hull of [X1 , ..., Xn] may alter all the depth regions DHS(h�n; F� n),
but only DHS(1�n; F� n) can be arbitrarily expanded by letting max1� j�p

|Xn+1, j | � �. In general, to arbitrarily expand all the depth regions up to
order h, it would be necessary to add at least h new observations at Xn+1

and let max1� j�p |Xn+1, j | � � (compare with [4, Lemma 3.1]). In this
sense deeper regions are more resistant to sample contamination than more
external regions. Propositions 1 and 2 also suggest to take DHS((h&1)�n; F� n)
& DHS((h+1)�n; F� n) as an empirical uncertainty region in the estimation
of the boundary of DHS(h�n; F ). The simplest way to measure the
discrepancy between DHS(h�n; F� n) and the perturbed region DHS(h�(n&1);
F� (i )

n&1) (or DHS(h�(n+1); F� (Xn+1)
n+1 )) is to take the (hyper)volume of

DHS(h�(n&1); F� (i )
n&1) & DHS(h�n; F� n). Since the depth regions are nested

convex bodies in R p, it could also be appropriate to use Hausdorff distance
[8, p. 231].
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4.3. Simplicial depth. Suppose that the n sample observations X1 , ..., Xn

are in general position. Form the set of ( n
p+1) open ( p+1)-simplices corre-

sponding to all possible subsets of p+1 data points and consider the sub-
set Sn, x of the simplices having x # R p as an inner point. For any
i # [1, ..., n] we can partition Sn, x into two complementary subsets: the sub-
set S (Xi )

n, x of the simplices having Xi as a vertex, and the subset S(X� i )
n, x of the

simplices whose vertices are different from Xi . Let sn(x), s (Xi )
n (x) and

s(X� i )
n (x) be the cardinalities of Sn, x , S(Xi )

n, x and S (X� i )
n, x , respectively. Then

sn(x)=s (Xi )
n (x)+s (X� i )

n (x), dS(x; F� n)=sn(x)�( n
p+1) and dS(x; F� (i )

n&1)=s (X� i )
n

(x)�( n&1
p+1)=(sn(x)&s (Xi )

n (x))�( n&1
p+1). Note that

dS(x; F� n)=
\ n&1

p+1+
\ n

p+1+
s (X� i )

n (x)

\ n&1
p+1+

+
\n&1

p +
\ n

p+1+
s (Xi )

n (x)

\n&1
p +

=\1&
p+1

n + d (X� i )
S (x; F� n)+

p+1
n

d (Xi )
S (x; F� n),

where d (X� i )
S (x; F� n)=s (X� i )

n (x)�( n&1
p+1) is the simplicial depth of x conditional

on simplices belonging to S (X� i )
n, x and d (Xi )

S (x; F� n)=s (Xi )
n (x)�( n&1

p ) is the
simplicial depth conditional on simplices belonging to S (Xi )

n, x . Thus the
sample simplicial depth of x can be interpreted as a weighted mean of
d (X� i )

S (x; F� n) and d (Xi )
S (x; F� n). Now, SI(Xi ; dS(x; F ))=&(n&1)(dS(x; F� (i )

n&1)
&dS(x; F� n)), and since dS(x; F� (i )

n&1)&dS(x; F� n)=(( p+1)�n)(d (X� i )
S (x; F� n)&

d (Xi )
S (x; F� n)), it follows

SI(Xi ; dS(x; F ))=
n&1

n
( p+1)(d (Xi )

S (x; F� n)&d (X� i )
S (x; F� n)).

The SI values depend essentially on the difference of the conditional
depths, therefore |SI(Xi ; dS(x; F ))|�(1&1�n)( p+1) and SI(Xi ; dS(x; F ))
=0 iff d (Xi )

S (x; F� n)=d (X� i )
S (x; F� n).We expect d (Xi )

S (x; F� n)>d (X� i )
S (x; F� n), hence

positive SI values, for observations Xi close to x. Moreover, the factor
p+1 suggests that simplicial depth can be more affected by sample
contaminations as the dimensionality grows higher.

5. NUMERICAL ILLUSTRATIONS

5.1. Star-cluster data set. In this illustration we use the star-cluster data
set (Rousseeuw and Leroy [14]) where the values of X: logarithm of the
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effective surface temperature and Y: logarithm of the light intensity are
recorded for n=47 stars. A remarkable property is the presence of four
units far removed from the main group (stars no. 11, 20, 30 and 34, see the
scatter plot in Fig. 1) which can be thought of as a contamination of the
true distribution.

The sample values of halfspace and simplicial depth were computed by
the DEPTH routine [15] and the results are given in Table I. The
maximum value of halfspace depth among the sample observations is 18�47
(star no. 28 with coordinates 4.42, 4.90) and the maximum value of simplicial
depth is 5221�16215 (stars no. 33 and 38, both with coordinates 4.45, 5.22).
The discrepancy between these two results could suggest that simplicial
depth is less resistant to sample contamination than halfspace depth.

FIG. 1. Star data. Scatter plot with halfspace depth contours.
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TABLE I

Star Data: Halfspace and Simplicial Depth (H-depth, 47_halfspace depth;
S-depth, ( 47

3 )_simplicial depth)

Star no. H-Depth S-Depth Star no. H-Depth S-Depth

1 10 3629 25 17 4922
2 2 2025 26 8 3127
3 8 3281 27 12 3768
4 2 2025 28 18 4972
5 7 3303 29 7 2221
6 6 2355 30 1 1035
7 2 1079 31 4 1843
8 2 1121 32 1 1035
9 5 1903 33 15 5221

10 13 4291 34 1 1035
11 1 1035 35 6 1961
12 8 2571 36 1 1035
13 6 2709 37 4 1877
14 1 1035 38 15 5221
15 5 2052 39 5 2173
16 5 2549 40 5 1713
17 1 1035 41 12 3795
18 1 1035 42 13 4362
19 3 1380 43 7 2820
20 2 1122 44 11 3583
21 8 2884 45 4 1619
22 3 1533 46 12 3917
23 2 1601 47 3 2081
24 4 1469

The depth contours of levels 5�47 anf 12�47, computed by the ISODEPTH
routine [20], are also shown in Fig. 1. The shape of the outer region is
perturbed by the four outlying stars, whereas the inner region is scarcely
affected.

To illustrate the behaviour of the influence function, first we consider the
point xA=(4.2, 5.8)T and calculate the SI values with respect to halfspace
and simplicial depth for each sample observation Xi . Now, dHS(xA ; F� n)=
2�47 and dS(xA ; F� n)=213�( 47

3 ). Moreover,

SI(Xi ; dHS(xA ; F ))={&2�47,
45�47,

i � [30, 34],
i # [30, 34],
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in perfect agreement with the expected results, because X30 and X34 are the
two sample observations included in the optimal halfplane. On the other
hand,

&0.026, i � [2, 4, 30, 34, 36],

0.095, i=36,

SI(Xi ; dS(xA ; F ))={0.216, i=2, i=4,

0.222, i=30,

0.344, i=34,

which confirms the positive influence of sample points located in a
neighbourhood of xA . It is clear that the influence function of simplicial
depth gives a more detailed description than the influence function of
halfspace depth. Note, in particular, the inversion of signs for observations
no. 2, 4, and 36.

Next, consider the point xB=(4.4, 5.05)T which is located in the median
region with respect to halfspace depth. The depth values are dHS(xB ; F� n)=
19�47, dS(xB ; F� n)=4189�( 47

3 ) and

SI(Xi ; dHS(xB ; F ))={&19�47,
28�47,

i # I,
i � I,

where I=[15, 16, 17, 18, 21, 22, 23, 26, 28, 31, 41, 47]. The stem-and-leaf
display of the SI values of dS(xB ; F ) is given in Table II. Now, the number

FIG. 2. Star data. Scatter plot and SI values (darker points have higher values of |SI |;
``&'', negative SI; ``+'', positive SI; ``*'' marks the position of xB). (a) Halfspace depth, (b)
simplicial depth.
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TABLE II

Star Data: Stem-and-Leaf Display of
SI(Xi ; dS(xB ; F )), i=1, ..., 47

-1l
-1h 10, 10, 10, 10, 10, 10, 10
-0l 92, 92, 92, 74, 74, 56, 56, 50
-0h 25, 25, 25, 19, 19, 13, 13, 13, 13
0l 05, 05, 05, 41, 41, 41, 41
0h 66, 66, 66, 72, 72, 72, 72, 72, 72, 72
1l 02, 02, 02, 08, 44, 44
1h

of sample observations belonging to any optimal halfplane is equal to 19.
Nevertheless, the sample influence function of dHS(xB ; F ) is positive for 35
observations out of 47 because xB has several optimal halfplanes, each
containing 19 observations (Fig. 2a shows two such halfplanes). From
Table II, the behaviour of the influence function of simplicial depth appears
different. The stem-and-leaf suggests an almost symmetric distribution,
centered at zero. Moreover, the scatter plot in Fig. 2b reveals that data
points with positive SI values for simplicial depth tend to concentrate in
one of the two optimal halfplanes for halfspace depth.

To observe the effects on the depth contours of addition�deletion of
single units, we considered the depth region DHS(5�47; F� n) and the perturbed
regions DHS(5�46; F� (9)

n&1), obtained by discarding unit no. 9, and

FIG. 3. Star data. Perturbation of the halfspace region of level 5�47 by deletion�addition
of a single unit (solid lines, contours of level 6�47, 5�47, and 4�47; dashed lines, perturbed
contours).
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FIG. 4. Artificial normal data. Mean and standard deviation over 1000 replications of
dHS(z; F� n) (horizontal line: population depth).
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DHS(5�48; F� (z)
n+1), obtained by augmenting the sample with z=(3.89, 5.51)T.

According to Propositions 1 and 2, the boundaries of the perturbed
regions (dashed lines in Fig. 3) are included in the set DHS(4�47; F� n)
& DHS(6�47; F� n).

5.2. Simulation results. To investigate the properties of the distribution
of the sample halfspace depth, we performed the following Monte Carlo
experiment. For each value of n # [20, 21, ..., 100], 1000 pseudo-random
samples of size n were drawn from the bivariate Normal distribution
centered at (0, 0)T and with covariance matrix 7=( 1

1�2
1�2
1 ). The empirical

distribution of dHS(z; F� n) over the 1000 replications was examined for
z1=(1, 1)T, z2=(0.5, 0.5)T and z3=(0.05, 0.05)T. The population values
of halfspace depth are dHS(z1 ; F )=8(&2�- 3)&0.123, dHS(z2 ; F )=
8(&1�- 3)&0.282 and dHS(z3 ; F )=8(&1�(10- 3))&0.476, where 8( . )
is the cumulative distribution function of the standard Normal distribution.

The most important finding is that the average of dHS(z; F� n) over the
1000 replications is smaller than the theoretical value dHS(z; F ) for each
value of n and all z. This suggests that dHS(z; F� n) tends to underestimate
dHS(z; F ), in particular when the population depth is near to 1�2 (we
investigate this point from the theoretical point of view in Appendix 2). As
Fig. 4 shows, the bias is a decreasing function of n, but it is still important
for sample sizes in the range 80&100. As a consequence, the empirical
coverage of the asymptotic confidence interval dHS(x; F� n)�k1&:�2 - dHS

(x; F� n)(1&dHS(x; F� n))�n turned out to be always smaller than the nominal
value, with wide fluctuations over n. In this case there is no evidence of a
systematic improvement as n grows higher, maybe because not only
the bias but also the standard error is a decreasing function of n. A little
better results were obtained with the variance-stabilizing transformation
dHS(x; F� n) � arcsin - dHS(x; F� n).

The histograms of the values of dHS(x; F� n) (not shown in this work)
suggest a positively skewed distribution with a tendency to become almost
symmetric as n grows higher. However, if dHS(x; F ) is near to 1�2, the
distribution is negatively skewed and the degree of asymmetry remains
important even for n as high as 80&100.

6. DISCUSSION

The sensitivity analysis of halfspace depth values and regions gives new
insight on the behaviour of these statistics. Central values and regions are
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more stable, whereas outer values and regions are markedly affected by
sample contaminations. To arbitrarily expand a depth region of (absolute)
level k, one must place k new observations at a sufficiently far point z,
outside the convex hull of the sample. In a sense, the breakdown point of
the k-level depth region is k�(n+k). This behaviour compares favourably
with the classical parametric measure of centrality, Mahalanobis' (squared)
distance d 2

M(x; F )=(x&+)T 7&1(x&+), whose influence function

IF(z; d 2
M(x; F ))=d 2

M(x; F )&2(z&+)T 7&1(x&+)

&((x&+)T 7&1(z&+))2

is unbounded.
Distributional properties of statistics arising from depth measures are

investigated in several papers. Eddy [5] considers the joint distribution of
the order statistics of [uTX i , i, 1, ..., n] and [vTXi , i, 1, ..., n] for arbitrary
p-vectors u and v. Nolan [11] proves that the radius function of a depth
region converges weakly to a Gaussian process. In the same paper she
describes the limit distribution of the direction normal to any optimal
halfspace. More recently, Nolan [12] gives the asymptotic distribution of
the deepest point in the bivariate case and Bai and He [1] extend her
result to the general p-dimensional case. In the present paper we concen-
trate on the empirical depth of a fixed point x. Under random sampling
from F, the number of sample observations included in any halfspace
HS(x) has a Binomial distribution with parameters n, the sample size, and
pF , the probability of HS(x). Hence dHS(x; F� n) is the minimum of a family
of correlated Binomial distributions. Rousseeuw and Struyf [19] prove
that the search for the minimum can be confined to a finite number of
distributions. Under suitable conditions on F, the von Mises expansion
described in Section 3 implies that dHS(x; F� n) is asymptotically Normal,
with mean dHS(x; F ) and standard deviation - dHS(x; F )(1&dHS(x; F ))�n.
This result suggests the naive confidence interval dHS(x; F� n)�k1&:�2 - dHS

(x; F� n)(1&dHS(x; F� n))�n for the population depth dHS(x; F). However, the
Monte Carlo experiment described in Section 5 shows some discrepancies
between the finite-sample and the asymptotic distribution. In particular,
there is a strong evidence, supported by theoretical results of Appendix 2,
that dHS(x; F� n) is a biased estimator.

The evaluation of the sampling variability of the halfspace regions is a
more trying task. Our suggestion is to take the set DHS((h&1)�n; F� n) &

DHS((h+1)�n; F� n) as an uncertainty region for the estimate of the
boundary of DHS(h�n; F ), but this proposal needs further research and
empirical checking.
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APPENDIX 1

The bivariate Pareto distributions are a parametric family indexed by a
positive parameter :. The density function

f (x; :)={:(:+1)(x1+x2&1)&(:+2),
0,

x1>1 & x2>1,
elsewhere,

is decreasing along any ray from (1, 1)T and is constant on the segments
x1+x2=c, c>0, x1>1 & x2>1. The halfspace depth function of the
Pareto distribution with :=1 is

dHS(x; F )={
d1(x)=4(x2&1)�(x1+x2&1)2,

x1>x2 & x1>2,
d2(x)=4(x1&1)�(x1+x2&1)2,

x1�x2 & x2>2,
d3(x)=4(x1&1)(x2&1)�(x1+x2&1)2,

1<x1�2 & 1<x1�2.

The deepest point is xA=(2, 2)T, coincident with the coordinate-wise
median and dHS(xA ; F )=4�9<1�2. Note that the cumulative distribution
function is equal to 1�2 at x~ =((7+- 17)�4)(1, 1)T and dHS(x~ ; F )&0.342.

The contours of dHS(x; F ) are formed by three arcs: the first and the
second are arcs of parabolae deriving from di (x)=d, i # [1, 2] (d is a
constant value of depth, 0�d�4�9); the third is an arc of hyperbola
obtained from d3(x)=d. They are symmetric with respect to the line
x1&x2=0 but not with respect to the orthogonal line x1+x2=4. The
positive orientation of the contours is coherent with the slopes of the
regression lines E(Xj | xi)=1+xi , i, j # [1, 2], i{ j. The contours corre-
sponding to d=0.01, 0.10, 0.25 are shown in Fig. 5 together with a 3D-plot
of the depth function.

Now we discuss the influence function of selected points.
The simplest case is the deepest point xA . It is easy to check that three

optimal halfplanes are

x1&2x2+2�0, x1+x2&4�0, 2x1&x2&2�0,

whose union is R2 (note that, according to [17], Proposition 12, a ray
basis can be derived from the boundary lines of these halfplanes). Thus, for
all z # R2, IF(z; dHS(xA ; F ))=5�9, a constant (non-random) number: in a
sense, any perturbation can only rise the depth of xA . As stated in
Proposition 12 of Rousseuw and Ruts [17], this behaviour is typical of
deepest points of absolutely continuous distributions.
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FIG. 5. 3D-plot and contour plot of the halfspace depth function of the bivariate Pareto
distribution with parameter :=1.

The second example is xB=(1, 1)T, whose depth is obviously zero. The
optimal region is the union of the halfplanes

x1�1, x2�1.

It follows that the influence function is

IF(z; dHS(xB ; F ))={0,
1,

z1>1 & z2>1,
elsewhere.

This random number is a.e. (with respect to F ) equal to zero.
The point xC=(3, 3)T with depth dHS(xC ; F )=8�25 has two optimal

halfplanes

4x1&x2&9�0, x1&4x2+9�0,

and the influence function is

IF(z; dHS(xC ; F ))={&8�25,
17�25,

4z1&z2&9<0 & z1&4z2+9>0,
elsewhere.

Finally, for xD=(3, 5)T with dHS(xC ; F )=16�49, the optimal halfplane
is 3x1&4x2+11�0 and the influence function is

IF(z; dHS(xD ; F ))={&16�49,
33�49,

3z1&4z2+11>0,
elsewhere.

The plots of the influence functions of xC and xD are given in Fig. 6.
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FIG. 6. 3D-plots of IF(z; dHS(xC ; F )) and IF(z; dHS(xD ; F )); F is the bivariate Pareto
distribution with parameter :=1.

APPENDIX 2

For x # R p let �(z; HS(x)) be the indicator function of any closed
halfspace HS(x) including x:

�(z; HS(x))={1,
0,

z # HS(x),
z � HS(x).

The halfspace depth of x is the functional

dHS(x; F )=inf
Hx

| �(z; HS(x)) dF(z)

=inf
Hx

EF (�(z; HS(x))),

and, if the optimal halfspace HS*(x; F )#HSx* is unique, the influence
function of dHS(x; F ) can be written as

IF(z; dHS(x; F ))=�(z; HS x*)&dHS(x; F)

=�(z; HS x*)&| �(z; HS x*) dF(z).
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The first-order von Mises approximation of a functional T(F ) at the
empirical distribution function F� n is (e.g., [21], Chapter 6)

T(F� n)=T(F )+T1(F; F� n&F )+R1(F; F� n&F ),

where

T1(F; F� n&F )=| IF(z; T(F )) d(F� n&F )(z),

and

R1(F; F� n&F )=T(F� n)&T(F )&T1(F; F� n&F ).

For the halfspace depth functional, the linear term is

T1(F; F� n&F )=| (�(z; HSx*)&dHS(x; F )) d(F� n&F )(z)

=| (�(z; HSx*)&dHS(x; F )) dF� n(z)

=
1
n

:
n

i=1

�(Xi ; HS x*)&EF (�(z; HS x*))

=PF� n
(HS x*)&PF (HS x*),

where [X1 , ..., Xn] is a set of n iid observations from F. Thus, the von
Mises expansion approximates the sampling error dHS(x; F� n)&dHS(x; F )
by the difference between the empirical measure and the theoretical
PF-measure of the same PF -optimal halfspace HS x*. Of course, nPF� n

(HSx*)
=�n

i=1 �(Xi ; HSx*) has the Binomial distribution Bi(n; dHS(x; F )).
For a given n, let HS*(x; F� n)#HS*n, x be the PF� n

-optimal halfspace (i.e.,
the halfspace including the minimum number of sample observations) and
let �(z; HS*n, x) be the corresponding indicator function. The remainder
term is

R1(F; F� n&F )=EF� n
(�(z; HS*n, x)&�(z; HSx*))

=
1
n

:
n

i=1

(�(Xi ; HS*n, x)&�(Xi ; HS x*))

=PF� n
(HS*n, x)&PF� n

(HS x*),
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that is, the difference between the empirical measure of the PF� n
-optimal

halfspace and the empirical measure of the PF -optimal halfspace. The
very definition of optimal halfspace implies PF� n

(HS*n, x)�PF� n
(HS x*), thus

R1(F; F� n&F)�0 for any n. This proves that dHS(x; F� n) is a biased estimator
of dHS(x; F ).

We have already shown that, if the PF-optimal halfspace is unique, then

EF (IF(z; dHS(x; F )))=0,

and

VarF (IF(z; dHS(x; F)))=dHS(x; F )(1&dHS(x; F ))>0,

provided that dHS(x; F )>0. A central limit theorem argument would then
follow from - n R1(F; F� n&F ) � P 0, i.e.,

- n (PF� n
(HS*n, x)&PF� n

(HS x*)) � P 0.

Since &- n R1(F; F� n&F )=- n (PF� n
(HSx*)&PF� n

(HS*n, x)) is a non-negative
random variable, by Chebycev's inequality

0�P[- n (PF� n
(HS x*)&PF� n

(HS*n, x))�=]

�E[- n (PF� n
(HS x*)&PF� n

(HS*n, x))]�=

=- n [dHS(x; F )&E(PF� n
(HS*n, x))]�=.

Now, dHS(x; F� n)#PF� n
(HS*n, x) is a consistent estimator of dHS(x; F ), there-

fore, under suitable regularity conditions on the theoretical distribution F,

E(PF� n
(HS*n, x))=dHS(x; F)&;2

n+oP(n&#),

where ;2
n=OP(n&#) is the finite-sample bias of dHS(x; F� n). It follows that

a sufficient condition for - n R1(F; F� n&F ) � P 0 is #>1�2.
A more precise description of ;2

n can be given. Let ux* be the unit vector
perpendicular to the boundary of the PF-optimal halfspace HSx*=
[z # R p : ux*

Tz�ux*
Tx] and let u*n, x be the unit vector perpendicular to the

boundary of the PF� n
-optimal halfspace HS*n, x=[z # R p : u*T

n, xz�u*T
n, xx].

Under uniqueness of the PF-optimal halfspace, Nolan [11, p. 162] shows
that u*n, x is a consistent estimator of ux* , and suggests the following
representation of u*n, x

u*n, x=vn+- 1&vT
n vn ux* ,
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where vn is a random vector in a neighbourhood of the null vector 0p ,
orthogonal to ux*. An important result for the present analysis is that vT

n vn

=OP(&2�3) [11, Theorem 2, p. 166] because, up to a positive constant
depending on x, ;2

n=E(vT
n vn). The regularity conditions which must be

satisfied are (i) F has a continuous density, (ii) twice differentiability of
PF (HSn, z) at vn=0p for z near x, and (iii) optimality of the vector u*n, x ,
i.e., PF� n

(z # R p : u*T
n, x z�u*T

n, xx)�PF� n
(z # R p : uTz�uTx).
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