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Abstract

Generalizing the previous works on evolving fuzzy two-sphere, | discuss evolving €u2Zyby studying scalar field theory
on it. The space—time geometry is obtained in continuum limit, and is shown to saturate locally the cosmic holographic principle.
| also discuss evolving lattice-simplex obtained by ‘compactifying’ fuzz¢ P". It is argued that an evolving lattieesimplex
does not approach a continuum space—time but decompactifies into an evolving'®%zy
0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction An interesting challenge to extend the applicability
of non-commutative geometry would be formulating
Several thought experiments in semi-classical quan- dynamical evolutions of non-commutative spaces, as
tum gravity and string theory show the existence of our universe is growing. A general formulation of a
minimum length[1,2]. This suggests that space—time fuzzy space changing its si{8] and field theory on
is not a continuous static object, but is fluctuating evolving fuzzy two-sphergs] were discussed by the
in essence and must be treated quantum mechani-present author, based on pure-into-mixed state evolu-
cally in some way. An approach to such quantum tions[7,8]. Splitting process of fuzzy space was dis-
space-time is given by non-commutative geometry cussed iff9]. In fact these two processes are intimately
[3,4]. Although non-commutative geometry is techni- related, and the evolution process can be interpreted as
cally much more complicated to treat than continuum the process of a ‘main’ fuzzy space emitting ‘baby’
geometry and its physical applications are quite lim- fuzzy spaces one after anothi;6]. Physically in-
ited at present, the approach is fascinating becauseteresting is the space—time geometry associated with
space-time is naturally embedded in the operational such an evolving fuzzy space. The geometry on the
properties of quantum field. evolving fuzzy two-sphere was extracted from the con-
tinuum limit of the scalar field theory on {i6]. It
E——— _ _ turned out that the behavior of the scale factor sat-
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posed in[10]. A certain class of observational limits SU(n+ 1). Let me definé{y as the subspace spanned

on space—time quantitigg1-15]was argued15,16] by |N;mzq, ..., my41) With anym; for fixed N. Each

to be related with the holographic princigle,17,18] Hy gives the rankN symmetric representation of

Therefore this property of saturation could specify the SU(n + 1), and defines a fuzzg P". The continuum

class of space—time fuzziness associated with evolving limit is given by N — oo. A scalar field on a fuzzy

fuzzy spaces. CP" is an operator or{y, and is denoted byy.

The aim of the present Letter is to extend part of the | assume the hermiticit&s,‘:, = ¢y for simplicity.

previous results on evolving fuzzy two-sphereto some  An evolution of a fuzzy space can be derived

other evolving fuzzy spaces. In Sectidnl will study ~ from unitary splitting process of emitting ‘baby’ fuzzy

scalar field theory on evolving fuzay P", and extract  spaces[5,6,9]. For a fuzzyC P", its growing and

space—time geometry in continuum limit. It will be ob-  shrinking processes are, respectively, described by the

served that the space—timeametry saturates locally  following SU(n + 1)-invariant operations

the cosmic holographic principle §f0]. In Section3,

I will introduce potential terms into the action of scalar n+l

field to ‘compactify’ fuzzyC P" to latticen-simplex, 0— ZaiTOai,

and discuss the space—gngeometry in continuum i=1

limit. The final section will be devoted to summary n+1

and discussions. 0 a;0a), (2.4)
i=1

where O is an operator on a fuzz¢ P". Generaliz-
ing the discussions about fuzzy two-spherd6h to
For the present purpose of describing evolving the pre_sent_cas_e, the equation of motion of a massless
fuzzy C P", it is most convenient to introduce the Fock Scalar field is given by
space generated lay+ 1 sets of creation—annihilation it
operator$19,20] This description was used for evolv- Z[a’r [ar ¢]] _ Z[Lb [Lb ¢]] _0 2.5)
ing fuzzy two-spherex(= 1) in [6]. The creation— A PLE T '
annihilation operators are defined by

2. Evolving fuzzy C P"

i=1 b

Mo where the summation df is over all the generators
[a”“j] - "/T’ + of SU(n + 1), and the scalar field is defined lpgy=
[ai,aj]z[ai,aj]zO G.j=1....,n+1. (2.1) ZN¢N_' _ o
The Fock space is constructed from the Fock vacuum  To discuss the continuum limit ¢2.5), let me ex-
a;|0) =0 as pand the scalar field in terms of the complete set of
operatorD¥, as
IN;ma,...,mu41) ’
1 n N N
T N O L NN N D DY @9
mal---muy41: N,jm

wherem; are natural numbers and a degenerate nota-

tion N = Z’?;rllml. is used for later convenience. The Herej andm label the second Casimir and an orthog-

1 H H . _
symmetry associated witiP" is SU (n + 1). Its gen- tc;\r;;lytl:oordmate in the subspace labeledjbyespec

erators can be represented as operators on the Fock

space
L 2 L8[ 0F ] = i Q-
b
Lb = a'Tla i (2.3) ,
i,; A Tr(Qj.YmTQ;\f’m,)=8NN/3jj/6mm/, (2.7)

where Tl.’; are the matrix elements of the Hermitian where the trace Tr is over the whole Fock space. Be-
generators in the fundamental representation of cause of thedU(n + 1) symmetry, the evolution oper-
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ations can be assumed to have the form
n+1
tAN N+ ,N+1
>4 QY ai =T QI
i=1
n+1

Y a0, el =cimol (2.8)
i=1

with some coefficients’ * and ¢ ~. Note that the
first equation o{2.8)determines higher-rank orthogo-

nal operators from lower ones. Therefore it is allowed
to assumerj.v * be positive real.

To obtainc? ™, let me use the normalization condi-
tionin (2.7)
5 n+1
N+ t AN t AN T
(Cj ) = Z Tr(a,vai Qj’maiai,Qj’m )
i,i'=1
The SU(n + 1) generators in the fundamental repre-
sentation satisfies the following identity

(2.9)

m(Saﬁ(Sya +22T¢fﬂTyb8 = 8asdpy (2.10)
b
where the standard normalizatioq®f %) = 8,;,/2
is assumed. Using this identity, the right-hand side of
(2.9)can be evaluated as

()

1 N N T
— n—-i-lTr((N+n+1)Qj’m(N+n+l)Qj'm )

+2ZTr(Lij¥meQj¥mT)
b

_ (N+n+1)2
o n+1
1 T
+2T( 5l 1 o]l
+(L%)?0Y, QﬁYm*)

=(N+n+DHN+1) —j. (2.11)
Therefore
AN =J(N+n+DWN+1) — . (2.12)

The right-hand side of2.9) can be computed differ-
ently by using(2.8). This gives

()’

N+1)—
: zcl_v+c(_+) ]

el (2.13)
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Therefore,
e~ :c;N_l)+=,/N(N+n)—j. (2.14)

Substituting the expansiof2.6) into the equation
of motion(2.5), | obtain
(N-D+,N-1  (N+D)— N+1
> (= Pim —C; Dim
N,j,m
+@N+n+1-pe},) oY, =0. (2.15)

| assume that this equation will approach a second or-
der differential equation with respect 1 in the con-
tinuum limit. Then, using the expansion,

1
i = Bim(N) £ ], (N) + 56,(N),  (2.16)
| obtain
1 v-p+ | N+D-
_E(c; ) +C.§~ ) )d),///,m(N)
+ (C;N71)+ _ C;N+1)7)¢.//,m (N)
+(@N At 1= =TT =g ()
=0, (2.17)

whereN is regarded as a continuum variable ale-
notes the derivative with respect . Let me define

1

T:N+n—; , (2.18)
and assumé is large enough and

J <1 (2.19)
N
Then

1

(N-D+ =+
¢; T >
(- o1 (2.20)
J 2’ :

and the equation of motion of a massless scalar field
in the continuum limit is obtained as

T (T) + ¢ (T) + jjm(T) =0,

wheres denotes the derivative with respectZo In a
geometric background of

(2.21)

ds?>=—f(T)dT? + h(T)d 2>, (2.22)
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whered 22 is the metric on a uni€ P", the equation
of motion of a massless scalar field takes the form

ad ad
-1/2 —n+1 9 ~1/2 n 9
S(T)~7h(T) 8Tf(T) h(T) 8T¢(T’Q)

— Ao¢(T, 2)=0, (2.23)

whereAg, denotes the Laplacian on a ugit”, and |
have used the fact thatP”" has 2: dimensions. Com-
paring this with(2.21) the eigenvalues ofi,; should
be identified with— j, and

hT)

=T,
S(T)
f(T)_l/Zh(T)_”H%f(T)_l/Zh(T)” =1 (2.24)

The solution is unique up to an unimportant overall
constant factor, and | obtain a metric

ds? = —T™ 712 4T? 4 T551 422

— TR AT? 4 TD140Q2, (2.25)

whereD = 2n, the dimensions of P". Changing the
-2

time variable talr = T~ 25-2 dT,t ~ T2 , the met-

ric of an evolving fuzzyC P" in the continuum limit is

given by

ds? = —di® +1?/P d2? (2.26)

up to unimportant constants.

For the consistency of the continuum limit, the cos-
mic time r must be regarded as a continuum vari-
able. This is actually satisfied, since, for an interval
of AN=1
At ~ T~ 252, (2.27)
which remains constant fob = 2 or vanishes for
D > 2 inthelimitT — oo. As for the spatial part, the
number of ‘points’ on a fuzzy P" can be estimated
by the dimensions df{, which is approximatelyw”.
Therefore, from the expressi¢p.26), the volume per
point is approximately given by

(tl/D)D
~ o ~
which remains constant fdp» = 2 or vanishes fop >
2 inthelimit7 — oo.

From the equation of motiof2.21) the angular fre-
quency with respect to the variabfe of a solution

1?7 P, (2.28)
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is roughlywr ~ /j/T ~ /j/N. Therefore the as-
sumption(2.19)meansvr < 1. The physical angular

frequency should be measured in terms of the variable
t, and this is given bys, = wr 4F ~ wpT 2. This

w; can be identified with the physical energy of a mode
and it has no upper bounds in the continuum limit
for D > 2, or must be much smaller than a constant
for D = 2. Hence the continuum limit is well-behaved
also in this respect.

In [10], a cosmological version of the holographic
principle [17,18] is proposed. This was obtained by
imposing the holographic principle to the inner re-
gion causally connected with a boundary. For a simple
case ofa(t) ~ t? for a spatially flat FRW universe
ds? = —dt?+ a(r)% dx?, the cosmic holographic prin-
ciple imposes an inequality

1

> —,
P=7

This is indeed saturated {{2.26), if the curvature of
CP" is ignored. Therefore, concerning local prop-
erties, the present model saturates the cosmic holo-
graphic principle. This suggests that the present model
is associated with the class of space—time fuzziness of
[11-15] which was arguefll5,16]to be related to the
holographic principld17,18]. On the other hand, as
was discussed ifiL0] for a FRW closed universe, if
the global structure of P" is taken into account, the
present model will be ruled out by the cosmic holo-
graphic principle. This is because a boundary can be
quite small with a large causally-connected inner re-
gioninCP".

(2.29)

3. Evolving lattice n-simplex

In this section, | will introduce potential terms to
compactify fuzzy CP" down to lattice n-simplex.
Similar methods were used in constructing fuzzy
spaces from others if21,22] The equation of mo-
tion of a scalar field in this section is given by

n+1

kZ[a,-T, lai. ¢1] =) _[L".[L".¢]]

n+1

—v Y [Ni.[Ni,$1] =0,

i=1

(3.1)
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wherek, v are positive real constants, anyl = aiTa,'

(i=1,....n+ 1). A nice property of these potential

terms is that they commute with the kinetic terms

n+1 n+1
V5 DLl )| = Y e 1)

[Nj,;[Lb,[Lb,qsﬂ] = S0 (1. 01}

(3.2)

Thereforg(3.1) can be considered in each subspace of

the eigenvalues of the adjoint operatidng;, -1. Let

me assume is so large that the physical degrees of

freedom are effectively restricted to

[Ni,$]=0 (=1,...,n+1). (3.3)
This allows an expansion
b= Y. GmpmaNimi . omaal, (3.4)

where | have introduced a shorthand notation

IN;ma, ..., mu41|

vmn+1><Nvmlv . (3'5)

Plugging the expansiof8.4) into the first term of
(3.1), | obtain

=|N;ma,.. S Myl

n+1
> la] 1ai. 9]
i=1
n+1
== (a]pai +aipa) + @N +n + 1)
i=1
n+1
= Z <_ Z(”H‘pml ..... mi—1,...,my41
mi,...,My41 i=1

+ (2N + n + 1)¢m1,...,mn+1> |N; mi,..., mﬂ+1|'
(3.6)

In the continuum limit wheren; are large and can be
regarded as continuum variables, | expand the scalar

field in the second order of derivatives

1
¢m1,...,m,—:tl,...,m,1+1 = ¢c + 8i¢c + §3i2¢c, (3-7)

whereg, is the continuum limit oty ....m,,, - Substi-
tuting the expansion int3.6) and assumingz; > 1,

| obtain
n+1 n+1
el la ¢l =~ Y. (Zmia,?@ + ai¢c>
i=1 my,....,Mpyy1 \ i=1
X |N;m1,...,mpy1]. (3.8)

As for the second term i(3.1), from the expres-
sions of the generatol®.3), the identity(2.10) and
[>°; Ni.¢1=0, | obtain

2L L% ¢]]

1
=3 3 [ofan.[afa. ]

i,j=1
n+1

= Y > (mi+Dm,

X |N;m1,...,mpy1].

In the continuum limit, | may use the expansion

¢ml,...,m,—+1 ..... mj—=1,..,myq1

1 2 1 2
>~ P + 0ipe — e + Eal‘ e + éajd)c —0i0¢c.
(3.10)

Then, substituting this expansion irh9)and assum-
ingm; > 1, | obtain

2L ¢]]

n+1
= Y (Z((n + Dym; — N)d;¢pe

my,....,Mpy1 \ i=1

n+1

2 2

"'Z(’”i —miN)diPe

i=1

n+1
+ Z mimjaiaj(bc)lN;ML.-.,mn+1|-
i j=Lli%j

(3.11)
Substituting(3.8) and (3.11) into (3.1), the equation

of motion of a massless scalar field in the continuum

limit is given by
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n+1
0= (=k+N—(n+Dm)dioe
i=1
n+1
+ Z(—kmi + Nm; — ml-z)8,~2¢C
i=1
n+1
- Y mimjdidje.
i, j=1,i#]j
n+1
= Z 0 ((—kmi +Nm; — m,'z)aid)c)
i=1

n+1
— Y imim;dgc).
L j=Li]

Here note that the orders of; are different between
the temporal (withk) and the spatial directions, i.e.,
one order is replaced with The motivation for the in-
troduction of the parametérin (3.1) was to avoid the
confusions about the approximation in the continuum
limit. If the temporal terms were neglected as lower
orders ofm;, the equation of motion would have no
propagation modes.

The equation of motion of a massless scalar field in
a non-trivial geometric background is given by

di/—gg”dj¢ =0. (3.13)

Identifying this with(3.12) the geometry in the con-
tinuum limit is identified as
fori =,

[ ooll —
88 _{ fori # j.

From (3.14) the determinant of the metric tensor is
computed to be

(3.12)

—km; + Nm; — ml2
—m;m;

(3.14)

n+1 Tgl
I m,-) |
i=1
Forn =1, (3.14)leads to an inconsistency. Therefore
the geometric picture can be applied to the continuum
limit only for n > 1. This will be assumed in the dis-
cussions below.

To decouple the temporal and spatial directions, let
me take a new parameterization

—-g= (k(N - k)" (3.15)

(i=1,...,n),

n

Myl = N(l— le).

i=1

nm; = in

(3.16)
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These coordinates satisfy<Ox;, > *_; x; < 1. Denot-
ing N also byxg and assumingv, m; > 1, the metric
tensor in this basis is given by

g°°= —aNk,

gOi — 0,

ij_ Jaxi(L—x) fori =,

&£ = { —ax;x; fori # j, (3.17)

where

241 " " 77}1

a=N 1 (k(l—Zx,-)l_[xi) . (3.18)

i=1 i=1

Extracting N dependence froni3.17) the metric
has the form

ds? = —NT3 A(x)AN? + N7T d2%(x),  (3.19)

whered 22(x;) is the spatial part depending only on
n+2

x;. Defining a cosmic timér = N2 dN, the met-

ric can be expressed as

2(2n+1)
3n

ds?=—A(x)) di® +1 d22(x;). (3.20)

Ignoring the spatial dependence, the exponent of the
scale factor is consistent with the cosmic holography
(2.29)

2n+1 1 2n-1
3n n 3n
The metric(3.19) however, casts doubts on the
consistency of the continuum limit. It is clear that the
proper time of one unit of timeAN = 1 becomes in-
finitely larger, asV becomes larger. As for the spatial
part, the volume per lattice is approximately given by
(N%)”/N" = N% ~t, which is also divergent.
To see more what is physically expected\abecomes
larger, let me go back to the starting equation of mo-
tion (3.1). If the excitation energy of the kinetic term
is in the same order of that of the potential term, the
lattice compactification cannot be justified. The low-
est excitation of the potential term in the acti(gl)
is v, while the order of the highest excitation of the
kinetic term is given byN?2, which is estimated by
putting 9; ~ O(1) andm; ~ O(N) in (3.12) Hence
the decoupling cannot be justified fof > v. There-
fore, whenN becomes much larger thasv, the com-
pactification potential is not large enough to keep the
compactification, and the system is better described by
a scalar field theory o6’ P".

> 0.

(3.21)
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