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We show that certain classical string configurations in AdS5 × T 1,1 are chaotic. This answers the question
of integrability of string on such backgrounds in the negative. We consider a string localized in the center
of AdS5 that winds around two circles of T 1,1. The corresponding dynamical system is equivalent to two
coupled gravitational pendula and allows a very intuitive understanding. We find conclusive evidence of
chaotic behavior by systematically analyzing the workings of the KAM theorem. We also show that the
largest Lyapunov exponent is positive.
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1. Introduction

One of the most interesting paradigms arising from the AdS/CFT
[1–4] correspondence has been the role of integrability (for an ex-
tensive review see [5]). Integrability has modified our understand-
ing of field theory to the point of reformulating, in some cases,
the solution of a conformal field theory in terms of S-matrix el-
ements of integrable systems. In practical terms, integrability has
allowed exploration of sectors of the theory that would have been
otherwise inaccessible with standard methods.

In the context of the duality between strings on AdS5 × S5

with Ramond–Ramond fluxes and N = 4 supersymmetric Yang–
Mills (SYM) with gauge group SU(N), integrability has two faces
or two ways of appearing; they correspond to the two extreme
values of the ’t Hooft coupling. On the string theory side which
admits a classical description at large ’t Hooft coupling λ, integra-
bility of the classical sigma model on AdS5 × S5 was suggested in
[6] and fully established with the inclusion of fermions in [7]. The
field theoretic face of integrability originated out of the BMN limit,
through the spin chain and relies on the form of the dilatation op-
erator in an expansion around λ → 0. The key components of the
integrability story are by now nicely summarized in [5].

More generally, the gauge/gravity correspondence provides a
new method of attacking field theories at strong coupling. A natu-
ral hope is that the methods used in the standard duality could be
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developed to understand more realistic field theories and eventu-
ally apply them to theories in the same universality class of QCD.
In this direction a first step was taken by Klebanov and Witten
who considered a model with reduced supersymmetry. By taking
the Maldacena limit of a stack of D3 branes at the tip of a conifold
they arrived at a supergravity background of the form AdS5 × T 1,1

[8]. This background is dual to an N = 1 superconformal field the-
ory.

The BMN limit of AdS5 × T 1,1 was a clear indication that some
of the properties of N = 4 supersymmetric Yang–Mills could be
found in certain sectors of superconformal N = 1 field theories
with AdS dual [9–11]. More generally, it was shown in [10] that
the corresponding BMN sector can be found in any gravity dual
of the form AdS5 × X5 where X5 is a Sasaki–Einstein 5-manifold.
Many classical string configurations found in AdS5 × S5 have also
been extended to analogous configurations in AdS5 × T 1,1. For
example, one can construct classical configurations of spinning
strings in T 1,1 [12,13]. However, many unsuccessful attempts have
been made to demonstrate that the classical string in AdS5 × T 1,1

is integrable. In particular it can be established that the construc-
tion of [7] does not extend to AdS5 × T 1,1 due to the fact that T 1,1

is not a maximally symmetric coset space. The common consensus
has been that some integrable structure is present but full integra-
bility is, at least, elusive.

Let us also remark that attacking the problem from the field
theory side is rather hard as the corresponding field theory is
defined at a strongly coupled conformal fixed point. This situa-
tion prevents a perturbative analysis from taking place. In other
words, the fact that the fields have large anomalous dimensions
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in the conformal fixed point prevents a perturbative computation.
An interesting study performed in [14] showed that the require-
ment of integrability of the full one loop dilatation operator in the
scalar sector places very strong constraints on the field theory, so
that the only soluble models correspond essentially to orbifolds of
N = 4.

In this Letter we show that in general the classical string in
AdS5 × T 1,1 cannot be integrable. We settle this question not by
our failure to show that the theory is integrable as has been the
standard path so far. Rather, we present a simple classical configu-
ration displaying chaotic behavior. The configuration in question is
a string that wounds along two of the directions of T 1,1; this con-
figuration is inspired by the ring string in the Schwarzschild black
hole in AdS5 considered in [15] but it is a lot simpler. As a result
of the choice of ansatz, the motion of the string reduces to the
motion of two coupled oscillators that we analyze in detail. In a
forthcoming work a similar albeit slightly more complicated con-
struction is used to show non-integrability of string dynamics in
AdS soliton background [16].

The structure of the Letter is as follows. In Section 2 we present
the ansatz, its corresponding equations of motion and proceed to
analyze various swaths of the phase space showing that the system
presents some islands of integrability but is generically chaotic. To
prove that the motion is chaotic we focus on the form of some
Poincaré sections; we use them to exemplify the workings of the
Kolmogorov–Arnold–Moser (KAM) theorem. Namely, we show ex-
plicitly how the KAM tori get increasingly scattered as we change
the energy. We also present a study of the largest Lyapunov expo-
nent in Section 2. Section 3 contains our conclusions.

2. Wrapped classical strings in T 1,1

We start by considering the AdS5 × T 1,1 background with metric

ds2 = R2

(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3

+ 1

6

2∑
i=1

(
dθ2

i + sin2 θi dφ2
i

)
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(
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)2)
. (2.1)

The Polyakov action for the string in the conformal gauge

S = 1

4πα′

∫
d2σ Gij∂a Xi∂a X j, (2.2)

must be supplemented by the constraints

Gij
[
∂τ Xi ∂τ X j + ∂σ Xi ∂σ X j] = 0, Gij∂τ Xi∂σ X j = 0. (2.3)

We will consider solutions of the string localized in AdS5 at
ρ = 0. The string will wrap the directions φ1 and φ2 in T 1,1, a
natural ansatz will be

φ1 = α1σ , φ2 = α2σ ,

t = t(τ ), ψ = ψ(τ ), θi = θi(τ ). (2.4)

Some of the coordinates involved have simple solutions ṫ = E
and ψ̇ = J , the nontrivial equations are:
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)
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= 0. (2.5)
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The constraints yield
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α1α2 cos θ1 cos θ2. (2.6)

It is easy to identify a natural classical analogy for our system.
The above expression matches two gravitational pendula coupled
through an interaction of the form cos θ1 cos θ2. We will exploit
this mechanical analogy throughout our analysis.

One of the most important results of XIX century mechanics
was the identification of the role of the full phase space for char-
acterizing a system, rather than the role of single trajectories. This
is precisely the route that we will follow in the coming sections.
The case for studying the full phase space has been made previ-
ously in the context of classical solution in the AdS/CFT correspon-
dence [17].

2.1. Dynamics of the system

In this section we discuss general aspects of the dynamics of
the system.

If one of the αi vanishes then the system reduces to a one-
dimensional model and hence is integrable in terms of Jacobi el-
liptic functions. Namely, for α2 = 0 we have θ2 = aτ + b and

θ̈1 + α2
1

6
sin 2θ1 = 0

−→ θ1(τ ) = am

(
(τ + C2)

√
α2

1/6 + C1,
α2

1/3

α2
1/6 + C1

)
. (2.7)

The motion also becomes one-dimensional if we start from
sin(θ1) = 0, θ̇1 = 0. Same holds for θ2.

To investigate a more generic situation we look at the relevant
potential term

V (θ1, θ2) = 1

18
α2

1 sin2(θ1) + 2

9
α1 α2 cos(θ1) cos(θ2)

+ 1

18
α2

2 sin2(θ2). (2.8)

It can be easily seen from the eoms that only the ration the
ratio α1

α2
matters and both may be chosen to be positive. Local ex-

trema for the above potential exist for (α1,α2 > 0),

sin(θ1) = 0, sin(θ2) = 0, (2.9)

cos(θ1) = 0, cos(θ2) = 0, (2.10)

sin(θ1) = 0, cos(θ2) = 2
α2

α1
, when

∣∣∣∣2α2

α1
< 1

∣∣∣∣, (2.11)

cos(θ1) = 2
α1

α2
, sin(θ1) = 0, when

∣∣∣∣2α1

α2
< 1

∣∣∣∣. (2.12)

Among these extrema the point θ1 = 0, θ2 = π is the local min-
imum (see Fig. 1). This suggests the existence of an stable fixed
point near θ1 = 0, θ2 = π . Near this point fluctuations of θ1, θ2
couple in quartic order and for sufficiently small value of those
fluctuations the system behaves like a pair of decoupled harmonic
oscillators. For such a motion we observe a nice periodic behaviour.
For higher values of the energy the coupling between oscillators
make the motion quasi-periodic and eventually leads to chaotic
motion (Fig. 2). In the next section we study the details of the
time evolution through phase space sections and discuss the issue
of non-integrability. It is to be noted that for very high value of one
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Fig. 1. Plot of the potential V (θ1, θ2) with α1 = 1 and α2 = 2.

Fig. 2. Plot of sin(θ1(t)) with α1 = 1 and α2 = 2 and a resting initial condition with θ1(0) = 0.2, θ2(0) = 0.1. The time evolution shows chaotic motion.
angular momentum (i.e. θ̇ ) the space virtually shrinks in those di-
rection and the motion again becomes apparently integrable. This
is related to the fact that for very high energy motion one may
neglect the details of the potential.

One interesting special case is α1 = α2. Here we have a line of
extrema along θ1 = ±θ2, although this line of extrema always has
an unstable direction. Any motion which starts with θ1 = ±θ2 and
θ̇1 = ±θ̇2 remains on the line and essentially becomes a motion
with one parameter and is integrable. Also the potential has en-
hanced symmetry. Near the minimum of the potential there is an
approximate rotational symmetry valid upto quartic order, which
may lead to some interesting solutions.

2.2. Poincaré sections and KAM theorem

In an integrable system the number of conserved quantities
equals the number of degrees of freedom. A convenient way to
understand those conserved charges is to look at the phase space.
Let us assume that we have an integrable systems with N position
variables qi with conjugate momenta pi . The phase space is 2N-
dimensional. Integrability means that there are conserved charges
Q i = f i(p,q) which are constant of motion. One of them is en-
ergy. These charges define an N-dimensional surface in the phase
space which is a topological torus (KAM tori). The 2N-dimensional
phase space is nicely foliated by these N-dimensional tori. In terms
of action angle variables (Ii, θi ) these tori just become surfaces of
constant action. With each torus there are associated N frequen-
cies ωi(Ii) which are the frequencies of motion in one particular
action direction.

What happens to those tori when the integrable Hamiltonian
is perturbed by a small non-integrable piece? The KAM theorem
states that most tori would be deformed but survive a small non-
integrable deformation. However resonant tori which have rational
ratio of frequencies, i.e. miωi = 0 with m ∈ Q, will be destroyed.
As the strength of the non-integrable interaction increases more
tori gradually get destroyed. A nicely foliated picture of the phase
space is no longer applicable and the time evolution may freely
explore the whole phase space only constrained by energy. In such
cases the motion becomes completely chaotic.

To numerically investigate this gradual disappearance of folia-
tion we look at the Poincaré sections of our system. Our phase
space has four variables θ1, θ2, pθ1 , pθ2 . If we fix energy we would
be in a three-dimensional subspace. Now if we start with some
initial condition and time evolve, the motion would be confined to
a two-dimensional torus for the integrable case. This 2d torus in-
tersects the sin(θ2) = 0 hyperplane at two circles. Taking gradual
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Fig. 3. Poincaré sections.
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Fig. 4. Motion of the string and the corresponding Lyapunov indices for a chaotic motion. We have chosen the initial condition θ1(0) = 0.1, θ2 = 0.1, θ̇1 = 0, θ̇2 = 0.8. We see
a convergent Lyapunov index with λ ≈ 0.245.
snapshots of the system as it crosses sin(θ2) = 0 and plotting
the value of (sin(θ1), cos(θ1)pθ1 ), we can reconstruct those circles.
Furthermore varying the initial boundary condition, in particular
keeping (θ2(0) = π, pθ1 = 0) and varying θ1(0) to determine pθ2 (0)

from the energy constraint, we may hope to get a foliation struc-
ture typical for a integrable system.

Indeed we see that for smaller values the of energy, a dis-
tinct foliation structure exists in the phase space [Fig. 3(a)]. As we
increase the energy some tori get gradually dissolved [Figs. 3(b)–
3(e)]. The tori which are destroyed sometimes broken down into
smaller tori [Fig. 3(d)] eventually the tori disappear and become
a collection of scattered points known as cantori. However the
breadths of these cantori are restricted by the undissolved tori
and other dynamical elements. Usually they do not span the whole
phase space [Figs. 3(b)–3(d)]. For sufficiently large values of energy
there are no well defined tori [Fig. 3(e)]. In this case phase space
trajectories are all jumbled up and trajectories with very different
initial conditions come arbitrary close to each other [Fig. 3(e)]. In-
terestingly for even higher energy order seems to have again form
in the system [Figs. 3(b)–3(g)]. This is related to the fact that at
very high energy we can neglect the potential. The mechanism is
very similar to what happens in well known non-integrable peri-
odic systems like double-pendulum models [18,19].
2.3. Lyapunov exponent

One of the trademark signatures of chaos is the sensitive de-
pendence on initial conditions, which means that for any point X
in the phase space, there is (at least) one point arbitrarily close
to X that diverges from X . The separation between the two is
also a function of the initial location and has the form �X(X0, τ ).
The Lyapunov exponent is a quantity that characterizes the rate of
separation of such infinitesimally close trajectories. Formally it is
defined as,

λ = lim
τ→∞ lim

�X0→0

1

τ
ln

�X(X0, τ )

�X(X0,0)
. (2.13)

In practice we use an algorithm by Sprott [20,21], which calculates
λ over short intervals and then takes a time average. We should
expect to observe that, as time τ is increased, λ settles down to
oscillate around a given value. For trajectories belonging to the
KAM tori, λ is zero, whereas it is expected to be non-zero for a
chaotic orbit. We have verified such expectations for our case. We
calculate λ with various initial conditions and parameters. For ap-
parently chaotic orbits we observe a nicely convergent positive λ

(Fig. 4).
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3. Conclusions

In this Letter we have shown that certain classical configura-
tions corresponding to a string winding along two of the angles of
T 1,1 exhibits chaotic motion for some range of initial conditions.
This is enough to claim that the classical string in AdS5 × T 1,1

cannot be integrable and therefore we settle the important ques-
tion of the existence of integrability beyond the known example
of string theory on AdS5 × S5. We have thus showed that integra-
bility seems to be a very peculiar property of S5, changing that
manifold by what is considered the simplest next example (mod-
ulo orbifolds of S5) leads us into the realm of chaotic solutions.
Given the simplicity of our dynamical system (two coupled grav-
itational pendula) we are very confident in the robustness of the
numerical result which precisely matches what is expected from
other text-book type of examples. Our example is actually very
similar to the Hénon–Heiles system and we exploited this simi-
larity to make our case for chaotic behavior completely convincing
following the standard literature on dynamical systems [18–20].

As we saw in Section 2 there are some islands, although of
measure zero, of the phase space of the motion of the string in
AdS5 × T 1,1 where the system is integrable. For example, allowing
the string to wrap only one direction in T 1,1 yields an integrable
system; it is only when we consider a configuration wrapping both
directions φ1 and φ2 that we find chaotic behavior.

It is worth remarking that the classical particle in AdS5 × T 1,1

is integrable. The simplest way to see this is directly from the sep-
arability of the Laplacian. Of course, this is precisely the regime
necessary for the study of supergravity modes. The implications of
this situation – integrability of particles and chaos for strings – are
translated in the dual field theory as corresponding to properties
of operators dual to stringy states. Generically these are opera-
tors with very large quantum numbers and are not protected by
symmetries. Recall, for example, that in the case of the BMN oper-
ators the classical string configuration consists of string shrunk to a
point orbiting along a large circle in T 1,1. The ground state opera-
tor is protected and the main point of BMN is that a subset of per-
turbations or insertions of operators remains semi-protected. What
we anticipated due to the onset of chaotic behavior is that there
are many operators for which insertions cannot form a closed set.

One interesting implication of our calculation is that it is eas-
ily generalizable to other Sasaki–Einstein manifolds such as Y p,q

and L p,q,r . As we have seen in Section 2 a key property of the
manifold that translated into the coupling of the corresponding os-
cillators was the existence of a nontrivial fibration. More precisely,
the interaction contribution to the potential term which takes the
form cos θ1 cos θ2 in Eq. (2.8) arises precisely because the space is
a nontrivial U (1) fibration over S2 × S2. The corresponding effect
is present in the generic Sasaki–Einstein 5-manifold which can be
written as a nontrivial U (1) fibration over a Kähler–Einstein base.
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