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The unicellular green alga Chlamydomonas reinhardtii is a model organism for various studies in biology.
CC-124 is a laboratory strain widely used as a wild type. However, this strain is known to carry agg1
mutation, which causes cells to swim away from the light source (negative phototaxis), in contrast to the
cells of other wild-type strains, which swim toward the light source (positive phototaxis). Here we iden-
tified the causative gene of agg1 (AGG1) using AFLP-based gene mapping and whole genome next-gen-
eration sequencing. This gene encodes a 36-kDa protein containing a Fibronectin type III domain and a
CHORD-Sgt1 (CS) domain. The gene product is localized to the cell body and not to flagella or basal body.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The biflagellated unicellular green alga Chlamydomonas re-
inhardtii is a model organism used in various fields of biology, such
as flagellar motility, photosynthesis, photomovement and sexual
reproduction. One of its strong advantages is the feasibility of
genetic studies. C. reinhardtii has two mating types (mtþ and
mt�) and undergoes sexual reproduction under nitrogen-starved
conditions, which results in the production of four daughter cells
amenable to classical tetrad analysis.

Among several wild-type strains of C. reinhardtii, the most
widely used are CC-125 (mtþ) and CC-124 (mt�). This pair has
descended from Ebersold/Levine 137c strain, from which many
mutants have been isolated [1]. However, strictly speaking, CC-125
and CC-124 are mutants: both carry mutations in NIT1 and NIT2
loci and cannot grow on nitrate as the sole nitrogen source [1,2].
Moreover, CC-124, but not CC-125, carries a mutation in the AGG1
locus, which causes strong negative phototaxis; cells form ag-
gregates at the bottom of a test tube under room light, in contrast
to the positively phototactic CC-125 tending to swim toward the
surface of the medium [3]. Hereinafter we refer to CC-124 as agg1.
B.V. This is an open access article u
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Since the agg1 mutant has been used as a wild type, the mutation
in the AGG1 locus must be unintentionally present in many mutant
strains [1]. The sign of phototaxis is regulated by various cellular fac-
tors, such as the phase of circadian rhythm, reduction-oxidation poise
and internal cAMP level [4–6]. In order to precisely understand the
phenotypes of mutants deficient in the phototactic signaling pathway,
we need to determine the presence or absence of agg1 in experi-
mental strains. Identification of the AGG1 gene is therefore important
for studies using C. reinhardtii and related green algae, particularly in
the field of photobiology and behavior. Classical genetic studies based
on tetrad analysis have mapped the AGG1 locus to linkage group XIV
(currently chromosome 13) [3]. However, the locus has not been suf-
ficiently narrowed down to allow determination of the causative gene.

In this study, we identified the agg1 mutation by AFLP-based
gene mapping and next-generation sequencing. The causative
gene encodes a novel protein containing a Fibronectin type III
domain and a CHORD-Sgt1(CS) domain. This protein was found
localized to the cell body and not to the flagella.
2. Materials and methods

2.1. Strains and culture of Chlamydomonas reinhardtii

Chlamydomonas reinhardtii strains, CC-125 (AGG1; mtþ) and
CC-124 (agg1; mt�), were obtained from the Chlamydomonas
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Identification of AGG1 as Cre13.g590400. (A) The gene structure. A trans-
poson X5623.1 is inserted in the 5′ UTR of Cre13.g590400 in the agg1 mutant.
Arrows indicate the position of primers designed to detect the transposon insertion
(#1�#3; see Fig. 2). (B) Domain structures of the predicted product.
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Center (http://www.chlamy.org/). These strains and the transfor-
mants agg1::AGG1-3�hemagglutinin (HA) and bld12::SAS6-HA
were grown in Tris-acetate-phosphate (TAP) medium with aera-
tion at 25 °C on a 12 h/12 h light/dark cycle [7,8]. For immuno-
fluorescence microscopy, cells were grown under constant
illumination.

2.2. Linkage mapping of AGG1

CC-125 was crossed to agg1 (mt�) to obtain an agg1 (mtþ)
strain. The agg1 (mtþ) strain was crossed to a polymorphic strain,
S1C5 (mt� , CC-1952; [9]), for AFLP-based gene mapping. Re-
combination frequencies between agg1 and genetic markers were
determined by detecting polymorphic PCR products in 77 progenies
that displayed strong negative phototaxis [10]. The agg1 mutation
was mapped to a 1537-kb region between two genetic markers on
chromosome 13: STS79-178 (5′-TAGGGACACCCAAGGTAATGAGCA-
3′, 5′-ACGCTCAACTGTTCTAGACCCGAG-3′ and 5′-CCGGAAGGCTAC-
GAATGAGATACA-3′) and SSR116–16 (5′-CTCGGGTGAGCTGCAAT-
CAGTAG-3′ and 5′-CCTGTAAGCCCAGACAGGTCAAAC-3′).

2.3. Whole genome sequencing

Cell walls were removed from cells of agg1 and AGG1 (selected
from the progenies of an agg1� CC-125 cross) strains by autolysin
treatment [1]. DNA was prepared using a DNeasy Plant Mini kit
(QIAGEN) following the manufacturer's instructions. Two micro-
grams of each DNA sample was fragmented using a Covaris soni-
cator. �300 bp DNA fragments were then purified using a Pippin
Prep system (Sage Science) and were used to construct sequence
libraries using an Illumina TruSeq library prep kit (Illumina) es-
sentially following the manufacturer's instruction except that the
number of PCR cycles in the amplification enrichment step was
reduced to six to minimize the PCR amplification bias. The libraries
were sequenced using Illumina HiSeq 2000 to produce 2�101 bp
paired-end reads. In total, 48.2 M (9.7 Gbp) and 71.6 M paired-end
reads (14.5 Gbp) were obtained for agg1 and the AGG1 strain,
respectively.

Sequence reads were aligned onto the Joint Genome Institute
(JGI) version 5.3.1 (Creinhardtii_236.fa.gz) Chlamydomonas genome
sequence (https://phytozome.jgi.doe.gov/pz/portal.html#! info?
alias¼Org_Creinhardtii) using bowtie2 (http://bowtie-bio.source
forge.net/bowtie2/index.shtml). The resulting SAM (Sequence
Alignment/Map) files were converted to BAM (Binary Sequence
Alignment/Map) and sorted by SAMtools version 0.1.18 (http://
samtools.sourceforge.net/). To identify the mutation in the mapped
region of agg1 genome, the alignment data were visualized using
IGV software (version 2.3.39; https://www.broadinstitute.org/igv/)
and compared to each other or to the genome database.

2.4. PCR for AGG1 cloning and detection of transposon X56231.1

For cloning of AGG1 cDNA, total RNA was prepared and reverse-
transcription PCR was performed following the method of [11],
using primers 5′-GCGCCATATGTCCTGGCTCAGCAGCTTT-3′ and
5′-GCGCAGATCTTCAATCCCAGCTGGGCCGG-3′.

For detection of transposon insertion at 5′ untranslated region
(UTR) of AGG1, the following primers were used: #1: 5′-CTAACG-
CAACACGGCAGTTA-3′, #2: 5′-CCTGCATTGAGACTGCGCCC-3′, #3:5′-
TTAGGGCCAGTGGTGGTTTA-3′ (see Fig. 1C for details).

2.5. Generation of anti-AGG1 antibody

AGG1 cDNAwith a 6�His tag at the C terminus was cloned into
a bacterial expression vector, pMaL-c2X (New England Biolabs).
AGG1 was expressed as a fusion protein with maltose-binding
protein (MBP). MBP-AGG1-6�His was purified using amylose re-
sin (New England Biolabs) and used to immunize a guinea pig. The
obtained antiserum was blot-purified using AGG1 after proteolytic
removal of MBP- and 6�His-tags.

2.6. Generation of agg1::AGG1–3�HA strain

The cDNA of AGG1 with a 3�HA tag at the C terminus was
cloned into the pGenD expression vector containing the par-
omomycin resistance gene aphVIII [12,13]. The DNA construct was
introduced into agg1 cells by electroporation (NEPAGENE) [14]. A
transformant that displayed positive phototaxis and expressed
AGG1-3�HA was isolated.

2.7. Phototaxis assay

Dish phototaxis assay was performed following the method of
[5]. Tube phototaxis assay was performed following the method of
[3] with modifications. Briefly, cells were washed with an assay
solution (5 mM Hepes (pH 7.4), 0.2 mM EGTA, 1 mM KCl, and
0.3 mM CaCl2) and kept under red light for �1 h before the assays.
Cell suspensions (�7 ml, �1�107 cells/ml) were put in test tubes
(18 mm�180 mm) and illuminated with a white LED (ATTO
Flatviewer; ATTO) from the top. Cell distribution patterns in both
assays were photographed.

2.8. Fluorescence microscopy

Immunofluorescence microscopy was carried out as described
previously [15]. Anti-HA tag antibody (1:200, 11867423001; Roche
Applied Science) and anti-acetylated α-tubulin antibody (1:200,
ab24610; abcam) were used as primary antibodies. Anti-mouse IgG
antibody conjugated with Alexa Fluor 350 (1:200, A11045; Life
technologies) and anti-rat IgG antibody conjugated with DyLight
549 (1:200, 612-142-120; ROCKLAND) were used as secondary
antibodies. Images were takenwith a CCD camera (DP73; Olympus).

2.9. Western blot analysis

Western blot analysis of cell fractions was carried out using
anti-HA (11867423001; Roche Applied Science) and anti-ODA-IC2
(D6168; Sigma Aldrich) antibodies as primary antibodies and anti-
rat IgG (NA935V; GE Health Care), anti-mouse IgG (NA931V; GE
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Health Care), and anti-guinea pig IgG (A7289; Sigma-Aldrich) an-
tibodies as secondary antibodies. The cell fractions were prepared
following the procedures described previously [16].
3. Results

3.1. Identification of AGG1 by linkage mapping and next-generation
sequencing

The AGG1 locus was narrowed down to an �1537-kb region on
chromosome 13 by linkage mapping (see Section 2). The causal
mutation of agg1 was searched for in the mapped region by a visual
comparison of genome sequence of the agg1mutant with that of an
Fig. 2. The “agg” phenotype is closely correlated with the presence of a transposon. (A) T
suspensions were photographed after being illuminated from the top for 30–45 min. T
aggregated at the bottom of the tubes, whereas the other two progenies showed more
mixture contained three primers (#1�#3 in Fig. 1A). A 449-bp product is amplified with
with #2 and #3 when it is not present. The transposon insertion was always in the pro
agg1-free progeny from the cross agg1� CC-125 or with that of the
strain CC-503 registered in the JGI database using the IGV browser
(see Section 2). We found three agg1-specific mutations in the
mapped region: in Cre13.g590400, paired-reads of the agg1 genome
did not exactly map to the 5′ terminus of the first exon in the re-
ference database, suggesting an insertion; Cre13.g603000t2.1 and
Cre13.g604250 have a single nucleotide substitution in an intron
(13:4,387,946 bp C to A, and 13:4,655,586 bp G to A, respectively).
Among these, the mutation in the Cre13.g590400 is the most likely
candidate. Sanger DNA sequencing of this locus revealed that an
insertion of a transposon, X56231.1 (also known as TOC1) in the 5′
UTR of Cre13.g590400 [17,18] (Fig. 1A). It is a non-autonomous
version of TOC3, a retroelement encoding a tyrosine recombinase,
widespread in the C. reinhardtii genome [19].
ube tests for the tetrads from the cross agg1 (mt�)� CC-125 (mtþ wild type). Cell
wo progenies from each tetrad (3, 4, 7, 8) showed strong negative phototaxis and
dispersed distribution. (B) PCR detection of the transposon insertion. The reaction
#1 and #3 when the transposon is present whereas a 674 bp product is amplified

genies showing the “agg” phenotype.



Fig. 3. AGG1-3�HA rescues negative phototaxis in the agg1 mutant. (A) (Top panels) Cell suspensions in Petri dishes were photographed after illumination from the right
side for 10 min. CC125 (wild type) and agg1 cells showed positive and negative phototaxis, respectively. The agg1 cells expressing AGG1-3�HA cells showed positive
phototaxis. (Bottom panels). Polar histograms representing the percentage of cells moving in a particular direction (one of 12 bins of 30°) in a 1.5-s time window after 15 s of
illumination from the right. (B) Western blot analysis against whole cell lysates (10 μg/lane). (Left) Proteins separated by SDS-PAGE were transferred to a PVDF membrane
and stained with CBB. (Right) Anti-AGG1 antiserum detected both endogenous (35.8 kDa; arrow) and 3�HA-tagged AGG1 (40.6 kDa; arrowhead). The bands near the
100 kDa and 25 kDa markers are likely non-specific.
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The gene product of Cre13.g590400 is predicted to be a novel
317-amino-acid protein containing a Fibronectin type III domain
and a CHORD-Sgt1(CS) domain (Fig. 1B). The Fibronectin type III
domain has been found in a variety of proteins and does not
suggest specific protein functions. The CS domain is the core of
NudC, a protein associated with dynein and involved in nuclear
migration; because of this, Cre13.g590400 has been annotated as a
NudC-like protein (33% identical to murine NudC) [20,21].
Fig. 4. AGG1 localizes to the cell body. (A) (Left) Western blot analysis against cellular fr
(an outer arm dynein subunit antibody used as a flagellar axoneme marker). Samples ob
cell bodies and flagella. (Right) To examine whether a small amount of AGG1 localizes t
matrix fraction were loaded; however, no bands were detected. (B) Western blot anal
separated by SDS-PAGE were transferred to a PVDF membrane and stained with CBB. (R
the transformant. (C) Immunofluorescence microscopy to localize AGG1. (a–c) Typical
expressing an HA-tagged basal-body protein, used as positive control for HA-tag detectio
(b, e and h) are shown. Anti-HA antibody detected spots in the cell, not flagella, of agg1::A
represents basal bodies (g; arrow) [29].
3.2. Correlation between the loss of Cre13.g590400 and negative
phototaxis

To determine whether Cre13.g590400 is in fact the causal gene of
agg1, we examined the correlation between the presence of the
transposon at the 5′ UTR of Cre13.g590400 and the phototactic be-
havior of the cell. We assayed tetrads from the agg1� CC-125 cross
for the sign of phototaxis either by a “test-tube assay” (Materials and
Methods), or by visual inspection under the microscope. In test-tube
actions using anti-AGG1 (35.8 kDa) antibody and anti-ODA-IC2 (63.5 kDa) antibody
tained from the same amount of cells were loaded in the lanes of whole cell lysates,
o flagella, a 50-fold higher concentration of flagella, axonemes, and membrane and
ysis using anti-HA antibody against whole cell lysates (10 μg/lane). (Left) Proteins
ight) Anti-HA antibody detected a single band of 3�HA-tagged AGG1 (40.6 kDa) in
images of agg1::AGG1-3�HA, (d–f) agg1 and (g–i) bld12::CrSAS6-3�HA (a strain
n) treated with anti-HA antibody (a, d and g) or anti-acetylated α-tubulin antibody
GG1-3�HA (a, b), suggesting localization to the cell body. A spot in CrSAS-6-3�HA
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assays, negatively phototactic cells tend to aggregate at the test tube
bottom in response to the room light (“agg” phenotype) (Fig. 2A). In
80 tetrads (320 progenies) examined, progenies with opposite pho-
totactic signs were always segregated 2:2, and the two progenies
displaying negative phototaxis always contained the inserted trans-
poson, as detected by PCR (Fig. 2B).

The segregation indicates that the transposon insertion in the
Cre13.g590400 gene of agg1 blocks its expression and cause ne-
gative phototaxis. To examine this possibility, we introduced
Cre13.g590400 cDNA in an expression vector into the agg1mutant.
As expected, the transformed cells expressing the Cre13.g590400
protein tagged with 3�HA showed positive phototaxis under
conditions where the agg1 mutant showed negative phototaxis
(Fig. 3A).

3.3. AGG1 is absent from agg1 cells

To detect the AGG1 protein (the product of the Cre13.g590400
gene, GenBank accession#: XP_001692941) in the cell, we raised
antiserum against bacterially expressed protein. Western blot
analysis of whole cell extract using the affinity-purified antiserum
detected a band with the expected molecular mass of AGG1
(35.8 kDa) in wild type, and a band expected for 3�HA-tagged
AGG1 (40.6 kDa) in the transformant, but no bands in the agg1
mutant (Fig. 3B). From these results, we concluded that Cre13.
g590400 is the causal gene of the agg1 mutation.

3.4. AGG1 is localized in the cell body

Western blot analysis of fractions fromwild type cells indicated
that AGG1 localizes to the cell body (Fig. 4A). Consistent with this
observation, immunofluorescence images of the agg1::AGG1-
3�HA transformant using an anti-HA antibody, which detects
only AGG1-3�HA in western blotting, showed that AGG1 is pre-
sent as small particles in the cell body (Fig. 4B and C). The signal
did not appear to be concentrated at the eyespot or basal body.
TargetP (http://www.cbs.dtu.dk/services/TargetP/), an analytical
tool to predict the subcellular localization of eukaryotic proteins,
suggests that AGG1 has a plant-type mitochondrial targeting
peptide (mTP score¼0.810) [22]. However, we have thus far been
unable to detect mitochondrial localization of AGG1. Further stu-
dies are necessary to determine its subcellular localization.
4. Discussion

In this study, we identified the causal gene of the agg1 muta-
tion, which is carried by CC-124, a widely used wild-type strain of
C. reinhardtii. In the agg1 mutant, a transposon, TOC1, is inserted in
the 5′ UTR of the Cre13.g590400 gene and blocks the expression of
a 317 amino-acid polypeptide (AGG1) that localizes to the cell
body. As stated in Introduction, agg1 mutation may well be dis-
tributed among many kinds of C. reinhardtii mutants used in var-
ious research fields. Identification of the agg1 gene sequence must
be useful for detection and elimination of the agg1 mutation from
those mutants.

How does agg1 display strong negative phototaxis? Detailed
analyses of wild-type and agg1 flagellar movements revealed that,
in wild-type cells, the trans-flagellum (the one farthest from the
eyespot) beats stronger than the cis-flagellum (the one nearest to
the eyespot) after photoreception, whereas in agg1 cells, the cis-
flagellum beats stronger than the trans-flagellum after photo-
stimulation [23,24]. The beating balance between the cis- and trans-
flagella has been shown to be regulated by submicromolar Ca2þ

[25,26]. However, in vitro motility reactivation of demembranated
cell models in Ca2þ buffers showed no significant difference in the
Ca2þ sensitivity between wild-type and agg1 flagellar axonemes
[5]. Thus, it is unlikely that the loss of AGG1 in the cell body directly
affects flagellar function. Recently, cAMP is also shown to affect the
beating balance between two flagella in vitro [26]. AGG1 may
modulate the signaling pathway in which photoreception causes a
change in cellular signals, such as cAMP or Ca2þ concentrations.

The properties of AGG1, including the function of Fibronectin
type III and CS-domains, remain to be clarified. The CS-domain is
known to be involved in a dynein-regulating protein NudC and
Chlamydomonas has a NudC-like protein that regulates axonemal
dyneins. However, it is unlikely that AGG1 is involved in dynein
regulation since it is localized in the cell body and Chlamydomonas
has no cytoplasmic dynein functioning in the cell body. BLAST
search suggests that Volvox carteri and Gonium pectorale have
AGG1 homologs, Vocar20015120m.g (XP_002949933.1) (62.1%
similarity) and GPECTOR_33g581 (KXZ47699.1) (76.8% similarity),
which also have Fibronectin type III- and CS-domains. It is inter-
esting to note that these two organisms are colonial algae and may
not need to regulate the beating balance of two flagella [27,28].
This feature also suggests that AGG1 is not directly involved in the
regulation of flagellar beating, although it should be tested by
determination of AGG1 localization in these algae or by knock-
down/out experiments.

A previous study showed that the lack of AGG2 or AGG3 gene
products also results in the “agg” phenotype [24]. AGG2 is a
membrane protein that localizes to the proximal flagellar region,
and AGG3 is a flavodoxin that localizes to the flagellar matrix.
These proteins interact with each other and are suggested to
function in a pathway that also involves AGG1 [24]. However, our
results clearly showed that the localization of AGG1 differs from
that of AGG2 or AGG3. Volvox carteri has multiple AGG2 hom-
ologs Vocar.0001s1693.1 (XP_002951946.1), Vocar.0001s1548.1
(XP_002947691.1), Vocar.0017s0113.1 (XP_002953333.1), and Vo-
car.0017s0112.1 (XP_002953334.1), and an AGG3 homolog Vo-
car.0028s0169.1 (XP_002947514.1). Gonium pectorale has an AGG2
homolog GPECTOR_15g310 (KXZ50626.1) and an AGG3 homolog
GPECTPR_60g718 (KXZ44941.1). Intriguingly, AGG2 is conserved in
plants (e.g. Oryza sativa indica group EAY92439.1; Medicago trun-
catula AFK38344.1) and so is AGG3 (e.g. Citrus clementine
XP_006452110.1; Brassica oleracea var. oleracea XP_013625297.1).
Because these plants do not have AGG1 homologs, this also in-
dicates that AGG1 functions in a different pathway from that in-
volves AGG2 and AGG3. For determination of the functional re-
lationship between AGG1, AGG2 and AGG3, identification of the
structural basis for the punctate localization of AGG1 and analysis
of light-induced changes in cytoplasmic factors in agg1�agg3
mutants should be important future challenges.
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