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Abstract N-ethylmaleimide sensitive factor (NSF) is an ATP-
ases associated with various cellular activities protein (AAA),
broadly required for intracellular membrane fusion. NSF func-
tions as a SNAP receptor (SNARE) chaperone which binds,
through soluble NSF attachment proteins (SNAPs), to SNARE
complexes and utilizes the energy of ATP hydrolysis to disas-
semble them thus facilitating SNARE recycling. While this is
a major function of NSF, it does seem to interact with other pro-
teins, such as the AMPA receptor subunit, GluR2, and b2-AR
and is thought to affect their trafficking patterns. New data sug-
gest that NSF may be regulated by transient post-translational
modifications such as phosphorylation and nitrosylation. These
new aspects of NSF function as well as its role in SNARE com-
plex dynamics will be discussed.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: NSF; SNARE; a-SNAP; GluR2; b2-AR;
Post-translational modification
1. Introduction

Vesicular traffic is essential for cellular homeostasis. Cargo-

containing transport vesicles bud from a donor compartment,

then fuse with an appropriate acceptor compartment assuring

a vectorial flow of membrane proteins/lipids and luminal con-

tents through the cell. At its core, vesicular transport requires
Abbreviations: NSF, N-ethylmaleimide sensitive factor; AAA, ATP-
ases associated with various cellular activities; SNAP, soluble NSF
attachment protein; SNARE, SNAP receptor; VAMP, vesicle associ-
ated membrane protein; TMD, transmembrane domain; AMPAR, a-
amino-5-hydroxy-3-methyl-4-isoxazole propionic acid receptor;
GluR2, glutamate receptor 2; GABA, c-amino-butyric acid; GBR,
GABAB receptor; b2-AR, b2-adrenergic receptor; GPCR, G-protein
coupled receptor; CRLR, calcitonin receptor-like receptor; RAMP,
receptor activity-modifying proteins; AM, adrenomedullin; NMJ,
neuromuscular junction; PKC, protein kinase C; PTP, protein tyrosine
phosphatase; GATE-16, Golgi-associated ATPase enhancer of 16 k-
Da; VCP, valosin containing protein; Rip11/Gaf-1, Rab interaction
protein 11/c-SNAP associated factor 1; EEA-1, early endosome anti-
gen 1; SRH, second region of homology; LMA1, low molecular weight
activity 1; GEC1, glandular epithelial cell 1
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cargo selection and vesicle production through a budding pro-

cess. The subsequent vesicle transport and targeting process

concludes with specific membrane fusion of the vesicle to its

target membrane. Early molecular analysis of vesicular traf-

ficking between Golgi cisternae identified an essential N-ethyl-

maleimide sensitive factor (NSF) [1]. Subsequent studies

identified NSF adaptors, soluble NSF attachment proteins

(SNAPs) [2], and SNAP receptors [3] (SNAREs). The charac-

terization of these proteins has lead to a detailed picture of the

events leading to membrane fusion. Despite this knowledge,

there are many unanswered questions regarding how SNAREs

are regulated and how NSF itself might be regulated. In addi-

tion, new data suggest that NSF may have other cellular roles

that require its ATPase-driven chaperone activity. This review

will attempt to give an ‘‘NSF-centric’’ overview of some of

these topics.
2. SNAREs

SNARE proteins are the minimal machinery for membrane

fusion [4]. SNAREs are classified into vesicle (v) and target-

membrane (t)-SNAREs according to their localization [3] or

R (arginine) and Q (glutamine)-SNAREs based on a key resi-

due in the center of their SNARE domains [5]. There are two

types of t-SNAREs: syntaxin-type and SNAP-25 type. v-

SNAREs and syntaxin-like t-SNAREs are type II integral

membrane proteins with a single transmembrane domain

(TMD). The TMDs not only anchor SNAREs to a membrane,

but may contribute to complex assembly and fusion pore for-

mation [6,7]. SNAP-25-like proteins lack a TMD and are gen-

erally anchored to the membrane through thioester-linked acyl

groups [8]. All SNARE proteins characteristically contain con-

served heptad repeats of approximately 60–70 residues termed

the SNARE motif. SNAP-25-like SNAREs contain two such

motifs. The SNARE motif forms an amphipathic a-helix

where the hydrophobic residues are in register on the same face

to form the core of the SNARE complexes [9].

In addition to the SNARE motif, many SNARE proteins

have divergent N-terminal domains. The N-terminal half of

syntaxin-1a contains an autonomously-folded, three-helix bun-

dle, called the Habc-domain [10]. This domain forms a groove

that accepts the SNARE motif generating a ‘‘closed’’ confor-

mation of syntaxin-1a. The N-terminal domain of v-SNAREs

is highly divergent and divides the family into ‘‘brevins’’ that

contain short domains, and ‘‘longins’’ that contain longer
blished by Elsevier B.V. All rights reserved.
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structures [11]. For the brevins, the N-terminus attains a par-

tially folded state when SNARE complexes are assembled

and may play a role in controlling the stability of primed fu-

sion complexes [12]. The longin domains appear to regulate

v-SNARE sorting and have been shown to be important for

spatially directed exocytosis in neurons [13]. From these exam-

ples, it seems possible that these N-terminal domains may be

key structural elements to allow regulation of SNARE com-

plex assembly and perhaps disassembly.

2.1. Assembly of SNARE complexes

Structural information from neuronal SNARE complexes

shows that the SNARE motifs assemble into parallel, twisted,

coiled-coil, four-helix bundles by burying the hydrophobic res-

idues inside the core (Fig. 1). Three of the helices are contrib-

uted by t-SNAREs (1 from syntaxin and 2 from SNAP-25),

with the other helix provided by the v-SNARE. The coiled-coil

is composed of 15 hydrophobic layers arranged perpendicular

to the axis of the helical bundle, and contains a central hydro-

philic zero-layer with one R- and three Q-residues. The surface

of the complex is highly grooved with several charged regions

[9,14].

Great focus has been put on the molecular steps of SNARE

complex assembly. It is thought to start at the SNAREs’ N-ter-

mini and proceed in a zipper-like fashion toward the mem-

brane anchor at the C-termini [15]. Before assembly,

syntaxin-1a shows significant a-helicity, but SNAP-25 and syn-

aptobrevin/VAMP-2 are largely unstructured. Upon ternary

complex formation, SNAP-25 and synaptobrevin show dra-

matic increases in a-helicity. Considerable evidence [16] now

implies that syntaxin-1a and SNAP-25 form a transient 1:1

complex, which serves as an ‘‘on-pathway’’ intermediate. After

establishment of the t-SNARE heterodimer, synaptobrevin,

from the opposing membrane, binds to form a high affinity

complex, which spans the two fusing bilayers. The energy asso-

ciated with SNARE complex assembly is thought to drive

membranes into close apposition, which then directly or indi-

rectly leads to fusion [16–18]. After membrane fusion,

SNAREs remain as a complex in the same membrane. Disas-

sembly of these cis complexes is achieved by the concerted ac-

tion of a-SNAP and NSF.
3. a-SNAP

Clary et al. [2] determined that NSF required a peripheral

membrane protein adaptor to bind Golgi membranes. This

protein was called Soluble NSF Attachment Protein or SNAP.

In mammals, there are three SNAPs, a, b, and c; in yeast there

is one, Sec17p. In mice, a-SNAP is encoded by the Napa gene

and its deletion is embryonic lethal [19]. A G fi A missense

mutation in exon 4 of the Napa gene results in an M105I sub-

stitution that appears to be the cause of hydrocephalus with

hop gait (hyh) in mice. Affected animals show a dome-shaped

head with a small cerebral cortex. They die postnatally from a

progressive enlargement of the ventricular system. Binding of

the M105I mutant to SNARE complexes, however, was indis-

tinguishable from that of the wild-type a-SNAP. The mutation

also had no effect on NSF-mediated, SNARE complex disas-

sembly. Intriguingly, both mRNA and protein levels of a-

SNAP were decreased in hyh mice. Though the biochemical

data do not yield a clear explanation of the defect in hyh mice,
the animals’ phenotype indicates that the reduced availability

of a-SNAP is detrimental to apical transport and cell fate reg-

ulation in neurons [19].

3.1. a-SNAP binding to SNARE complexes

a-SNAP does not bind synaptobrevin but can associate with

the syntaxin/SNAP-25 heterodimer [20]. a-SNAP appears to

first bind to syntaxin/SNAP-25. Association of synaptobrevin

with this complex generates a third binding site for a-SNAP

[20,21]. Consistently, the binding affinity of a-SNAP to syn-

taxin and SNAP-25 is weak but addition of synaptobrevin dra-

matically enhances binding [22]. Deletion mutagenesis suggests

that the N-terminal 63 and C-terminal 37 residues of a-SNAP

are important for binding to SNARE complexes. Binding of a-

SNAP involves the C-terminal residues (194–243, part of the

SNARE motif) of syntaxin-1 and the N-terminal residues

(25–100) of SNAP-25 [20]. However, since there is large se-

quence variation among the SNARE family, it seems likely

that a-SNAP primarily recognizes the overall shape of the

coiled-coil structure and not specific residues.

The crystal structure of Sec17p shows that it contains an N-

terminal twisted sheet of a-helical hairpins with a protruding

C-terminal a-helical globular bundle (Fig. 1). One edge of

the twisted sheet is longer than the other forming concave

and convex faces in the structure. The concave face has a dis-

tribution of negative charges, which is most pronounced at the

extreme C-terminus. Both the concave face and the longer

edge contain residues that are conserved among all SNAPs

[23]. As outlined by Rice and Brunger [23], there are two pos-

sible models of SNAP-SNARE interaction: ‘‘face-on’’ and

‘‘edge-on’’. Mutagenesis data show SNAP–SNARE complex

interactions involve positively charged a-SNAP residues dis-

tributed over the concave surface of its twisted sheet domain

[24].
4. NSF

NSF is encoded by the Sec18 gene in yeast [25] and a neuro-

nal specific version is encoded by the comatose gene (dNSF1)

in Drosophila [26]. NSF is clearly important since conditional

mutations in Sec18p and comatose both lead to cessation of

membrane transport under restrictive temperatures. Each

protomer of the homo-hexamer has three domains: the ami-

no-terminal domain (NSF-N, 1–205) is required for SNAP–

SNARE binding; the first ATP-binding domain (NSF-D1,

206–477), which provides ATPase activity, is required for

SNARE complex disassembly; and the second ATP-binding

domain (NSF-D2, 478–744) is required for hexamerization

[27,28]. From sequence homologies of NSF-D1 and NSF-

D2, NSF is a member of the AAA family of ATPases that

generally uses ATP hydrolysis to alter the conformation of a

substrate protein [29].
4.1. NSF structure

From several studies using quick-freeze/deep-etch electron

microscopy [30] or cryo-electron microscopy (cryo-EM) with

single-particle averaging of NSF-a-SNAP–SNARE complexes

[31], NSF clearly shows six-fold symmetry. It appears to be ar-

ranged like a barrel composed of two rings (presumably NSF-

D1 and NSF-D2) with six knobs extending from the barrel



Fig. 1. 20S Particle. Depicted are the crystal structures for each element of the 20S particle. The two ATP-binding domains of NSF (D1 and D2) in
white are modeled from the NSF-D2 structure (1D2N). A trimer of NSF-N domains, in red, is based on the three-in-three-out model of May et al.
[33] (1QDN). Only two yeast a-SNAPs (Sec17p, 1QQE) are depicted in yellow. The coiled-coil SNARE complex is depicted with syntaxin-1a in light
blue, synaptobrevin/VAMP-2, in magenta, and SNAP-25 in dark blue (2BUO). The images were created with Swiss PDB viewer and rendered with
Pov-Ray.
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(presumably NSF-N). The conformation depends on the

nucleotide bound. ATP-charged NSF is a hollow cylinder:

NSF-D1 and NSF-D2 form hexameric rings that are arranged

in a double-layered barrel, while NSF-N domains emerge from

the sides of the ring. The ADP-bound morphology is slightly

wider, and does not possess outwardly flared NSF-N domains

[30,31]. These nucleotide-state-dependent conformations may

hold the secret to how NSF uses ATP hydrolysis to disassem-

ble SNARE complexes.

NSF-N is a kidney-shaped domain composed of two subdo-

mains: NA (a.a. 1–83) and NB (a.a. 87–201), which are joined

by a short linker [32,33] (Fig. 2A). NA is made of six b strands

arranged in a barrel with two ‘‘w loops’’ containing short a
helices (a1 and a2) extending over the top. NB is an a/b roll,

where four b strands wrap around a single amphipathic a-he-

lix. The interface between NA and NB is predominantly hydro-

philic with two small hydrophobic clusters at the edges of the

interface. The surface of NSF-N possesses an overall positive

charge and contains three grooves, all large enough to accom-
Fig. 2. Post-translational modifications of NSF. Panel A, crystal structure of
cysteine and tyrosine residues. The NA subdomain is in rose and the NB subdo
Swiss PDB viewer and rendered with Pov-Ray. Panel B, crystal structure of
and one in blue. The modified residues are indicated by red. Position 1 is pr
domain. Position 2 is Ser569, phosphorylated by Pctaire1. The image is base
Pov-Ray.
modate an a-helix [32,33]. At this stage, each could be impor-

tant for SNAP–SNARE complex binding, though mutagenesis

experiments suggest that groove 3 is the likely binding site.

Groove 3 contains the first NA w loop in the double w loop

beta barrel motif, which consists of strand b5 and the loop be-

tween strands a1 and a2 [32]. Mutation of one highly con-

served residue (R67E) in this surface completely eliminates

binding [34]. Sec18p-N (yeast NSF) has the same overall fold

[35] with a conserved groove 3.

The structure of NSF-D2 was the first AAA domain to be

determined [36,37] (Fig. 2B). Overall, it consists of two subdo-

mains: an N-terminal nucleotide-binding subdomain (residues

505–676), and a C-terminal a-helical subdomain (residues 677–

750). The N-terminal subdomain (which contains the Walker

A and B box motifs) has the wedge shape with a central five-

stranded parallel b-sheet. The C-terminal subdomain is com-

posed of four a helices. This subdomain lies above the nucleo-

tide-binding domain and contributes several residues to

nucleotide binding.
the N-terminal domain of NSF, showing the locations of the modified
main is in aqua. The image is based on 1QDN and was generated using

the NSF-D2 hexamer. Three subunits are shown in white, two in aqua
edicted to be equivalent to the phosphorylated Ser237 in the NSF-D1
d on 1D2N and was created with Swiss PDB viewer and rendered with
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Although the structure of NSF-D1 has not been determined,

its sequence homology to NSF-D2 indicates that the NSF-D2’s

structure can be used as a guide to understand the mechanism

of the catalytically active NSF-D1. Both domains contain

nucleotide-binding sites with the classical Walker A and B

box motifs. The conserved lysine residues (266, 549) in the

two Walker A boxes are crucial to ATP-binding [38,39]. The

aspartic acid in the DEXX sequence of the Walker B box is

thought to coordinate a Mg2+ ion that is needed for ATP

hydrolysis, whereas the glutamate is required to activate water

for the hydrolysis reaction. Mutation of Glu329 (E329Q) in

NSF-D1 results in a dominant negative form of NSF that

can bind but not disassemble SNAP–SNARE complexes

[28,40].

Within the N-terminal subdomain of both ATP-binding do-

mains, there is a highly conserved region called Second Region

of Homology (SRH), which is unique to AAA proteins. At the

C-terminus of SRH are two highly conserved arginine residues

called Arginine Fingers. Both are important for nucleotide

hydrolysis in other AAA proteins and are thought to allow

for inter-subunit communication between the protomers of

the hexameric ATPases [41]. Mutations of these residues in

NSF only have a limited effect on ATPase activity but almost

eliminate SNARE complex disassembly [34]. Sensor 1 is pres-

ent at the N-terminus of the SRH. A conserved polar residue

in Sensor 1 is in close proximity to the phosphates of the

bound nucleotide. Mutation of this residue (T394P) in Sec18p

eliminates ATPase activity [42]. The Sensor 2 comes from the

C-terminal helical subdomain. The residues in Sensor 2 are in

close proximity to the bound nucleotide and have been pro-

posed to monitor the state of the bound nucleotide. This could

propagate nucleotide-dependent conformational change to the

outer regions of NSF [41].

4.2. NSF binding to the a-SNAP–SNARE complexes

NSF and a-SNAP do not interact in solution. The interac-

tion of NSF with a-SNAP occurs when a-SNAP binds to

membranes, to a plastic surface, or alternatively when trimer-

ized [43]. Cross-linking between a-SNAP and NSF in the mem-

brane-bound complex further confirms this interaction [44].

The deletion mutants show that the C-terminal 45 amino acids

of a-SNAP are crucial for interaction with NSF [45]. Consis-

tently when this domain was grafted onto the trimerization do-

main of thrombospondin, the resulting recombinant protein

bound NSF in the absence of SNAREs [43]. Point mutations

in this domain, specifically of the penultimate leucine residue

(Leu294), yield an a-SNAP that can bind NSF but cannot acti-

vate its ATPase activity [46].

NSF-N is required for binding SNAP–SNARE complexes

[28,39,43]. Consistently, the Sec17p-(yeast a-SNAP)-binding-

defective Sec18-1 allele maps to a 120-amino acid region in

the N domain (G89D) [47,48]. Only ATP-charged NSF is

binding competent. The ATP-binding mutant, K266A, shows

weak binding to the SNAP–SNARE complexes, suggesting

that binding of ATP by NSF-D1 most likely induces confor-

mational changes in the D1 and N domains that are crucial

to the interaction of NSF with SNAP–SNARE complexes.

The neighboring D1 or D2 also possibly participates in bind-

ing to a-SNAP because the monomeric mutant N-D1 and hex-

americ N-D2 can bind but monomeric N domain cannot [28].

This implies that two elements are potentially important to the
binding interaction: oligomerization of NSF-N and proximity

to an ATP binding domain.

NSF does not bind to SNARE complexes in the absence of

a-SNAP [21,49]. Based on this, NSF and a-SNAP are thought

to bind in a sequential manner, giving rise to the 20S particle,

named for its sedimentation coefficient [50]. In the presence of

non-hydrolysable ATP, the 20S particle is stable and can be

purified. The SNARE complex in this particle is perhaps reflec-

tive of the cis configuration that would occur post-fusion. The

20S particle is disassembled in a process coupled to ATP

hydrolysis, which probably reflects a major role of NSF

in vivo [3,50]. NSF, however, can dissociate NSF-a-SNAP-

syntaxin and NSF-a-SNAP-syntaxin-SNAP-25 complexes

in vitro, suggesting that it could be a general SNARE chaper-

one affecting the conformations of multiple SNARE-contain-

ing complexes [51].

Electron microscopy studies of the 20S particle show that it

has a spark-plug shape [30], with the SNARE complex at the

thinner end and the two rings of NSF clearly visible at the

wider end (Fig. 1). Three a-SNAP molecules coat the rod-like

SNARE complex along its length. While NSF binds to one

end, the membrane-spanning regions of VAMP and syntaxin

appear located at the other end, adjacent to the N-terminus

of a-SNAP [52]. A cyro-EM structure of the 20S particle, sug-

gests that the rings of the two ATP binding domains, NSF-D1

and NSF-D2, form a double-layered barrel, arranged in an

anti-parallel orientation (A similar conclusion was made about

the p97/valosin containing protein (VCP) until crystallography

proved it incorrect [53,54]). Six protrusions, thought to be the

NSF N domains, appear to extend sideways from one end of

the barrel. Near these protrusions, a cap-like density corre-

sponding to a-SNAP and SNAREs is clearly visible [31]. These

data suggest a mechanism by which NSF could untwist the

SNARE complexes.

4.3. NSF’s ATPase activity

The intrinsic ATPase activity of NSF is very low [27]. NSF-

N has been proposed to exert some control over NSF’s ATP-

ase activity because antibodies to it cause a 2-fold increase in

hydrolytic activity [55]. Binding to immobilized a-SNAP stim-

ulates the ATPase activity [56]; however, maximal stimulation

of ATPase activity is achieved when both a-SNAP and

SNARE complexes are included [51]. The penultimate leucine

of a-SNAP is critical for this activity [45,46]. Consistently, the

L294A mutation of a-SNAP is unable to mediate 20S particle

disassembly. A direct interaction between NSF and Leu294 (or

adjacent residues) seems likely but is as yet unproven.

NSF-D1 accounts for the majority of basal and SNAP-stim-

ulated ATPase activity [38,57]. Mutations in the ATP-binding

site of domain D1 (K266A and E329Q) cause a 70–80% de-

crease in ATPase activity relative to wild-type NSF [38]. The

ATP-binding mutant (K266A) disrupts NSF ability to bind

to the SNAP–SNARE complexes. The hydrolysis mutant

(E329Q) fails to dissociate the SNAP–SNARE complexes

[28]. Mutations in the NSF-D2 decrease ATPase activity but

only minimally [38]. The ATPase activity of Sec18p is stimu-

lated by Sec17p. The hydrolysis mutant, E350Q in Sec18p-

D1, shows no basal or stimulated ATPase activity [58]. The

temperature-sensitive, paralytic, mutation comatosest17

(G274E) in Drosophila NSF1 is near the D1 ATP-binding site

[59]. When this mutation was engineered into mammalian NSF



Table 1
Non-SNARE proteins that associate with NSF

NSF interaction Reference

NSF/Receptor
GluR2 Osten et al. [62], Nishimune

et al. [63], and Song et al. [64]
b2-AR Cong et al. [65]
CRLR–RAMP3 Bomberger et al. [67]
GABAA receptor b subunit Goto et al. [97]
GABAB receptor 2 Pontier et al. [68]
D1-like dopamine receptor Heydorn et al. [66]
Dopamine D2 receptor Zou et al. [98]
Muscarinic M1, M3, M4 and

M5 receptors
Heydorn et al. [99]

Tachykinin NK1 and NK2
receptors

Somatostatin SST1 receptor
DOP receptor
Chemokine receptors US27

and US28

NSF/Rab family
Rab 3, 4, 6 Han et al. [75]
Rab 11-containing complex

(c-SNAP/Rip11/Gaf-1)
Tani et al. [76]

Rab 11-FIP3 Martin et al. [77]
Rab 5 containing complex

(EEA-1, Rabaptin-5, Rabex-5,
syntaxin 13)

McBride et al. [78]

NSF/others
b-Arrestin 1 McDonald et al. [73]
GATE-16 Sagiv et al. [82]
LMA1 Xu et al. [100]
bPIX Martin et al. [77]
GABARAP Kittler et al. [101]
PTP-MTG2 Huynh et al. [90]
Pctaire 1 Liu et al. [89]
GEC1 Chen et al. [102]
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(G282E), the resulting mutant protein had no ATPase activity

[60]. These data demonstrate the importance of the D1 domain

to NSF’s ATPase activity and thus to its function in membrane

trafficking events.
5. Binding of NSF to other substrates

The well-documented role of NSF in vesicular transport is

logically based on its interactions with SNAREs and SNAPs;

however, several studies point to additional roles for NSF

[61]. Specifically, NSF has been shown to be associated with

a number of non-SNARE proteins, which can be divided into

two classes (Table 1). The first are the C-terminal, cytoplasmic

domains of a number of cell-surface signaling receptors. The

second class of interactions is more diverse and includes periph-

eral and soluble cellular proteins as well as cytoskeletal ele-

ments. Examples of these interactions will be discussed below.

5.1. NSF binding to membrane receptors

The direct interactions between NSF and the cytoplasmic

tails of several cell surface receptors have been reported: e.g.

the a-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid

receptor (AMPAR), the b2-AR receptor, the dopaminergic

receptor, the adrenomedulin (AM) receptor and the c-amino-

butyric acid (GABA) receptor [62–68]. NSF binding is pro-
posed to modulate the trafficking of these receptors between

the plasma membrane and the endosome.

NSF is shown to directly bind to the C-terminal tail of the

GluR2 subunit of the AMPA receptor in a SNAP-independent

manner. The stable binding is nucleotide-dependent and re-

quires all three domains of NSF. The minimal NSF binding

domain of GluR2 is located between Lys844 and Gln853

[62–64]. Further mutagenesis of this segment showed that dele-

tion of the last five amino acids abolishes NSF binding [69].

The NSF–GluR2 interaction is proposed to play a role in

the stabilization of surface AMPA receptors on the post-syn-

aptic membrane since a peptide that disrupts the NSF/

GluR2-interaction causes a rapid decrease in the size of synap-

tic currents [70].

A two-hybrid approach was used to demonstrate that the C-

terminus of b2-AR mediates binding to NSF. Mutations at

any of the last three residues (S411A, L412A, or L413A) ablate

NSF binding [65]. The addition of a single alanine residue at

the end of the b2-AR tail also abrogates NSF binding. Binding

to the b2-AR, however, is not affected by the addition of a-

SNAP [71]. The binding of NSF to the b2-AR is critical to al-

low the receptor to undergo rapid recycling, which might also

involve another interaction of NSF with b-arrestin1. b-Arres-

tins play an important role of desensitization of many G-pro-

tein coupled receptors (GPCRs) [72]. Over-expression of NSF

in HEK 293 cells significantly enhances agonist-induced b2-

AR clearance and rescues the inhibition of b2-AR internaliza-

tion mediated by the phosphomimetic mutant of b-arrestin

1(barr1S412D) [73].

There are five dopamine receptor subtypes, which are di-

vided into two classes: D1-like and D2-like. NSF is found to

bind to C-terminal tails of the D1 and D5 receptors fused to

glutathione S-transferase (GST), suggesting that NSF could

possibly be involved in the recycling of D1-like receptors [66].

Adrenomedullin receptors are comprised of receptor activ-

ity-modifying proteins (RAMP2 or RAMP3) and calcitonin

receptor-like receptor (CRLR), which is the GPCR. RAMPs

(1–3) are single transmembrane accessory proteins indispens-

able to the determination of receptor phenotype. Co-expres-

sion of RAMP1 with CRLR generates a calcitonin gene-

related peptide-1 (CGRP-1) receptor, while co-expression of

RAMP2 or RAMP3 with CRLR yields adrenomedullin recep-

tors, AM-1 and AM-2 receptors, respectively [74]. Upon stim-

ulation with AM, the CRLR-RAMP receptor complex is

internalized and undergoes degradation or recycling dependent

on the cell type. NSF might be involved in altering the intracel-

lular trafficking of the CRLR–RAMP3 receptor complex.

When NSF is co-expressed with CRLR–RAMP3 complexes

in HEK 293 cells, CRLR–RAMP3 is sorted for recycling

rather than undergoing degradation. N-ethylmaleimide

(NEM) treatment blocks the resensitization/recycling of the

receptor after agonist-stimulated desensitization in the rat mes-

angial cells. RAMP3 is thought to interact with NSF through

its C-terminal, type-I PDZ motif (-DTLL). Deletion of the

PDZ motif significantly affects the resensitization and recycling

of the CRLR–RAMP3 receptor complex in the presence of

NSF. Mutagenesis of the DTLL sequence indicates that

Asp145, Thr146 and Leu148 are the critical amino acids in

the PDZ motif that regulate the RAMP3/NSF interaction [67].

Using full-length C-terminal tails of the metabotropic GA-

BAB receptor 1 (GBR1) and GBR2 as bait in the yeast two-hy-
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brid screen, NSF is revealed as a binding partner of GBR2.

This was confirmed by using the GST-GBR2 fusion protein

and purified recombinant NSF. The interaction of GBR2

and NSF also occurs in CHO cells and is disrupted upon ago-

nist stimulation. The binding region has been narrowed to the

27 amino acids (residues 799–825; Pep-27) at the C-terminus of

GBR2. Inhibition of NSF binding to GBR2 with a TAT-Pep27

fusion peptide blocks the agonist-promoted desensitization of

GBR in hippocampal slices and CHO cells. TAT-Pep27 also

blocks the GABA-induced protein kinase C (PKC) recruit-

ment and GBR phosphorylation in CHO cells. Given that

GBR does not undergo agonist-stimulated internalization in

any of the systems tested, the author suggested that NSF reg-

ulates GABAB receptor signaling efficacy in a different way

from other receptors. The preassociation of NSF with GBR2

primes the receptor and promotes PKC recruitment and phos-

phorylation of the GBR2 receptor, resulting in agonist-pro-

moted desensitization of the receptor [68].

5.2. Other NSF-binding interactions

NSF has also been shown to interact with a diverse array

of proteins including small GTP-binding proteins of the

Rab family, GABA receptor associated protein (GABA-

RAP)/Golgi-associated ATPase enhancer of 16 kDa (GATE-

16)/ low molecular weight activity 1 (LMA1) family members,

bPIX, protein tyrosine phosphatase (PTP)-MEG2, and

Pctaire1. The functional significance of most of these interac-

tions is still largely speculative though provocative. In many

cases, the chaperone function of NSF may play a role in the

assembly/disassembly cycle of complexes containing these pro-

teins.

Han et al. [75] used the NSF-N-D1 truncation as bait and

recovered Rab 6 as a binding partner by two-hybrid screen.

This interaction requires the C-terminal 30 amino acids of

Rab 6 and can stimulate the ATPase of NSF [75]. Two other

Rabs (3 and 4) appear to bind and to stimulate NSF’s ATPase

activity. NSF also interacts with Rab-containing complexes.

NSF binds to a Rab 11-containing complex made up of c-

SNAP and Rab interacting protein 11/c-SNAP associated fac-

tor 1 (Rip11/Gaf-1) [76]. Two-hybrid analysis revealed that c-

SNAP interacts directly with NSF via its extreme C-terminus

and requires the penultimate leucine (Leu312). Intact NSF is

required to interact with c-SNAP. Both the N-terminal and

C-terminal regions of c-SNAP also mediate binding to the

C-terminal domain of Gaf-1/Rip11, a Rab 11 effector. The

complex comprising c-SNAP and Gaf-1/Rip11 is disassembled

by NSF in an ATPase-dependent manner. A yeast two-hybrid

screen identified Rab 11-FIP3, another Rab 11-binding pro-

tein, as a NSF binding partner [77]. NSF has been detected

in a complex with Rab 5 effectors: early endosome antigen 1

(EEA-1), Rabaptin-5, Rabex-5, and the SNARE syntaxin-13

[78]. Despite this wide range of interactions, their physiological

relevance is still not certain. NSF could be involved in control

of the assembly/disassembly cycles of these Rab-containing

complexes. Alternatively, these complexes could play a role

in targeting NSF to membrane subdomains involved in high

levels of membrane fusion. Further experiments are clearly re-

quired.

GATE-16 functions in the secretory system [79] and is a

member of a ubiquitin-like family of proteins that contain

GABARAP and LMA1 [80]. GATE-16 binds to NSF as dem-

onstrated by in vitro studies and by co-immunoprecipitation
from cell extracts. Since ubiquitin binds to the N-terminal do-

main of p97/VCP (a domain similar to NSF-N)[81], GATE-

16’s similarity to ubiquitin may be useful in analyzing the

NSF–GATE-16 interactions. GATE-16 stimulates NSF’s

ATPase activity. It also interacts with Golgi v-SNARE

GOS28 in an NSF- and SNAP-dependent manner leading

the authors to propose that GATE-16 is transferred to

GOS28 from NSF, stabilizing GOS28 in a ‘‘primed’’ confor-

mation [82].

Using a truncated form of NSF (D-1–9) as bait, Martin et al.

[77] detected four NSF interacting proteins in a yeast two-hy-

brid screen: Rab 11-FIP3 (discussed above), aCOP, Mink2 and

bPIX. bPIX, a Pak-binding Rho guanine exchange factor, was

of specific interest due to its apparent role in the control of

post-synaptic structure. Co-immunoprecipitation experiments

confirmed the interaction and GST pull-down assays with

bPIX fragments showed that the leucine zipper motif in the

C-terminus of bPIX was important for binding. Subsequent

studies failed to demonstrate a physiological role for the inter-

action but the authors suggest that, since bPIX can form high-

er molecular weight complexes, NSF may play a role in their

assembly/disassembly cycle.
6. NSF and the cytoskeleton

Genetic studies in Drosophila have linked NSF to cytoskele-

tal dynamics [83]. Drosophila expresses two NSF isoforms:

dNSF1, which is the dominant isoform in the adult central ner-

vous system and dNSF2, which shows a much broader distri-

bution [84]. dNSF1 null flies die as pharate adults but dNSF2

deletion is lethal at or before the first instar [85]. Over-expres-

sion of the dominant negative mutant of dNSF2 (E326Q) in

neurons results in a very interesting phenotype: the overgrowth

and hypersprouting of neuromuscular junctions (NMJ).

Reversal of this phenotype served as the basis of a screen

which identified a number of different classes of proteins in-

volved in such varied processes as transcription and ubiqui-

tin-mediated degradation. Interestingly, several actin-binding

proteins were identified (i.e. moesin, jaguar (a myosin VI),

and quail (a villin-like protein) [83,86]). b-Tubulin was also

found to suppress the dNSF2E/Q-induced phenotype. Such

data suggest that NSF could play a role in controlling synaptic

structure through an effect on the cytoskeleton. Such an effect

would be consistent with the loss of cell polarity seen in Dicty-

ostelium amoebae expressing defective NSF mutants [87].

However, what is the nature of this connection between NSF

and the cytoskeleton? The authors of the Drosophila studies

suggest that neurotransmitter release (or lack thereof) is not

responsible since NMJ overgrowth is not seen in the syntaxin

or synaptobrevin null mutants. However, these SNAREs rep-

resent only one membrane trafficking pathway in neurons.

Additionally, over-expression of a-SNAP reverses the pheno-

type, suggesting some connection between NMJ overgrowth

and membrane trafficking [83]. Perhaps, the effect of the dom-

inant-negative dNSF2E/Q mutant is through disruption of a

membrane trafficking pathway that is required to localize cyto-

skeletal binding proteins to specific regions of the presynaptic

or post-synaptic plasma membrane. Further analysis will be

required to dissect the mechanistic basis of this interesting

effect.
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7. NSF regulation

Initially, NSF was thought to be a ‘‘house-keeping protein’’;

constitutively active and not subjected to any regulation. Per-

haps this misconception grew out of the fact that regulation of

secretion appears to be largely prefusion and directed to

SNARE complex assembly. However, recent studies show that

NSF activity is not uniform and can be regulated by several

different mechanisms, including the reversible inactivation by

S-nitrosylation and phosphorylation.

7.1. Phosphorylation

NSF has been shown to be phosphorylated in rat brain syn-

aptosomes in a depolarization-induced, calcium-dependent

manner and this event correlates with glutamate release from

synaptosomes. PKC appears to be responsible and it phos-

phorylates NSF on Ser237 in NSF-D1. Mutation of this resi-

due to alanine eliminates in vitro phosphorylation and

mutation to glutamic acid attenuates NSF binding to

SNAP–SNARE complexes [88]. Structurally, the effect of

phosphorylation at Ser237 can only be discussed based on

the structure of NSF-D2 (Fig. 2B). Ser237 would be in the

middle of a1 and well within the reach of the adjacent subunit,

particularly the loop between the a8 and a9. The phosphoryla-

tion of this residue could restrict the movement of the a8 by

charge–charge interaction and thereby affect the conforma-

tional changes in Sensor 2 associated with ATP hydrolysis.

NSF also can be phosphorylated by the serine/threonine ki-

nase, Pctaire1. Pctaire1 phosphorylates NSF on Ser569 in

NSF-D2 and affects NSF oligomerization [89] (Fig. 2B). Muta-

tion of Ser569 to alanine (S569A) abolishes phosphorylation

and stabilizes the NSF oligomer. The S569E mutant caused

a defect in oligomerization. Inhibition of Pctaire1 activity by

over-expression of its kinase-inactive mutant (Pctaire1-KD)

also enhances the ability of NSF to hexamerize. Consistently,

overexpression of Pctaire1-KD or NSF-S569A in PC12 cells

significantly enhances high potassium-stimulated growth

hormone release from dense core vesicles, suggesting phos-

phorylation of NSF by Pctaire1 plays a role in regulating the

calcium-dependent exocytosis [89]. In the crystal structure of

NSF-D2, Ser569 is located on the interface between mono-

mers. Phosphorylation of this residue could impact the hexa-

merization of NSF.

Tyrosine phosphorylation of NSF was shown by Huynh

et al. [90]. Tyrosine kinases Fes and Fer phosphorylate NSF

on Tyr83 and the tyrosine phosphatase, PTP-MEG2, specifi-

cally removes the phosphate (Fig. 2A). Phosphorylation at

Tyr83 increases NSF’s ATPase activity but prevents a-SNAP

binding. This suggests that tyrosine phosphorylated-NSF

would be functionally inactive and lead to an accumulation

of dead-end cis-SNARE complexes, thereby inhibiting mem-

brane fusion. The hypothesis is supported in Jurkat T cells

transfected with a NSF Y83F mutant or with PTP-MEG2.

These cells contained enlarged secretory vesicles which were

fragmented into smaller vesicles when the cells were treated

with the PTP inhibitor, pervanadate. This indicates that tyro-

sine phosphorylation/dephosporylation of NSF can regulate a

dynamic cycle of vesicle fusion. In such a model, PTP-MEG2

functions as a positive regulator of NSF to promote secretory

vesicle fusion.

As mentioned previously, NSF-N contains two subdomains:

NA and NB. Tyr83 is located on the loop connecting these two
subdomains and is involved in stabilization of this loop by

forming a hydrogen bond with an adjacent amino acid

(Gln90). Gln90 also forms a hydrogen bond with Lys87, fur-

ther stabilizing the loop. Addition of a negative charge to

Tyr83 might affect these interactions and disrupt the interface

between the subdomains thus perturbing a-SNAP binding.

7.2. S-Nitrosylation and oxidation

Nitric oxide (NO) is a second messenger in the cardiovascu-

lar system that limits vascular inflammation and thrombosis

by, in part, affecting endothelial cell and platelet exocytosis.

Given that the inhibition of NSF by NEM is based on the sen-

sitivity of specific cysteines to alkylation, NSF would seem a

viable target for regulation by S-nitrosylation. The nitrosyla-

tion of NSF was first demonstrated, in endothelial cells, by

Lowenstein and colleagues [91]. They showed that exogenous

NSF could rescue the NO-induced inhibition of von Wille-

brand Factor release from permeabilized endothelial cells. Sur-

prisingly, treatment of NSF with the NO donor 2-(N,N-

diethylamino)-diazenolate-2-oxide (DEA-NONOate) did not

inhibit NSF’s ATPase activity but did block NSF’s ability to

disassemble SNARE complexes. DTT restored the activity of

nitrosylated-NSF, consistent with the reversible nature of the

modification. Mutagenesis of NSF’s nine cysteines indicates

that NSF-N domain Cys21 and 91 (Fig. 2A) and D1-domain

Cys264 are likely sites of S-nitrosylation. Mutations of those

residues to alanine all partially decreased NSF’s ATPase activ-

ity. Mutation of Cys21 blocks the ability of NSF to interact

with SNARE complexes and mutations of Cys91 and Cys264

act as dominant negatives. Cys21 is located on the interface be-

tween the two subdomains of NSF-N, which is proposed to be

the binding sites between NSF and a-SNAP. Mutation of this

residue could affect a-SNAP binding and abolish the interac-

tion between NSF and SNARE complexes. Cys91 is located

on the similar position as Tyr83. Its mutation may restrict

the conformational change of N domain induced by ATP

hydrolysis in NSF-D1 and affect the ability of NSF to disas-

semble the SNARE complexes. Cys264 is located in the Walk-

er A motif of NSF-D1, which is critical to ATP binding.

Mutation of this residue may affect the nucleotide binding

and inactivate the NSF.

The nitrosylation of NSF not only occurs in endothelial cells

[91], but is also seen in platelets [103]. Lowenstein and col-

leagues demonstrated that NO inhibits platelet granule exocy-

tosis by S-nitrosylation of NSF and adding NSF to the

platelets restores secretion. S-Nitrosylation of NSF on Cys91

also regulates its binding to the AMPAR GluR2 subunit

[92]. Substantial augmentation of NSF–GluR2 binding is ob-

served by treatment with the NO donors. NSF–GluR2 binding

is diminished in eNOS null mice. NO donors elicit a rapid,

time-dependent surface insertion of GluR2, which is markedly

reduced by disrupting the interaction between GluR2 and

NSF. It appears NSF S-nitrosylation could be a physiologic

mediator of the receptor’s surface expression during NO-in-

duced synaptic plasticity. It should be noted that there are

many potentially nitrosylatable proteins in a cell and it is per-

haps overly optimistic to believe the NSF is the only substrate

that counts.

Recently, it has been shown that NSF can be regulated by

hydrogen peroxide. H2O2 inhibits exocytosis from thrombin-

stimulated endothelial cells. This inhibition can be reversed

by adding NSF. H2O2 is thought to inactivate NSF through
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oxidation of the Cys264 in NSF-D1. Consistently, mutation of

Cys264 to threonine eliminates the sensitivity of NSF to H2O2

[93]. While this might suggest that NSF could be a redox sen-

sor in the cell, whose activity is decreased when the oxidation

state of the cytosol increases, it seems that, as with nitrosyla-

tion, NSF may not be the only relevant target of this level of

regulation.
8. Summary

Since its discovery, NSF has been linked to the secretory

pathway. Subsequent work has established a role for NSF in

the assembly/disassembly cycle of the SNARE proteins, a

function essential for cell survival. More recent work suggests

that NSF may serve as a structural chaperone for other, non-

SNARE complexes. As work progresses on these interactions,

one should be guarded to discriminate between truly new func-

tions for NSF and logical sequellae of defective membrane

trafficking.

The appreciation of NSF regulation has also been a recent

development and reflects our increased understanding of the

complexity of membrane trafficking mechanisms. Phosphory-

lation, nitrosylation, and oxidation may all play roles in con-

trolling NSF activity and thus membrane trafficking. These

modifications are generally transient and offer an ideal mecha-

nism for acute but reversible regulation of membrane traffick-

ing. However, care should be taken to establish the uniqueness

of the effect on NSF. Since multiple proteins can be modified

by nitrosylation or oxidation, the challenge is to establish that

their inactivating effects on NSF are truly the cause of the de-

fect in membrane trafficking observed.

In the years since NSF’s discovery, much has been learned,

however several questions still remain and new ones have sur-

faced. It is still unclear, at a molecular level, how NSF uses

ATP hydrolysis to disassemble the SNARE complexes. It is

now clear that NSF is regulated in novel ways, but what are

the physiological ramifications of these events? This is a partic-

ularly interesting question given the reduction in NSF levels

seen associated with epilepsy [94–96]. Finally, what role(s) does

NSF play in the non-SNARE complexes? Is it a chaperone

affecting their disassembly or is it along for the ride to where

it is needed for membrane trafficking? Future studies will ad-

dress these and many more questions.
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