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Abstract

Generalizing the previous works on evolving fuzzy two-sphere, I discuss evolving fuzzyCPn by studying scalar field theor
on it. The space–time geometry is obtained in continuum limit, and is shown to saturate locally the cosmic holographic p
I also discuss evolving latticen-simplex obtained by ‘compactifying’ fuzzyCPn. It is argued that an evolving latticen-simplex
does not approach a continuum space–time but decompactifies into an evolving fuzzyCPn.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Several thought experiments in semi-classical qu
tum gravity and string theory show the existence
minimum length[1,2]. This suggests that space–tim
is not a continuous static object, but is fluctuati
in essence and must be treated quantum mech
cally in some way. An approach to such quant
space–time is given by non-commutative geome
[3,4]. Although non-commutative geometry is tech
cally much more complicated to treat than continu
geometry and its physical applications are quite l
ited at present, the approach is fascinating beca
space–time is naturally embedded in the operatio
properties of quantum field.
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An interesting challenge to extend the applicabi
of non-commutative geometry would be formulati
dynamical evolutions of non-commutative spaces
our universe is growing. A general formulation of
fuzzy space changing its size[5] and field theory on
evolving fuzzy two-sphere[6] were discussed by th
present author, based on pure-into-mixed state ev
tions [7,8]. Splitting process of fuzzy space was d
cussed in[9]. In fact these two processes are intimat
related, and the evolution process can be interprete
the process of a ‘main’ fuzzy space emitting ‘bab
fuzzy spaces one after another[5,6]. Physically in-
teresting is the space–time geometry associated
such an evolving fuzzy space. The geometry on
evolving fuzzy two-sphere was extracted from the c
tinuum limit of the scalar field theory on it[6]. It
turned out that the behavior of the scale factor s
urates locally the cosmic holographic principle p
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posed in[10]. A certain class of observational limi
on space–time quantities[11–15]was argued[15,16]
to be related with the holographic principle[10,17,18].
Therefore this property of saturation could specify
class of space–time fuzziness associated with evol
fuzzy spaces.

The aim of the present Letter is to extend part of
previous results on evolving fuzzy two-sphere to so
other evolving fuzzy spaces. In Section2, I will study
scalar field theory on evolving fuzzyCPn, and extract
space–time geometry in continuum limit. It will be o
served that the space–time geometry saturates locall
the cosmic holographic principle of[10]. In Section3,
I will introduce potential terms into the action of sca
field to ‘compactify’ fuzzyCPn to latticen-simplex,
and discuss the space–time geometry in continuum
limit. The final section will be devoted to summa
and discussions.

2. Evolving fuzzy CPn

For the present purpose of describing evolv
fuzzyCPn, it is most convenient to introduce the Fo
space generated byn + 1 sets of creation–annihilatio
operators[19,20]. This description was used for evol
ing fuzzy two-sphere (n = 1) in [6]. The creation–
annihilation operators are defined by

(2.1)

[
ai, a

†
j

] = δij ,

[ai, aj ] = [
a

†
i , a

†
j

] = 0 (i, j = 1, . . . , n + 1).

The Fock space is constructed from the Fock vacu
ai |0〉 = 0 as

|N;m1, . . . ,mn+1〉
(2.2)= 1√

m1! · · ·mn+1!
(
a

†
1

)m1 · · · (a†
n+1

)mn+1|0〉,

wheremi are natural numbers and a degenerate n
tion N = ∑n+1

i=1 mi is used for later convenience. Th
symmetry associated withCPn is SU(n + 1). Its gen-
erators can be represented as operators on the
space

(2.3)Lb =
n+1∑
i,j=1

a
†
i T

b
ij aj ,

whereT b
ij are the matrix elements of the Hermitia

generators in the fundamental representation
k

SU(n+1). Let me defineHN as the subspace spann
by |N;m1, . . . ,mn+1〉 with anymi for fixed N . Each
HN gives the rankN symmetric representation o
SU(n + 1), and defines a fuzzyCPn. The continuum
limit is given by N → ∞. A scalar field on a fuzzy
CPn is an operator onHN , and is denoted byφN .
I assume the hermiticityφ†

N = φN for simplicity.
An evolution of a fuzzy space can be deriv

from unitary splitting process of emitting ‘baby’ fuzz
spaces[5,6,9]. For a fuzzyCPn, its growing and
shrinking processes are, respectively, described by
following SU(n + 1)-invariant operations

O →
n+1∑
i=1

a
†
i Oai,

(2.4)O →
n+1∑
i=1

aiOa
†
i ,

whereO is an operator on a fuzzyCPn. Generaliz-
ing the discussions about fuzzy two-sphere in[6] to
the present case, the equation of motion of a mass
scalar field is given by

(2.5)
n+1∑
i=1

[
a

†
i , [ai,φ]] −

∑
b

[
Lb,

[
Lb,φ

]] = 0,

where the summation ofb is over all the generator
of SU(n + 1), and the scalar field is defined byφ =∑

N φN .
To discuss the continuum limit of(2.5), let me ex-

pand the scalar field in terms of the complete se
operatorsQN

j,m as

(2.6)φ =
∑

N,j,m

φN
j,mQN

j,m.

Herej andm label the second Casimir and an ortho
onal coordinate in the subspace labeled byj , respec-
tively:

∑
b

[
Lb,

[
Lb,QN

j,m

]] = jQN
j,m,

(2.7)Tr
(
QN

j,m
†QN ′

j ′,m′
) = δNN ′δjj ′δmm′ ,

where the trace Tr is over the whole Fock space.
cause of theSU(n + 1) symmetry, the evolution ope
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n+1∑
i=1

a
†
i Q

N
j,mai = cN+

j QN+1
j,m ,

(2.8)
n+1∑
i=1

aiQ
N
j,ma

†
i = cN−

j QN−1
j,m ,

with some coefficientscN+
j and cN−

j . Note that the
first equation of(2.8)determines higher-rank orthog
nal operators from lower ones. Therefore it is allow
to assumecN+

j be positive real.

To obtaincN+
j , let me use the normalization cond

tion in (2.7)

(2.9)
(
cN+
j

)2 =
n+1∑

i,i′=1

Tr
(
ai′a

†
i Q

N
j,maia

†
i′Q

N
j,m

†).
The SU(n + 1) generators in the fundamental rep
sentation satisfies the following identity

(2.10)
1

n + 1
δαβδγ δ + 2

∑
b

T b
αβT b

γ δ = δαδδβγ ,

where the standard normalization tr(T aT b) = δab/2
is assumed. Using this identity, the right-hand side
(2.9)can be evaluated as(
cN+
j

)2

= 1

n + 1
Tr

(
(N + n + 1)QN

j,m(N + n + 1)QN
j,m

†)
+ 2

∑
b

Tr
(
LbQN

j,mLbQN
j,m

†)

= (N + n + 1)2

n + 1

+ 2
∑
b

Tr

(
−1

2

[
Lb,

[
Lb,QN

j,m

]]
QN

j,m
†

+ (
Lb

)2
QN

j,mQN
j,m

†
)

(2.11)= (N + n + 1)(N + 1) − j.

Therefore

(2.12)cN+
j = √

(N + n + 1)(N + 1) − j .

The right-hand side of(2.9) can be computed differ
ently by using(2.8). This gives

(2.13)
(
cN+
j

)2 = cN+
j c

(N+1)−
j .
Therefore,

(2.14)cN−
j = c

(N−1)+
j = √

N(N + n) − j .

Substituting the expansion(2.6) into the equation
of motion(2.5), I obtain∑
N,j,m

(−c
(N−1)+
j φN−1

j,m − c
(N+1)−
j φN+1

j,m

(2.15)+ (2N + n + 1− j)φN
j,m

)
QN

j,m = 0.

I assume that this equation will approach a second
der differential equation with respect toN in the con-
tinuum limit. Then, using the expansion,

(2.16)φN±1
j,m � φj,m(N) ± φ′

j,m(N) + 1

2
φ′′

j,m(N),

I obtain

−1

2

(
c
(N−1)+
j + c

(N+1)−
j

)
φ′′

j,m(N)

+ (
c
(N−1)+
j − c

(N+1)−
j

)
φ′

j,m(N)

+ (
2N + n + 1− j − c

(N−1)+
j − c

(N+1)−
j

)
φj,m(N)

(2.17)= 0,

whereN is regarded as a continuum variable and′ de-
notes the derivative with respect toN . Let me define

(2.18)T = N + n + 1

2
,

and assumeN is large enough and

(2.19)
j

N
� 1.

Then

c
(N−1)+
j ∼ T − 1

2
,

(2.20)c
(N+1)−
j ∼ T + 1

2
,

and the equation of motion of a massless scalar fi
in the continuum limit is obtained as

(2.21)T φ′′
j,m(T ) + φ′

j,m(T ) + jφj,m(T ) = 0,

where′ denotes the derivative with respect toT . In a
geometric background of

(2.22)ds2 = −f (T ) dT 2 + h(T ) dΩ2,
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wheredΩ2 is the metric on a unitCPn, the equation
of motion of a massless scalar field takes the form

f (T )−1/2h(T )−n+1 ∂

∂T
f (T )−1/2h(T )n

∂

∂T
φ(T ,Ω)

(2.23)− ∆Ωφ(T ,Ω) = 0,

where∆Ω denotes the Laplacian on a unitCPn, and I
have used the fact thatCPn has 2n dimensions. Com
paring this with(2.21), the eigenvalues of∆Ω should
be identified with−j , and

h(T )

f (T )
= T ,

(2.24)f (T )−1/2h(T )−n+1 d

dT
f (T )−1/2h(T )n = 1.

The solution is unique up to an unimportant over
constant factor, and I obtain a metric

ds2 = −T
− n−1

n−1/2 dT 2 + T
1

2n−1 dΩ2

(2.25)= −T − D−2
D−1 dT 2 + T

1
D−1 dΩ2,

whereD = 2n, the dimensions ofCPn. Changing the

time variable todt = T − D−2
2D−2 dT , t ∼ T

D
2D−2 , the met-

ric of an evolving fuzzyCPn in the continuum limit is
given by

(2.26)ds2 = −dt2 + t2/D dΩ2

up to unimportant constants.
For the consistency of the continuum limit, the co

mic time t must be regarded as a continuum va
able. This is actually satisfied, since, for an inter
of ∆N = 1

(2.27)∆t ∼ T − D−2
2D−2 ,

which remains constant forD = 2 or vanishes for
D > 2 in the limitT → ∞. As for the spatial part, th
number of ‘points’ on a fuzzyCPn can be estimate
by the dimensions ofHN , which is approximatelyNn.
Therefore, from the expression(2.26), the volume per
point is approximately given by

(2.28)∼ (t1/D)D

Nn
∼ t2−D,

which remains constant forD = 2 or vanishes forD >

2 in the limitT → ∞.
From the equation of motion(2.21), the angular fre-

quency with respect to the variableT of a solution
is roughlyωT ∼ √
j/T ∼ √

j/N . Therefore the as
sumption(2.19)meansωT � 1. The physical angula
frequency should be measured in terms of the varia

t , and this is given byωt = ωT
dT
dt

∼ ωT T
D−2
2D−2 . This

ωt can be identified with the physical energy of a mo
and it has no upper bounds in the continuum lim
for D > 2, or must be much smaller than a const
for D = 2. Hence the continuum limit is well-behave
also in this respect.

In [10], a cosmological version of the holograph
principle [17,18] is proposed. This was obtained b
imposing the holographic principle to the inner r
gion causally connected with a boundary. For a sim
case ofa(t) ∼ tp for a spatially flat FRW univers
ds2 = −dt2 +a(t)2 dx2, the cosmic holographic prin
ciple imposes an inequality

(2.29)p >
1

D
.

This is indeed saturated in(2.26), if the curvature of
CPn is ignored. Therefore, concerning local pro
erties, the present model saturates the cosmic h
graphic principle. This suggests that the present m
is associated with the class of space–time fuzzines
[11–15], which was argued[15,16]to be related to the
holographic principle[17,18]. On the other hand, a
was discussed in[10] for a FRW closed universe,
the global structure ofCPn is taken into account, th
present model will be ruled out by the cosmic ho
graphic principle. This is because a boundary can
quite small with a large causally-connected inner
gion inCPn.

3. Evolving lattice n-simplex

In this section, I will introduce potential terms
compactify fuzzyCPn down to latticen-simplex.
Similar methods were used in constructing fuz
spaces from others in[21,22]. The equation of mo
tion of a scalar field in this section is given by

k

n+1∑
i=1

[
a

†
i , [ai,φ]] −

∑
b

[
Lb,

[
Lb,φ

]]

(3.1)− v

n+1∑
i=1

[
Ni, [Ni,φ]] = 0,
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wherek, v are positive real constants, andNi = a
†
i ai

(i = 1, . . . , n + 1). A nice property of these potenti
terms is that they commute with the kinetic terms[
Nj ,

n+1∑
i=1

[
a

†
i , [ai,φ]]] =

n+1∑
i=1

[
a

†
i ,

[
ai, [Nj ,φ]]],

(3.2)

[
Nj ,

∑
b

[
Lb,

[
Lb,φ

]]] =
∑
b

[
Lb,

[
Lb, [Nj ,φ]]].

Therefore(3.1)can be considered in each subspac
the eigenvalues of the adjoint operations[Nj , ·]. Let
me assumev is so large that the physical degrees
freedom are effectively restricted to

(3.3)[Ni,φ] = 0 (i = 1, . . . , n + 1).

This allows an expansion

(3.4)φ =
∑

m1,...,mn+1

φm1,...,mn+1|N;m1, . . . ,mn+1|,

where I have introduced a shorthand notation

|N;m1, . . . ,mn+1|
(3.5)≡ |N;m1, . . . ,mn+1〉〈N;m1, . . . ,mn+1|.

Plugging the expansion(3.4) into the first term of
(3.1), I obtain

n+1∑
i=1

[
a

†
i , [ai,φ]]

= −
n+1∑
i=1

(
a

†
i φai + aiφa

†
i

) + (2N + n + 1)φ

=
∑

m1,...,mn+1

(
−

n+1∑
i=1

(
miφm1,...,mi−1,...,mn+1

+ (mi + 1)φm1,...,mi+1,...,mn+1

)

(3.6)

+ (2N + n + 1)φm1,...,mn+1

)
|N;m1, . . . ,mn+1|.

In the continuum limit wheremi are large and can b
regarded as continuum variables, I expand the sc
field in the second order of derivatives

(3.7)φm1,...,mi±1,...,mn+1 � φc ± ∂iφc + 1

2
∂2
i φc,

whereφc is the continuum limit ofφm1,...,mn+1. Substi-
tuting the expansion into(3.6)and assumingmi � 1,
I obtain

n+1∑
i=1

[
a

†
i , [ai,φ]] � −

∑
m1,...,mn+1

(
n+1∑
i=1

mi∂
2
i φc + ∂iφc

)

(3.8)× |N;m1, . . . ,mn+1|.
As for the second term in(3.1), from the expres

sions of the generators(2.3), the identity(2.10) and
[∑i Ni, φ] = 0, I obtain

∑
b

[
Lb,

[
Lb,φ

]]

= 1

2

n+1∑
i,j=1

[
a

†
j ai,

[
a

†
i aj , φ

]]

=
∑

m1,...,mn+1

n+1∑
i,j=1

(mi + 1)mj

× (φm1,...,mn+1 − φm1,...,mi+1,...,mj −1,...,mn+1)

(3.9)× |N;m1, . . . ,mn+1|.
In the continuum limit, I may use the expansion

φm1,...,mi+1,...,mj −1,...,mn+1

(3.10)

� φc + ∂iφc − ∂jφc + 1

2
∂2
i φc + 1

2
∂2
j φc − ∂i∂jφc.

Then, substituting this expansion into(3.9)and assum
ing mi � 1, I obtain

∑
b

[
Lb,

[
Lb,φ

]]

=
∑

m1,...,mn+1

(
n+1∑
i=1

(
(n + 1)mi − N

)
∂iφc

+
n+1∑
i=1

(
m2

i − miN
)
∂2
i φc

(3.11)

+
n+1∑

i,j=1,i �=j

mimj∂i∂jφc

)
|N;m1, . . . ,mn+1|.

Substituting(3.8) and (3.11) into (3.1), the equation
of motion of a massless scalar field in the continu
limit is given by
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0 =
n+1∑
i=1

(−k + N − (n + 1)mi

)
∂iφc

+
n+1∑
i=1

(−kmi + Nmi − m2
i

)
∂2
i φc

−
n+1∑

i,j=1,i �=j

mimj∂i∂j φc

=
n+1∑
i=1

∂i

((−kmi + Nmi − m2
i

)
∂iφc

)

(3.12)−
n+1∑

i,j=1,i �=j

∂i(mimj∂jφc).

Here note that the orders ofmi are different between
the temporal (withk) and the spatial directions, i.e
one order is replaced withk. The motivation for the in-
troduction of the parameterk in (3.1)was to avoid the
confusions about the approximation in the continu
limit. If the temporal terms were neglected as low
orders ofmi , the equation of motion would have n
propagation modes.

The equation of motion of a massless scalar field
a non-trivial geometric background is given by

(3.13)∂i

√−ggij ∂jφ = 0.

Identifying this with(3.12), the geometry in the con
tinuum limit is identified as

(3.14)
√−ggij =

{−kmi + Nmi − m2
i for i = j,

−mimj for i �= j.

From (3.14), the determinant of the metric tensor
computed to be

(3.15)−g =
(

k(N − k)n
n+1∏
i=1

mi

) 2
n−1

.

For n = 1, (3.14)leads to an inconsistency. Therefo
the geometric picture can be applied to the continu
limit only for n > 1. This will be assumed in the dis
cussions below.

To decouple the temporal and spatial directions
me take a new parameterization

mi = Nxi (i = 1, . . . , n),

(3.16)mn+1 = N

(
1−

n∑
xi

)
.

i=1
These coordinates satisfy 0< xi,
∑n

i=1 xi < 1. Denot-
ing N also byx0 and assumingN,mi � 1, the metric
tensor in this basis is given by

g̃00 = −aNk,

g̃0i = 0,

(3.17)g̃ij =
{

axi(1− xi) for i = j,

−axixj for i �= j,

where

(3.18)a = N− 2n+1
n−1

(
k

(
1−

n∑
i=1

xi

) n∏
i=1

xi

)− 1
n−1

.

ExtractingN dependence from(3.17), the metric
has the form

(3.19)ds2 = −N
n+2
n−1 A(xi) dN2 + N

2n+1
n−1 dΩ2(xi),

wheredΩ2(xi) is the spatial part depending only o

xi . Defining a cosmic timedt = N
n+2

2(n−1) dN , the met-
ric can be expressed as

(3.20)ds2 = −A(xi) dt2 + t
2(2n+1)

3n dΩ2(xi).

Ignoring the spatial dependence, the exponent of
scale factor is consistent with the cosmic holograp
(2.29)

(3.21)
2n + 1

3n
− 1

n
= 2(n − 1)

3n
> 0.

The metric (3.19), however, casts doubts on th
consistency of the continuum limit. It is clear that t
proper time of one unit of time∆N = 1 becomes in-
finitely larger, asN becomes larger. As for the spati
part, the volume per lattice is approximately given

(N
2n+1

2(n−1) )n/Nn = N
3n

2(n−1) ∼ t , which is also divergent
To see more what is physically expected asN becomes
larger, let me go back to the starting equation of m
tion (3.1). If the excitation energy of the kinetic ter
is in the same order of that of the potential term,
lattice compactification cannot be justified. The lo
est excitation of the potential term in the action(3.1)
is v, while the order of the highest excitation of t
kinetic term is given byN2, which is estimated by
putting ∂i ∼ O(1) andmi ∼ O(N) in (3.12). Hence
the decoupling cannot be justified forN2 > v. There-
fore, whenN becomes much larger than

√
v, the com-

pactification potential is not large enough to keep
compactification, and the system is better describe
a scalar field theory onCPn.
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4. Summary and discussions

In this Letter, I have studied scalar field theory
an evolving fuzzyCPn and its compactified spac
extending part of the previous results on an evolv
fuzzy two-sphere[6]. The compactification to a lat
ticen-simplex was done by introducing some poten
terms. The space–time geometries in the continu
limit were extracted from scalar field theory, and
was observed that an evolving fuzzyCPn saturates
locally the cosmic holographic principle[10], while
an evolving latticen-simplex is consistent with it. I
was argued that an evolving latticen-simplex does no
approach a continuous space–time but decompac
into an evolvingCPn.

It is interesting that the holographic principle[10,
17,18]appears generally in the present models. A c
of observational limits on space–time quantities[11–
15] has been argued[15,16] to be related to the holo
graphic principle. These limits are based on the co
mon property that longer observation leads to lar
uncertainty. In fact, the present models should hav
kind of information loss through emitting ‘baby’ fuzzy
spaces. This loss should lead to larger uncertaint
longer period of time. It would be worth studyin
the space–time fuzziness moredirectly by considering
thought experiments in the present models.

Compactification of fuzzy spaces by potent
terms or constraints[21,22] is obviously an interest
ing new direction. This will enlarge the varieties
fuzzy spaces. In the present models, however, the c
pactified spaces do not evolve to continuum spa
but decompactifies into the original ones. Though t
process itself is also physically interesting, it cou
limit the varieties of continuum space–times whic
fuzzy spaces can evolve to. Presently it is not cl
whether there exist compactified fuzzy spaces wh
approach continuum space–times.
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