
A
T

I

d
s
c
s
p
p
c
c
t
o
e

P
K

Biology of Blood and Marrow Transplantation 12:672-682 (2006)
� 2006 American Society for Blood and Marrow Transplantation
1083-8791/06/1206-0010$32.00/0
doi:10.1016/j.bbmt.2006.02.006

6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
cute Radiation Injury: Contingency Planning for
riage, Supportive Care, and Transplantation

Daniel Weisdorf,1 Nelson Chao,2 Jamie K. Waselenko,3 Nicholas Dainiak,4 James O. Armitage,5

Ian McNiece,6 Dennis Confer7

1University of Minnesota, Minneapolis, Minnesota; 2Duke University Medical Center, Durham, North Carolina;
3Sarah Cannon Research Institute, Nashville, Tennessee; 4Department of Medicine, Bridgeport Hospital and
Yale University School of Medicine, New Haven, Connecticut; 5Division of Hematology/Oncology, University
of Nebraska, Omaha, Nebraska; 6Division of Biomedical Sciences John Hopkins Singapore, Singapore;
7National Marrow Donor Program, Minneapolis, Minnesota

Correspondence and reprint requests: Daniel Weisdorf, MD, Department of Medicine, University of Minnesota,
420 Delaware Street, SE, MMC, 480, Minneapolis, MN 55455 (e-mail: weisd001@umn.edu).

Received January 4, 2006; accepted February 7, 2006

ABSTRACT
Evaluation and management of victims of exposure to myelosuppressive radiation in a military, terrorist, or
accidental event is challenging. The hematopoietic syndrome with marrow suppression and pancytopenia
follows intermediate intensity radiation exposure and as such produces a clinical syndrome similar to that after
myelosuppressive chemotherapy or stem cell transplantation. Therefore, hematologists, oncologists, and
transplantation physicians have the opportunity and challenge to plan for care of irradiation victims. Manage-
ment of the hematopoietic syndrome, as a component of acute radiation sickness, requires understanding its
manifestations and implementation of clinical biodosimetry to provide appropriate therapeutic support. He-
matopoietic growth factors may be of value if administered early as a component of supportive care. Planning
for urgent stem cell transplantation for those with intermediate- to high-dose radiation (4-10 Gy) may be
required. Establishing contingency plans for triage, assessment, supportive care, and treatment resembles the
development of phase II trials, with defined eligibilities, treatment plans, and incorporated data collection to
assess results and plan further improvements in care. The hematology/oncology community is most suited to
participate in such contingency planning, and the necessary elements for its success are reviewed.
© 2006 American Society for Blood and Marrow Transplantation
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NTRODUCTION

The potential risk of accidental and intentional ra-
iation exposure is growing. The dangers are under-
tated and potentially devastating. This requires medical
ontingency planning and preparedness. Such planning
hould include an examination of our current resources,
rojected medical needs, management guidelines, and
ersonnel training. Exposure to whole-body irradiation
an induce pancytopenia and immune suppression
onsequent to the acute radiation syndrome in addi-
ion to burns, multiorgan injury, and trauma. Analysis
f techniques and experience gained from hematopoi-
tic cell transplantation (HCT) may aid preparedness

resented in part at a workshop held at the Tandem BMT Meetings;

veystone, Colorado; February 2005.

72
lanning to develop management guidelines. In this
eport we describe scenarios and medical conse-
uences of radiation, previous HCT attempts, and the
otential of cytokines to help. We also discuss how the
esign and development of clinical trials can resemble
ontingency planning and inform clinical manage-
ent of radiation emergencies.

TEM CELL TRANSPLANTATION FOR ACCIDENTAL
R DELIBERATE NUCLEAR EXPOSURE

Stem cell transplantation has been performed for
atients with malignant diseases for �50 years. A
ecent review of transplantation for irradiation victims
ssessed 31 patients who underwent HCT from a

ariety of cell sources [1]. Among these, 27 died and 4
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urvived after rejecting their graft. Most of these pa-
ients were treated in an earlier era but these data have
ngendered a sense that there is only a limited role for
llogeneic HCT in victims of radiation injury. The
ore recent data from the Tokaimura accident, where
patient received a peripheral stem cell transplant and

nother a cord blood transplant, suggest that, al-
hough engraftment of the donor cells was transient,
he overall survival in these patients was longer than
xpected from the radiation dose and organ toxicity
1,2]. Recently, recommendations have been drafted
y the US Strategic National Stockpile Working
roup that propose a limited dose range for which

ransplantation should be considered a therapeutic
ption for victims in a large-volume scenario [3]. The
imited success of a fully ablative allogeneic HCT
ncludes the damage to other organ systems such as
he lungs, the gastrointestinal tract, and the immune
ystem. It should be emphasized that the value of
utologous or allogeneic HCT for radiation victims is
argely anecdotal and effective contingency planning
equires critical analysis of the results.

A more detailed review of one modern day HCT
s illustrative of what can be accomplished and high-
ights the need for further research in this area [2].

ne important caveat in planning support for radia-
ion victims is the potential for high-dose but nonuni-
orm irradiation to organs and tissues, making the
stimate of the irradiation dose difficult. Accordingly,
stimates of marrow and stem cell irradiation are im-
recise, which complicates the prediction of autolo-
ous recovery. One victim received 8 to 10 Gy of
quivalent mixed neutron and �-ray irradiation at the
CO Co. Ltd. nuclear processing facility in To-
aimura, Japan. This patient received an HLA-DRB1,
ismatched, unrelated umbilical cord blood trans-

lant. Donor/recipient mixed chimerism was attained.
ubsequently, immunosuppressive drugs were discon-
inued and the patient experienced rapid autologous
ematopoietic recovery but had persisting and pro-
ound immune deficiency. There were increases in
aive T cells and helper T-cell subtype 1, but the
itogenic responses of T cells and the allogeneic
ixed leukocyte reaction were severely suppressed.
ndogenous immunoglobulin production remained

ow until 120 days after the accident. Ultimately, the
atient died of infection and acute respiratory distress
yndrome 210 days after the accident.

These results suggest that the use of donor cells
as sufficient for survival from the acute hematopoi-
tic syndrome associated with these higher doses of
adiation (Figure 1). Therefore, the immediate needs
f such patients (recovery of myelopoiesis) were sup-
orted by the transient engraftment of donor cells,
lthough the exact benefits provided by the multiple
herapies provided are uncertain. Injury to other or-

ans such as the skin (burns, trauma), the lungs (in- s

B & M T
erstitial pneumonitis), or the immune system are an
dded hurdle in their management, as was recognized
n managing the victims of Chernobyl [4].

Since the Tokaimura accident, the HCT proce-
ure has also evolved with significant improvements in
upportive care, newer sources of stem cells and im-
roved immunosuppressive drug regimens. An alter-
ative strategy for victims of radiation injury may be
he use of a decreased intensity, nonmyeloablative

CT. The immune system of the recipient is tar-
eted, with only limited toxicity to myeloid cells. Be-
ause the hematopoietic syndrome is one of the most
mportant sequelae from radiation exposure, it is im-
erative that options to address the rescue of bone
arrow are pursued. It is possible to treat radiation

ictims by using protocols developed for patients with
alignancy. The hypothetical scenario demonstrated

n Figure 1 leaves several possible outcomes for a
ecipient of a deterministic dose of irradiation (2-10
y, without significant other-organ toxicity). The vic-

ims’ blood counts will decrease predictably according
o the radiation dose received. For relatively low doses
2-4 Gy), endogenous recovery of autologous hema-
opoiesis is expected, perhaps enhanced by early cyto-
ine therapy (see below). Victims receiving higher
oses (6-10 Gy) may require allogeneic or, if available,
ryopreserved autologous hematopoietic cell support.
lthough it is comfortable to think about dose as a
ethod to determine the necessary course of action,

mportant limitations of radiation dosimetry must be
onsidered, especially in the case of a mass casualty
cenario. First, the dose of radiation is not likely to be
eliably estimated due to nonuniform exposure (there-
ore possibly sparing areas of bone marrow). Second,
here are no rapid methods to determine the absorbed
ose in an individual patient. Time to vomiting [5] is
dvocated but is neither specific to radiation nor al-
ays seen with significant exposure. Therefore, the

ate of decrease in blood counts (lymphocytes, gran-
locytes, and platelets) is likely to be the most useful
ethod that is currently available for rapid decision-
aking [3,5]. The presence and frequency of chromo-

igure 1. Hypothetical blood count recovery based on allogeneic
CT (dashed/dotted line) or autologous recovery after lesser exposure

solid line), perhaps supported by early cytokine therapy. ANC, abso-
ute neutrophil count.
omal aberration may be reliable, but it is not widely
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r rapidly available. Variability in stem cell sensitivity
lso confounds clinical biodosimetry [6,7].

One management approach for intermediate-high
ose exposure is to simply give comfort care, given
hat the historical outcomes have been poor. We
ould predict that for (6-10 Gy) radiation victims,

amilies, and society as a whole would not accept this
ption, especially for younger adults and children. Use
f growth factors is appropriate and granulocyte col-
ny-stimulating factor (G-CSF) has been stockpiled in
he United States. However, as discussed more fully
elow, G-CSF and other cytokines have limited effec-
iveness when given several days after radiation. In the
ase of a nuclear event, it is likely that it would take
any hours, if not days, to estimate the radiation

xposure for each patient; thus, for many, G-CSF will
ikely lose efficacy, especially in those who receive
igher doses of irradiation.

Another approach is to plan an urgent allogeneic
CT. Complex logistics would require expedited
LA typing, rapid donor availability, access to avail-

ble transplant beds, and prevention strategies for
raft rejection, graft-versus-host disease (GVHD),
nd infection. Although these obstacles are formida-
le, the current era of HCT has produced techniques
hat are directly applicable to such situations. For
xample, it would be possible to perform nonmyeloa-
lative cord blood or haploidentical transplantations
s a bridge to autologous recovery or as definitive
reatment. Thus, stem cell transplantation in this
ewer era of nonablative transplantation and im-
roved supportive care could be applied if contin-
ency plans were in place and their rapid activation
ere possible.

VALUATION AND MANAGEMENT OF ACUTE
ADIATION INJURY

Consequent to the terrorist attacks on the United

able 1. Mass Casualty Scenario for an Improvised Nuclear Device*

Patient Category Radiation Dose, Gy

ombined injuries All doses
allout
Expectant/palliative 8.3-15
Intensive care 5.3-8.3
Critical care 3-5.3
Normal care 1.5-3

atalities (immediate) All doses
utpatient 0.7-1.5
onitoring 0.25-0.70
orried well <0.25

Table presents projected casualty estimates based on detonation o
population of 2 million people and (2) casualty estimates based
Combined injuries consist of radiation injuries, burns, and blun
tates on September 11, 2001, many facets of terror- a

74
sm preparedness are being examined. Unfortunately,
lanning and resource allocation for nuclear terrorism
ave not paralleled preparedness for other threats. The
umber of mass casualties that is generated consequent
o a nuclear device detonation engenders skepticism. In
he face of profound infrastructure loss, only contin-
ency planning could enable prompt and proper identi-
cation of resource requirements, and personnel training
eeds to evaluate, support, and treat radiation victims.

The radiation threat can assume many forms,
g, industrial, medical, or military accident, terror-
st radioactive “dirty” bomb, or an explosive nuclear
evice. The largest number of casualties would
ome from detonation of a fissionable weapon such
s an improvised nuclear device. As presented in
able 1, even a small, 1-kiloton nuclear device
ould generate �300 000 victims in need of triage,
ith an anticipated �85 000 who would develop

ome degree of acute radiation syndrome (ARS) and
ancytopenia. Many of these victims will require
arly use of colony-stimulating factors and subse-
uently may require intense supportive care for
heir radiation-associated aplasia.

Briefly, radiation injury arising in such a setting
ay include external radiation that is delivered at a

igh-dose rate and external and/or internal contami-
ation from exposure to the multitude of radioiso-
opes this is generated during the fission process. Ex-
ernal decontamination is accomplished by removal of
ontaminated clothing and having the patient shower
horoughly with soap and water. Internal contamina-
ion may be clinically significant and lead to an in-
reased risk of long-term carcinogenesis, but is un-
ikely to cause ARS.

VERVIEW OF ARS

ARS, also known as radiation sickness, is defined

Patients, n

1 Kiloton 10 Kiloton

1000-3000 15 000-24 000

18 000 45 000
19 500 79 400
33 000 108 900
66 000 70 000
>7000 >13 000
82 500 139 000

106 000 147 000
>150 000 >270 000

10-kiloton nuclear devices. Assumptions include (1) a city with a
Hazard Prediction Assessment Capability Program, version 3.21.
a. Modified from Waselenko et al [3].
f 1- and
on the
s the signs and symptoms that occur after a whole-
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ody or significantly partial-body (�60%) exposure
f �1 Gy that is delivered acutely at a relatively high-
ose rate. Radiation damage primarily affects prolif-
rating cells because they are the most sensitive to
cute effects. The clinical components of ARS include
ematopoietic, gastrointestinal, and cerebrovascular
yndromes [3,7,8]. Symptoms of acute, high-dose ra-
iation are dependent on the absorbed dose. They
ay appear within hours to days and follow a some-
hat predictable course. The 4 phases of ARS are
rodromal, latent, manifest, and recovery or death.
ndividuals after a lethal dose of radiation may develop
temporal compression of these phases into a period
f hours, resulting in early death.

Because of the rapid cell turnover of lymphohe-
atopoietic elements, these cells are among the most

ensitive to radiation injury. Thus, the earliest presen-
ation of ARS is the hematopoietic syndrome. ARS
ay be observed in patients who receive whole-body

oses �1 Gy, but generally it is not clinically signifi-
ant at doses �2 Gy [4] unless combined other injuries
re present. Overlap of other organ damage with the
ematopoietic syndrome would be observed if patients
urvive long enough to manifest their aplasia. Gastro-
ntestinal mucosal barrier injury begins at doses of 5

y and can in itself be severe and life-threatening.
A significant partial- or whole-body dose �10 Gy

s considered lethal. As depicted in Figure 2, dose-
ependent myelosuppression develops over �1 week
7,8]. Dose-dependent extramedullary toxicity will
lso complicate management and increase mortality.
atients with radiation injury and burns or significant

rauma have a combined injury syndrome, which is
ssociated with a high mortality rate, even at lower
adiation doses and lesser marrow injury. In a mass

igure 2. Leukocyte count based on exposure dose in patients w
transient increase before decrease) in leukocytes, which are prim
eutropenia may not occur for weeks, especially with lower expo

ermission from Vorobiev [9].

B & M T
asualty scenario, such patients may be provided com-
ort care only.

Granulocytes may transiently increase in patients
ith �5-Gy exposure (Figure 2) [9]. This transient

abortive rise” before neutropenia may suggest a bet-
er prognosis. The nadir may occur between from 1 to

weeks [8,9], with a longer time to nadir at lower
oses. These patients are still at high risk because their
uration of neutropenia may be prolonged, requiring
xtended support with hematopoietic growth factors,
lood products, and antimicrobials [10]. Patients with
oncomitant burns or traumatic injuries often show
oor wound healing, bleeding, and infection [11].

Radiation exposure arising from an accident or a
etonation will be inhomogeneous. Partial shielding
rom walls or furniture can leave reservoirs of viable
ematopoietic stem cells. Some radioresistant acces-
ory or stem cells may promote hematologic reconsti-
ution [12,13].

Without aggressive medical support, the mean le-
hal dose of radiation leading to 50% mortality at 60
ays is a whole-body radiation dose of �3.5 Gy. This
adiation dose increases to 6-7 Gy with optimal support-
ve care, antimicrobials, and transfusion support [8]. Sur-
ival requires hematologic recovery and trauma that is
imited to survivable nonhematopoietic injuries.

Early triage should be based on the extent of
rauma, burns, and other injuries. Although imperfect,
linical biodosimetry should be performed to estimate
adiation exposure. It includes 3 elements: (1) time to
nset of vomiting after exposure, (2) lymphocyte de-
letion kinetics, and (3) chromosomal aberration analysis
3,5,14,15]. By using Biodosimetry Assessment software
available as a free download at www.afrri.usuhs.mil),
nalysis of all 3 elements provides an estimate of the

e exposed to radiation in Chernobyl. Note the abortive increase
omposed of granulocytes, in doses �500 rad (�5 Gy). Onset of
and duration of neutropenia may be prolonged. Reprinted with
ho wer
arily c
sures,
675
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atient’s dose in grays. This estimate may then be used
o determine a patient’s risk for ARS, prognosis, and,

ost importantly, the need for hematologic support
r transplantation therapy (Table 2).

EDICAL MANAGEMENT OF RADIATION INJURY

Management of patients with ARS includes early
se of hematopoietic cytokines (as discussed more
ully below), antimicrobials, and transfusion support
3,14,15].

arly Phase (<72 Hours)

The medical needs in the first 72 hours must be
irected toward trauma, burns, psychologic support,
arly initiation of G-CSF (5-10 �g/kg/d), and oral
osing with potassium iodide (130 mg/d for adults). In
ddition, patients who are likely to manifest ARS and
ave the potential to survive (estimated whole-body
ose, �3-10 Gy but �2 Gy for children and the
lderly) should be identified because they will require
lose monitoring and treatment with G-CSF.

ntermediate Phase (3-30 Days)

Because the time to onset and depth of neutrope-
ia depends on dose, some patients will not develop
eutropenia until several weeks later. Different de-
rees of neutropenia may persist for weeks to months.

Transfusion support with red blood cells and
latelets is important as in any marrow aplasia. All
ellular products should be depleted of leukocytes and
rradiated to prevent transfusion-associated GVHD,

able 2. Guidelines for Treatment of Radiologic Victims*

Proposed Dose (Gy
Range for Cytokine

mall-volume scenario (<100
casualties)

Healthy individual, no other injuries 3-10†
Multiple injuries and/or burns 2-6†
ass casualty scenario (>100

casualties)
Healthy individual, no other injuries 3-7†
Multiple injuries or burns 2-6‡

Consensus guidance for treatment is based on threshold whole-b
accident or detonation of a radioactive device resulting in �10
in �100 casualties have been suggested for consideration. Adap
SCT, stem cell transplantation, N/A, not appropriate due to po

Consider initiating at lower exposure in young children and the
ANC �500/�L.

If resources are available.
Prophylactic antibiotics include a fluroquinolone, acyclovir (if serop

and fluconazole when ANC �500/�L.
ANC �500/�L. Antibiotics should be continued until neutrophi

guidelines [7] for febrile neutropenia.
hich may be difficult to distinguish from radiation- w

76
nduced fever, pancytopenia, skin rash, diarrhea, and
yperbilirubinemia.

Infections are a major cause of morbidity due to
eukopenia and disruption of mucocutaneous barriers.
reclinical radiation models have demonstrated en-
anced susceptibility to wound infection [16] and sep-
is [17] with a smaller inoculum of bacteria compared
ith nonirradiated cohorts.

In animal models, quinolone-based prophylaxis
18-20] is effective in controlling gram-negative infec-
ions. Penicillin may add coverage for streptococci and
urther improve survival [21]. Therefore, extended-
pectrum quinolones for prophylaxis against gram-
egative and gram-positive infections are recom-
ended [22]. Acyclovir is indicated for patients who

re or were seropositive for herpes simplex virus. Pre-
ention of herpes simplex virus reactivation is impor-
ant because it may worsen mucositis and confound
anagement of radiation injury.

Fluconazole can lessen invasive fungal infections
nd mortality in patients who undergo allogeneic
one marrow transplant [23,24] at daily oral doses of
00-400 mg. Fluconazole prophylaxis is ineffective
gainst aspergillus, other molds, Candida krusei, and
orulopsis glabrata. Alternative antifungal therapy

caspofungin, voriconazole, or amphotericin) may be
eeded. As in other settings, management of neutro-
enic fever requires broad coverage of gram-negative
acteria including Pseudomonas, as detailed in recom-
endations from the Infectious Diseases Society of
merica [10,25].

Of major importance for prognosis and triage-
ased resource allocation is identification of victims

Proposed Dose (Gy)
Range for Antibiotics§

Proposed Dose (Gy) Range for
Referral for SCT Consideration

2-10� (if ANC <500/�L) 7-10 (for allogeneic SCT)
2-6� (if ANC <500/�L) N/A

2-7� 7-10 (for allogeneic SCT)‡
2-6†� N/A

significant partial-body exposure doses. Events due to a radiation
alties and those due to a detonation of a nuclear device resulting
m Waselenko et al [3]. ANC indicates absolute neutrophil count;

come.
y. Initiate G-CSF or GM-CSF treatment in all who develop an

for herpes simplex virus or medical history of herpes simplex virus),

ery has occurred. Follow Infectious Diseases Society of America
)
s

ody or
0 casu
ted fro
or out
elderl

ositive

l recov
ith a poor chance of survival. The chance for survival
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fter irradiation with a dose �10-12 Gy is nil [26,27].
uch patients should be afforded comfort measures,
astoral care, and social support. This includes atten-
ion to pain management, antiemetics, antidiarrheals,
nd general comfort. Psychological support for the
ictim, family, and friends is essential.

ate Phase (>30 Days)

Little is known about immune reconstitution after
nhomogeneous total-body irradiation at the high-
ose rates evident after a nuclear detonation. Aberrant
nd incomplete immune reconstitutions are likely in
ome ARS survivors. Hypogammaglobulinemia and
efects in cellular immunity may include prolonged

ymphopenia, an aberrant lymphocyte repertoire, or
efective lymphocyte function.

The risk of cytomegalovirus reactivation in sero-
ositive patients is likely increased, so periodic mon-

toring for cytomegalovirus antigen or polymerase
hain reaction should continue for 2-3 months after
xposure for those patients who have had ARS with
esultant leukopenia. For those with early evidence
f cytomegalovirus infection, preemptive antiviral
herapy should be employed. For those patients who
ontinue to have T-cell immunodeficiency (ie, CD4
ount �50/�L), ongoing monitoring may be appro-
riate. The risks of viral infection or other opportu-
istic pathogens, including Pneumocystis jirovecii (for-
erly P carinii), are unknown. Prophylaxis may be

elpful.
Later monitoring and revaccination may follow

uidelines similar to those recommendations by the
enters for Disease Control and Prevention, Infec-

ious Diseases Society of America, and the American
ociety of Bone Marrow Transplantation for trans-
lant recipients [28].

OLE OF GROWTH FACTORS IN RECOVERY AFTER
ADIATION EXPOSURE

Whole-body irradiation is associated with organ
oxicities that are related to dose. Hematopoietic dam-
ge is one of the most immediate complications. Vic-
ims who have this hematopoietic syndrome risk
leeding and life-threatening infectious complica-
ions. At exposure doses �6-8 Gy, victims will require

source of an allogeneic hematopoietic graft to re-
lace damaged stem and progenitor cells. For victims
ho are exposed to lower doses, supportive care, with

ntibiotics and blood products, may enable recovery of
ndogenous hematopoiesis. In addition, growth factors
ay accelerate the recovery of hematopoiesis and im-

rove outcome. Several hematopoietic growth factors
HGFs) studied in animal models include G-CSF, gran-

locyte-macrophage colony stimulating factor (GM- h

B & M T
SF), stem cell factor, interleukin 11 (IL-11), interleukin
(IL-1), and thrombopoietin (Tpo).

RANULOCYTE
OLONY-STIMULATING FACTOR

G-CSF is an HGF that acts selectively on the
eutrophil lineage by stimulating progenitor cells to
ifferentiate and can activate mature neutrophils. It is
ost often used for support of patients who receive

hemotherapy to increase neutrophil recovery.
Tanikawa et al [29] studied the effects of recom-

inant human (rh) G-CSF in lethally irradiated mice
nd found an increased recovery of leukocytes, plate-
ets, and hematocrit levels and improved survival.

osoi et al [30] also evaluated the effects of rhG-CSF
fter whole-body irradiation and reported increased
umbers of blood-circulating leukocytes, neutrophils,
onocytes, and erythrocytes, but not lymphocytes or

latelets. Nothdurft et al [31] studied a canine model
f radiation by exposing animals to a single dose of
1.7 Gy. Treatment with rhG-CSF resulted in an
arly recovery to normal levels of granulocytes by day
1 after irradiation that was also associated with in-
reased circulating progenitor cells within the first 8
ays. Similar studies in primates have clearly demon-
trated increased recovery of animals treated with
hG-CSF [32]. Because G-CSF approved for clinical
se is readily available, it could be used for radiation
ictims in combination with supportive care of anti-
iotics and blood products. Because it has limited
oxicity (bone aching), it has been the preferred agent
or radiation victims [3,14].

RANULOCYTE-MACROPHAGE COLONY-STIMULATING
ACTOR

The role of GM-CSF to increase recovery of he-
atopoiesis after irradiation is similar to that of
-CSF because GM-CSF also stimulates production

f neutrophils. GM-CSF is approved for clinical use
o increase recovery after bone marrow transplanta-
ion. Some toxicities that develop in patients who are
reated with GM-CSF include local erythema, hypo-
ension, chills, and fever. No formal comparative data
ith G-CSF are available.

NTERLEUKIN 11

IL-11 is a stromal-derived HGF that stimulates
hrombopoiesis and differentiation of bone marrow
rogenitor cells. In the United States, IL-11 has been
pproved by the Food and Drug Administration for
he prevention of severe thrombocytopenia after my-
losuppressive chemotherapy in patients who are at

igh risk of severe thrombocytopenia. The effects of

677
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hIL-11 were studied in irradiated rhesus monkeys
33]. Animals were exposed to total-body irradiation
ith a single 3-Gy dose and treated with 30, 60, or 120
g/kg/d of rhIL-11 for 14 days. Treatment with

L-11 resulted in accelerated platelet recovery and
igher platelet nadirs compared with placebo-treated
ontrols. The investigators concluded that rhIL-11
ay directly promote megakaryocyte development and

meliorate myelosuppression in irradiated animals.
However, treatment with rhIL-11 has been asso-

iated with significant adverse events including ambly-
pia, paresthesia, dehydration, skin discoloration, ex-
oliative dermatitis, and ocular hemorrhage. The
xtent of these adverse effects has limited the clinical
se of IL-11.

HROMBOPOIETIN

Tpo acts primarily to regulate megakaryocytopoi-
sis and platelet production. It is also known as c-Mpl
igand and megakaryocyte growth and differentiation
actor. Animal studies in mice [34] and primates [32]
ave evaluated the potential role of Tpo after radia-
ion exposure. Tpo treatment resulted in multilineage
ematopoietic recovery. Although the use of Tpo ap-
ears to be an effective treatment for victims of radi-
tion exposure, the side effects and possible immuno-
enicity of Tpo analogies have limited its commercial
evelopment. Tpo is not currently approved for clin-

cal use.

THER HGFS

Several other HGFs have been evaluated for an
ssociation with radiation exposure. Stem cell factor
35] and IL-1 [36] have been shown to have a radio-
rotective effect in animal models. When animals are
reated with these HGFs before radiation exposure,
ecovery of hematopoiesis is accelerated and mortality
s decreased. These HGFs have been reported to syn-
hronize HSCs in S phase, resulting in decreased
NA damage and cell killing. This radioprotective

ffect may be an important factor when considering
he safety of early response teams and protection dur-
ng potential exposure to residual radiation.

OMBINATIONS OF HGFS

Many studies have evaluated the combined use of
GFs after exposure to radiation. Because HSCs re-

uire stimulation by combinations of HGFs to prolif-
rate and differentiate, it may be necessary to provide
ultiple HGFs to obtain optimal recovery. In addi-

ion, because optimal recovery would involve rapid
orrection of neutrophil and platelet counts, treat-

ent with �2 HGFs may be able to stimulate the t

78
ranulocytic and megakaryocytic pathways. Several
ombinations have been evaluated: stem cell factor
lus IL-1 [37], G-CSF plus GM-CSF [38], G-CSF
lus Tpo [32], and IL-11 plus G-CSF [38-40].

Farese et al [32] described the treatment of non-
uman primates with the combination of G-CSF plus
po (megakaryocyte growth and differentiation fac-

or), which resulted in increased multilineage hema-
opoietic recovery. Durations of thrombocytopenia
nd neutropenia were decreased with the combina-
ion, as presented in Table 3. These data demonstrate
he potential of this combination to decrease the du-
ation and severity of thrombocytopenia and neutro-
enia.

The use of HGFs after exposure to radiation may
ave some therapeutic effect depending on the dose of
adiation exposure and the time to treatment. Several
GFs show potential benefits in animal models, but

he possible toxicities may limit their utility. The op-
imal HGF treatment may be some combination of

GFs for platelet and neutrophil recovery (eg, G-
SF plus Tpo). There is little information on T- and
-cell recovery after radiation exposure, and several
ytokines may be effective in increasing immune re-
overy including IL-2, IL-7, and IL-15. Although
mmune deficiency may complicate radiation-induced

yelosuppression, time to myeloid recovery may be
ritical for survival. Different cytokines might be
eeded to increase recovery of immune cells.

Although these are potential options for treating
adiation victims with HGFs, there are no clear path-
ays that define optimal dosage, which also limit ex-
ected toxicities. Neither animal models nor feasible
linical trials can reliably predict responses in radia-
ion victims. Empiric use of a best dose and treatment
chedule to increase recovery requires follow-up with
areful data collection and analysis for subsequent
efinement of management guidelines.

LINICAL TRIALS: A MODEL FOR CONTINGENCY
LANNING

Planning for contingencies involves definition of

able 3. Effects of Combined HGF Treatment in an Irradiated
onhuman Primate Model*

Duration (d) Nadir (per �L)

Treatment Throm Neut Platelets ANC

SA 12.2 15.5 4000 2
hG-CSF 6.7 12.3 9000 11
hMGDF 0 13.3 43 000 38
hG-CSF � rhMGDF 0.5 9.0 30 000 58

Throm indicates thrombocytopenia; Neut, neutropenia; ANC, ab-
solute neutrophil count; HSA, human serum albumin; MGDF,
megakaryocyte growth and differentiation factor. Adapted from
Farese et al. [32].
he possible problems, identification of requirements
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or a response, detailing plans for action, and outlining
equired observations to assess the effectiveness of any
ntervention. Planning for the contingency of chemi-
al, biological, or radiation exposures that lead to
arrow damage and hematopoietic failure include
ultiparameter support and consideration of HCT.
utlining these contingency plans requires attention

o evaluation of subjects at risk, requirements for
eeded intervention, plans for treatment, and fol-

ow-up assessments. Such contingency plans resemble
he conventional elements of clinical research studies
hat are performed as phase II clinical trials.

We review the development of a clinical trial and
ow that protocol structure may serve the needs of
ontingency planning.

ECESSARY ELEMENTS OF A CLINICAL TRIAL

A successful clinical trial requires predefined subject
ligibility, methods for consent, a defined treatment
lan, specified follow-up measurements to enable assess-
ent of success, and statistical measurements for com-

arison of the new intervention against an alternative,
tandard of care, or historical experience. Establishing
hese elements allows the clinical investigator to make
bservations on a defined subject population, interpret
he results, and plan modifications for future trials.

Satisfactory clinical protocols require defined eli-
ibility to characterize the subject population. This
llows study observations to be generalized to a
roader population with characteristics similar to the
efined eligibility criteria, although outcomes may
iffer in subjects of different age, gender, and perfor-
ance status as measured by organ function and pre-

xisting morbidity or acquired complications. In sub-
ects who are exposed to irradiation, the need for

CT may differ based on subjects’ pre-existing health
nd severity of marrow failure. Important exclusions
rom clinical transplant protocols must include sub-
ects who might recover from marrow injury without

CT or those with no available donor. Similarly,
xclusions might delineate those with pre-existing
rauma or severe infections, leaving them unable to
urvive the marrow insult and, hence, unlikely to ben-
fit from any planned HCT.

The HCT study plan must also define a condi-
ioning regimen, characteristics of the donor graft,
nd necessary supportive care sufficient to facilitate
ematopoietic recovery. Marrow-damaging agents
radiation, mustard-based alkylators, or other myelo-
oxins) may be highly myelosuppressive yet have vari-
ble immunosuppressive effects. A neutropenic but
till immunocompetent recipient might reject a graft,
hereas a fully ablated, lymphopenic, and immunoin-

ompetent recipient may require only minimally im-

unosuppressive supplemental conditioning to allow t

B & M T
ematopoietic cells to engraft. Conceivably, as in the
ore controlled therapeutic HCT that is applied for

reatment of cancer, differing conditioning might be
ecessary to satisfactorily engraft well-matched re-

ated donor progenitor cells versus partly or matched
ematopoietic progenitor cells from a non-HLA iden-
ical, unrelated, or cord blood donor.

Necessary elements of supportive care must also
e detailed to maximize the likelihood of subjects’
urvival until hematologic recovery. Antibiotics for
rophylaxis and therapy, transfusion support, hema-
opoietic growth factors, hydration, nutrition, GVHD
rophylaxis, and required isolation techniques need to
e defined to deliver the critical components of sup-
ortive care even if contingency protocol therapy is to
e delivered in diverse and dispersed treatment cen-
ers.

Follow-up measures to monitor recovery include
erial measurements of donor lymphoid and myeloid
himerism, assessment of graft stability and durability,
ncidence and severity of GVHD, and measurements
f immunologic reconstitution to determine the
eeded duration of antibiotic support. Observation for

ate events is also important.
Formal assessments of success include survival, sec-

ndary cancers, recovery from related complications,
nd important late effects of the HCT and from the
nitial marrow injury and associated trauma. All these
lements must be followed in a defined schedule to
dentify frequent and rare events in survivors of suc-
essful marrow rescue therapy.

LINICAL SCENARIOS RESEMBLING RADIATION
R EMERGENCIES REQUIRING HCT

Three clinical syndromes in which conventional
yeloablative HCT is used include severe aplastic

nemia, myelodysplastic syndrome, and severe com-
ined immunodeficiency disease. In each syndrome,
ailure of marrow production leads to pancytopenia,
ith or without lymphopenia and immunocompe-

ence. Subjects’ clinical status and immune function
efore transplantation change the likelihood of suc-
ess. Younger HCT recipients, even with serious co-
orbid complications, often tolerate intensive therapy
ith more resilience. Subjects with less well-matched
onors require more immune suppression to over-
ome the greater histocompatibility difference be-
ween donor and recipient. However, the intensity of
njury that accompanies ARS likely precludes consid-
ration of a conventional myeloablative HCT.

The immune deficiency of the recipient, deter-
ined by the quantity and quality of original marrow

oxic exposure, may predict the requirement for inten-
ive immune suppression and need for peritransplanta-

ion conditioning to allow engraftment. Importantly, co-

679
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xisting trauma, multiorgan injury, and infections may
odify the duration of support before transplantation

nd increase the likelihood of secondary complications
eveloping before hematopoietic recovery. Coordina-
ion of HCT and trauma management expertise in
uch planning is essential.

URRENT TRANSPLANT PROTOCOLS AS MODELS
OR EARLY PREPAREDNESS

Patients with severe aplastic anemia or myelodys-
lastic syndrome who receive HCT have pancytope-
ia and relative immunocompetence that may occur in
adiation victims. These patients can be treated with
ecreased intensity, but highly immunosuppressive
nonmyeloablative) conditioning, which may model a
ontingency protocol for acute radiation or myelo-
oxic chemical injury.

A suitable contingency protocol must be prepared
n advance. It must be reviewed, modified, and estab-
ished in the preparedness network to allow prompt
ctivation when subjects require urgent treatment. A
ulticenter protocol also needs prospective data col-

ection to allow subsequent assessment, interpretation
f results, and plans for future refinement. As such,
he enrolled subjects, although they are treated ac-
ording to predefined treatment plans that reflect best
ractice and sophisticated supportive care, are also
uman subjects who need protection of their privacy
nd respect for their opportunity to consent or decline
articipation in the prospective data collection plan.
he contingency treatment protocol, therefore, needs

eview and approval by relevant institutional review
oards, perhaps allowing exemption from yearly reap-
roval if no emergencies and thus no subjects yield
ny accrual.

This contingency plan must also be reviewed,
odified, and approved by hematopoietic cell donor

enters and cord blood banks to establish procedures
hat are needed for urgent searching and donor avail-
bility. These donors, who also are research subjects
n this prospectively planned treatment and data col-
ection protocol, need consent for their participation.
imilarly, their clinical management protocols might
e exempt from yearly reapproval by an institutional
eview board if no emergency donors are requested.
nder any circumstances, emergency preparedness

rotocols need periodic re-review for re-evaluation
nd modification as appropriate.

ARRIERS TO CONTINGENCY TRANSPLANT PLANNING

Successful implementation of a contingency trans-

lantation therapy protocol requires a pre-existing

80
ommitted network with developed, distributed, and
ctualized plans ready to initiate treatment. Financial
lanning needs to be in place to support commitment
f resources from hospitals and physician practice
roups to overcome the barriers and delays of conven-
ional pretransplantation financial approval. Similarly,
vailability of hospital beds, prompt identification of
uitable HLA-compatible donors, and facilitation of
onor cell collection and transport needs preapproval
nd planning. Contingency protocols will require a
afe, available blood supply, pretransfusion irradiation
o prevent transfusion-associated GVHD, and a nec-
ssary supply of relevant pharmaceuticals (immuno-
uppressives, antibiotics, HGFs), and other require-
ents for best-practice supportive care.

Development of effective contingency protocols
ill require committed participation from trans-
lantation centers and their institutions and formal
valuation of the prototypic clinical scenarios that
ield similar myelotoxic exposures to develop safe,
ffective, and feasibly implementable contingency
lans. The planning process will require develop-
ent, re-evaluation, and rewriting of the contin-

ency protocol as clinical experience in conventional
ransplantation evolves and supportive practices ad-
ance.

UMMARY

Uncertainty remains about the number of victims
ho would develop ARS and clinically meaningful
ancytopenia consequent to a nuclear detonation.
onetheless, transplantation physicians, hematolo-

ists, and oncologists are challenged to prepare for a
ole in the management of patients with ARS in the
vent of a regional, national, or international emer-
ency. We can hope that radiation accidents or attacks
o not occur, but we must improve our preparedness
ecause they might.
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