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1. Introduction

Stochastic partial functional differential equations are very important in stochastic models of biological, chemical, phys-
ical and economical systems, and the study of stochastic age-dependent populations has received a great deal of attention
[1,2]. Zhang et al. [3] show the existence, uniqueness and exponential stability for stochastic age-dependent population
equations. Pang et al. [4] give the convergence of the semi-implicit Euler method for a stochastic age-dependent population
equations of the form

oP OP dwW,

§+%7—u(t,a)P+f(t,P)+g(t,P)T, (1.1)
where P(t,a) denotes the population density of age a at time t, §(t,a) denotes the fertility rate of females of age a at time ¢,
J(t,a) denotes the mortality rate of age a at time ¢, f(t,P) denotes effects of external environment for population system,
g(t,P) is a diffusion coefficient, W, is a Brownian motion.

In the stochastic age-dependent population system, due to brusque variations from some rare events (for example,
tsunami, earthquakes, impacts of extra terrestrial objects and so on), the size of the population systems increases or
decreases drastically, so the jump-diffusion processes better describe the dynamics of population density. Such a gen-
eralization seems to be more appropriate for population system. Recently, Li et al. [5] studied the convergence of
numerical solutions to stochastic delay differential equations with jumps. In the present paper we will further research
this topic.
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The stochastic age-dependent population equation with Poisson jumps of the form

dP= |- g—i — u(t,a)P +f(t,P)|dt + g(t,P)dW; + h(t,P)dN;, (1.2)
where h(t,P) is a jump coefficient, N; is a scalar Possion process with intensity ;.

Obviously, Eq. (1.2) can be regarded as a generalization of the stochastic age-dependent population equation (1.1). In gen-
eral, stochastic age-dependent population equation with jumps rarely has an explicit solution. Thus, numerical approxima-
tion schemes are invaluable tools for exploring its properties. However, there is little work on the convergence of the semi-
implicit Euler method for a stochastic age-dependent population equation with jumps. In this paper, we will develop the
semi-implicit Euler method for stochastic age-dependent population equation of the type described by Eq. (1.2).

In [5], Li introduced explicit schemes that generate approximate solutions Q} of (2.1) on the grid points t,, they did not
imposed the jump time 7; in (2.1) which are violated by the discontinuous nature of the thinning construction. In this article
the main distinction between our work and [5] is that we construct a discrete-time approximation to P by consider the jump
time.

This paper can be organized as follows: in Section 2, we begin with some preliminary results which are essential for our
analysis and define a semi-implicit Euler approximate solution to stochastic age-dependent population equation with jumps.
In Section 3, we shall prove that the numerical solutions converge to the exact solutions and provide the order of
convergence.

2. Preliminaries and semi-implicit approximation

At the beginning we introduce the following notation. Let

V=H'([0,A) = {(p\qo € Lz([O,A]),g—Z € I?([0,A])) where
4%

oxi

V is a Sobolev space. H = L*([0,A]) such that

is generalized partial derivatives},

VoH=H<V.

V' is the dual space of V. We denote by ||-||, ||-|| and ||-||, the norms in V, H, and V', respectively; by (,-) the duality product
between V and V/, let (-,-) indicate the scalar product in H.

Let (Q, #,P) be a complete probability space with a filtration {#},. , satisfying the usual conditions (i. e., it is increasing
and right continuous with a left-hand side limit, and %, contains all P-null sets). Let W, be a Wiener process defined on a
complete probability space (Q, #, P) taking its values in the separable Hilbert space M, with increment covariance operator
W. For an operator B € L(M, H) be the space of all bounded linear operators from M into H, we denote by |B||, the Hilbert-
Schmidt norm, i. e., ||B||, = tr(BWB)". Let C = C([0, T]; H) be the space of all continuous function from [0, T] into H with sup-
norm ||, = Supg-er[¥(s)l, Ly = L(0,T}; V) and L, = L"([0, T}: H).

We define P.- = lim,_,-P(s,a), and 2= = lim, .- %, then consider stochastic age-dependent population equation with
jump of the form

diP = [~ %% — p(t.a)Pe +f(t,Pe)]dt
+g(t, P )dW, + h(t, P,-)dN, in G;
P(Oaa) :PO(a)a in [OvA]

P(t,0) = 2 p(t,a)P(t,a)da, in [0,T],

2.1)

where T > 0,A > 0,and G = (0,T) x (0,A), let f(t,-), h(t, ) : L} — H be a family of nonlinear operators, #-measurable almost
surely in t. g(t,-) : L4 — L(M, H) is the family of nonlinear operator, #,-measurable almost surely in t.
The integral version of Eq. (2.1) is given by the equation

t t t t t
P[:PO—/ OPs ds—/ ,u(s,a)Psfds-s—/ f(s7Psf)ds+/ g(s,Pr)dWS+/ h(s, Ps-)dNs. (2.2)
o Oa 0 0 0 0

Let 7; denotes the jth jump of Ny occurrence time. Suppose for example, that jumps arrive at distinct, ordered times
T1 < Ty <--- letty,..., ty be a deterministic grid points of [0, T]. We construct approximate solutions to models of the form
(2.1) at a discrete set of times {t,}. This set is the superposition of the random jump times of a Poisson process on [0, T] and a
deterministic grid ty, ..., tp,, and satisfy max{|t;.1 — T;| < A. It is clearer that the random Poisson jump times can be com-
puted without any knowledge of the realized path of (2.1).

Let Ap = Tyt — Tny AW, = W(Tpy1) — W(Ty), and AN, = N(tn.1) — N(t,) denote the increments of the time, Brownian mo-
tion and the Poisson processes, respectively. For system (2.1) the semi-implicit approximate solution on {7,} is defined by
the iterative scheme
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Qo = Qu (1 0) |- 2 (e @)@ 516, Qn) |80+ 0 - P2 (@) 516 Qo)

+8(t,Qq) AW, + h(t,Q,) ANy, (2.3)

with initial value Q, = P(0,a), Q,(t,0) = f(f B(t,a)Q,da, n > 0. Here, 6 is a parameter with 0 < 0 < 1. We first define step
functions

=

-1

Zy(t) =Z;4(t,a) = Quligz,,1) (0), (2.4)

I

=

L) =2(t,0) = ) Qealigr.(0), (25)
0

=
Il

where g is thg indicator function for the set G, and Q= P(t,a), @:P(t,j,a):limHkP(s,aL Note that
Qpi1 = Qiy1 + h(t,Qky1) at each jump time 7, and when P(t,a) is continuous at t;, then Q. = Qi.1, SO that
Zi(tx) = Qr = Q(tx, a), Z2(tx) = Qi,1. We define

Q =Po+ /0 ‘1-0) [— X W(s.Q)Z) 45,2 (s))] ds + /0 ‘e[_ s

— 1(s,0)Za(5) + £(5,Z2(5)) | ds

+ /0 (5.21(s))dWs + /0 "h(s.Z1(s))dNs, (2.6)

with Qo = P(0,a), Q(t,0) = .]'é‘ B(t,a)Q.da, Q. = Q(t,a). Note the difference between Q, and Q,.

We note that the numerical solution in Eq. (2.3) is defined by a sime-implicit equation containing partial derivative and
Poisson jumps. The Eq. (2.3) is reduced to the Euler approximation to Eq. (2.1) witch discussed in [4], if 0 = 0, so this paper is
regarded as a generalization of the paper [4].

As the standing hypotheses we always assume that the following conditions are satisfied:

(i) f(t,0)=0, g(t,0)=0, h(t,0)=0;
(ii) (Lipschitz condition) There exists a positive constant K such that

F(t.y) = F(E.x)| Vv lIg(t,y) — &t X)[l; V h(t,y) — h(t.x)| < K[|y = X]],, (2.7)
(iii) u(t,a), p(t,a) are continuous in G (the closure of G) such that
0< o < p(t,a) << oo, 0<p(t,a)<pf<oo, (2.8)

(iv) (Coercivity condition) There exist constants o > 0, ¢ > 0, 1 € R, and a nonnegative continuous function y(t), t € R",
such that

2(F(£,v) + Ah(t,v),v) + lIg(t, )l < —a|[VIP + 2y + p(t)e ™,

where, 4, is intensity of scalar Poisson process Ny, for arbitrary § > 0, lim,_...y(t)e~% = 0.

With the similar proof of Theorem 3.1 in [3], we can get

Theorem 2.1. Under the assumptions (i)-(iv), then Eq. (2.1) has a unique strong solution ont € [0,T].

3. Stochastic population system under Possion jumps

Throughout this work, we use Ci, Cs, ..., to denote a generic constant (independent of A) that may change from line to
line.

Lemma 3.1 [6]. Assuming f(t,x) € C'*([0, +o0) x R), and
dX = a(s,Xs )dt + b(s, Xs )dW; + c(s,Xs )dNs,
or

t t t
Xt:X0+/ a(s,Xsf)ds-s—/ b(s,Xsf)dWs+/ (s, Xs- )dNs.
0 0 0

Then we have

f(t,X:) =£(0,Xo) + /O[LQf(S,XS)ds + /O[L1f(S,X5)dWS + /Otqu(s,Xs)de (3.1)
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where

Lof (t,x) = f/(t,x) + a(t, X)f(t,x) + %bz(t,x) ! (t,X),

Lf(t.x) = bt (atxX) b(t. X)f(t,x),

Lif (%) = f(t,x + c(t, X)) = f(£, ).

The next lemma shows that the continuous approximation has bounded second moments in a strong sense.

Lemma 3.2. Under the assumptions (i)-(iv) above, then

E sup Q. <

te(o.

Proof. From Eq. (2.6), one can obtain

dQ, = 60’[ dt+ (1=0)[f(t,Z1(t)) — u(t,a)Z, (t)]dt + g(t,Z1(t))dW, + O[f (t, Z5(t))

+ h(t,Zl( ))dNg.
Applying Lemma 3.1 to |Q,|* yields

QP =il +2 [ (~5%.0 )ds 2 [ (1~ 05,2050 + (5. 2205). Qs

2 (s, 0)[(1 = 0)Z4(5) + 0Z3(s)], Q,)ds

(32)

— u(t,a)Zy(t)]dt

+2 Qg zisnaw + [ ez + [ [0+ s 2R - 0]aN

< 1ol +2 [ (- G2 )ds+2 [ 101 - 0f(5.21(5) + 5. Za(5) s

+2uo(/0’ |Qs||<170>z1(s>+ozz(s>|ds+_/; ||g<s,z1<s>)||§ds+2_/; (Qur (5,21 (5))AWs)

+2 /t(sth(s,Z1 (S)))dﬁs + /[ |h(s,Z; (s))|2dITJS + M /t |h(s,Z; (s))|2ds +24 /t |Qsl|h(s,Z4(s))|ds, (3.4)
Jo Jo Jo Jo

where N, = N; — A1t is a compensated Poisson process. Since

()= [faser-}([ rons

< / §(s.a)da / Q2da < 1 AR Q.7

2

2 /0 1QulI(1 — 0 (5.21(s)) + 0f (5. Za(5)) |ds
< [N1astas+2 [ 17620007 + fis 2o s
< / 1Q2ds + 2K / 1Z4() + 1Z5(5))ds,
21t / 1QulI(1 = 0)Z4(5) + 0Za(s))ds
< o / 1QuPds + 241, / 1Z:(s)P + 12 (s) P)ds
2 /o 1Qulh(s.Z1(5))ds < s /O Qs + 4y /0 Ih(s.Zy(s))Pds

t t
<;4/ |Qs\2ds+x11(2/ |Z1(s)[*ds.
Jo JO

(3.5)

(3.6)

(3.7)

(38)

Taking Egs. (3.5)(3.8) into Eq. (3.4), we compute that for some positive K; = A%f2 + 1 + Uy + 71, Ky = 3K + 274K + 21,

K3 = 2(K? + 14g),
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t t t t
Q. < Qo2 + K / 1Q,%ds + K / 1Z4(s)Pds + K / 1Z5(s)Pds + 2 / (Q,8(5. 21 (5))dWs)

t - t 9~
+2 / (Qu. h(5.21(5)))dN, + / Ih(s. 24 (s))/2dNs,

Now, it follows that for any t; € [0,T]

t ot
{sup Q| < HQ + (ki +K +Ks) | [E[sup |Qs|2}dr+2[E sup | (Qs,g<s,z1(s>>dws>}
te[0,tq] 0 0<s<t te[0,t;] JO
t ~
+26| sup [ (Quh(r.Z:(9)dN. | + E| sup / Ih(s. Z4(5))| st} 3.9)
te0,t1] JO fEOt]

By Burkholder-Davis-Gundy’s inequality (see for example [7]), we have

[E{sup / (Q.8(5.Z, <s)>dws)}
te0.t,] Jo

1 ] f
<gE ts{gl{)]\Qflz +K4/0 g (t.Z1 ()5t
€0,
<%Etsgglwqtf Kol [ Bz 0 (3.10)
_E 1 d
t ~
E{sup I <Qr,h<r,z1<r>>)dwr}
te[0,t4] JO
1| 2_ f 2
< GE|sup 10| +Ks [ hit.z: o)
<[0,t;
1 [ 2_ 2 [0 2
<GE|sup 10| +Ks K | el (3.11)
€[0,t;

{sup / |h(s, Z:(s))] st}
te[0,tq]
t1 ?
< ce[ [ ie.zaconr'e]
0
" !
gCKZ[E{HZHIZ/ IIQtHde]
0

1 b
<gE {sup Q| +Ks [ ElQza (3.12)

te[0,t1]

for some positive constant K4, Ks, K¢ > 0. Substituting (3.10)—(3.12) into (3.9) yields, again for a possibly different K,

5}
E sup Q. 6[E|Q0\2+K/ E sup |Q.[*dt Vt; € [0,T].
0 te(0,tq]

te0,t]

Now, Gronwall’s lemma implies the required result. O

Lemma 3.3. Under the assumptions (i)-(iv) and fOT [E}% ’ds < oo, then

Esup |Q; — Zi(t)* < Csn, (3.13)
te[0,T]
and
Esup [Q, — Z(t)]* < Canr. (3.14)
te[0,T]

Proof. For given ¢t € [0, T], there exists an integer k such that ¢ € [ty, Tx,1), we have



L. Wang, X. Wang/Applied Mathematical Modelling 34 (2010) 2034-2043 2039
Qt —Zl(t) = Q[ - Qk
t aQ ot ot
=- / 50 dsf/ (1= 0)f(s.Z1(5)) +9f(5,Zz(S))]d5+/ (s, )[(1 = 0)Z1(s)) + 02(s)]ds

+/[g(s721(5))dws+/[h(s,zl(s))st.

Thus,
ta 2 t 2 t 2
|Qt—Zl(t)\2<5/ 8%5618 +5/[(1—O)f(s,Zl(s))+0f(s,Zz(s))]ds +5/ WS, a)[(1 — 0)Z1(s) + 0Z,(s))ds
t 2 t 2
5/g(s,Z1(s))dWs +5 / h(s,Z1(s))dNs

Now, the Cauchy-Schwarz inequality and the assumptions give

t 2 t t
Qe — Zy(t) < 54 / % s+ 50 / (1= Of(5.21(5)) + 0F (5. Za(s)) s + 552 / (1= 0)Z1(s) + 0Z>(5)ds
t 2 t 2 t 2
5 / g(5,Z:(5))dW;| +10 / h(s,Zy(s))dNs| + 1072 / h(s,Zy (s))ds

aQ*

<5A/ ds + 1032 /|zl \ds+/ 1Z2(s)[Pds| +10(1 + 22)K* 2 /\Z] )[*ds
Tk
t t 2 t _ 2
+10K2A/ \Zz(s)|2ds+5/g(s,Zl(s))dWs +10/ h(s,Z;(s))dN;
K Tk Tk
Hence,
8 2
E sup |Q, — ()\2<5A Q1 ds +2052C; A + (20 + 1073)K>ATC; + 5E sup max (s))dW;
tel0.T) oa tejo,T) k=0.1..

2

+10Esup max
te0.T] k=0,1,...,N-1

/ h(s,Z4 (s))dN,

Using the (2.7), (3.2) and Doob inequality yield

"10Q,|°
oa

E sup |Q, — ()\2<5A

te[0,T]

(k+1)a
ds +2052C; A + (20 4+ 1073)K>ATC, +5 _max / Elg(s,Z:(s))|*ds
Tk

(k+1)a ,
+10ill max 1/ E|h(s,Z1(s))|"ds
= T

k

<54 %2C1 A + (20 + 10/3)K? ATC; + 5K2Cy A + 10K 74C1 A.

So the inequality (3.13) holds, a similar analysis gives (3.14). O
Theorem 3.1. Under the assumptions in Lemma 3.3, then

E sup |P; — Q] < CsA. (3.15)

te[0,T]

Proof. Combining (2.2) with (2.6) has

Q-Pi—— [ AP ds— [ s, a1 - 0)2i) - Po) 4 0Zals) — Pl + [ 11 - 0)(F(5.21(5) ~ P )

+0(f(s,Z3(5)) —f(Psf)))}ds+/0 (&(5,Z1(5)) — &(s, Ps-))dW; +/O (h(s,Z:(s)) = h(s, Ps-)))dNs.

Therefore using the generalized Itd formula, along with the Cauchy-Schwarz inequality and (2.7) yields
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P-|?

AP Nt + 816,240 - a6, e

~2(Q; — P, (t, a)[(1 = 0)(Zy () — Pr-) + 0(Zo(t) — Py )])dt

+2(Q — P, (1 = 0)(F(£,Z1 (1)) — f(£,Pe-)) + O(f (£, Za(8)) — f (£, Pi-)))dt
+ a1 |h(8, Zy (1) — h(t, Pe-)) Pt + 224 (Q, — Pe-, (h(t,Z1(1)) — h(t, Pe-))))dt
+2(Q — P, (g(t,Z4 (1)) — g(t, Pr-))dW,)

+2(Q; — P, (h(t,Z1(t)) — h(t, P )))dN, + |h(t,Z1(t)) — h(t,P;-))[dN,

< (1+AB + o+ 11)|Q; — P |Pdt

+ 3+ 22K + 204 )[|Z1 (1) — Pe- | 2dt + 2(K + p1o) |1 Za(8) — Pr-)|[Fdlt
+ Z(Qt - Pt’? (g(t7Z] (t)) - g(t7Pr))dW[)
+2(Q; — P, (h(t, Z1(t)) — h(t, P ))))dN; + [h(t, Z1(£)) — h(t, P ))[*dNL.

Hence, for any t € [0, T],

{sup Q, — Py

se0.f

rES
S

+2(K2+,uo)/ E|lZa(s) = Ps |2ds+2Esup [ (Q, —Pr,(g(r,Z:(r)) —

se(0,f] JO

+2E sup (Qr -, (h(r,Zy(r)) — h(r,P,-)))dN,

se[0,t]

+2Esup [ |h(r,Zy(r)) — h(r,P, )|*dN,.

sefo, Jo

By Burkholder-Davis-Gundy’s inequality, we have

2E {SUD /OS(Qr = Pr,g(r.Zy(r)) — g(r, Pr-))dW;)

sel0,t]

<

<

t 1/2
C[E{SUDQS Ps—|</0 Hg(&Z](S))—g(SvPsf)Ilﬁ) }

sel0

{SUP Qs —Ps*

se[0,t]

t
s / E|Z1(s) - Py |%ds
0

G’I'—‘ Oﬁ\'—‘

{sup Qs — Ps

sel0,t]

t
2k [ [EIQ - P 2+ EIQ - Zu(o)2]ds
0

S

2E sup (Qr - Pr’x (h(r,Z] (r)) - h(r7 Pr)))dNr

sel0t] JO

<

C[E{sup |Qs — Ps |</0 |h(r,P-)

se[0,t]

12
hr.z, <r>>|2) ]

-l t
{SUP Qs — P |? +’<2/0 El|Z1(s) - Ps- [l2ds

E sel0,t
-l t
<GE|sup Qs — P '] + 2k, / [EIQ = Pe- I + Qs = Z1(9)] ] s
sel0,t] 0
2E | sup / |h(t,Z1(t)) — h(t,Pr-)] dNt}
s€(0,t]

<

<

C[EUO Ih(t,Z3(t)) — h(t,Pe )| dt}
CCE|121(6) - Pr | [z -re dt}

+6[E

1
<g {sup Qs —Ps | sup Qs — Zi(s >|2]
se(0,t se[0,t]

+20 [ [F10s - P2+ EIQ, - 21092

t
<A+AB 4+ 1o+ 1) / Esup [Q, — Py Pds + (3 + 200K + 2] [ EIZi(s) ~ Py |2ds
0

(3.16)

(3.17)

(3.18)

(3.19)
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where ki, k;, ks are three positive constants. Therefore, inserting (3.17)-(3.19) into (3.16) has

t
[E{sup QSPS|2} <2d2/ E sup |Pr7Qr\2ds+%[E
JO

sel0,] re(0.s]

sup [Qs — Z; <s)2}

se(0.t]
t t
+2d; / E[1Qs — Z1(5)]12ds + 4(K? + p,) / EQ, - Za(s)|ds,

where d; = 2[3K? + 271K + 2y + k1 + ko + ks, and dy = 1+ A%B2 + uy + A1 + 2(dy + 2K> + 215).

Applying Lemma 3.3 we obtain a bound of the form

t
Esup |Q; — Py |> < Dy +2C, / E sup |P; — Q,[*ds, (3.20)
0

s€[0.t] ref0.s]

where Dy =2d,GT +1Cs +4(K* + 1o)CaT. The result (3.15) then follows from the continuous Gronwall inequality with
C5 = D] eXp(ZCzT) O

It is easy to have the following theorem.
Theorem 3.2. Assume the preceding hypotheses hold, the approximate solution (2.6) will converge to the true solution of Eq. (2.1)

in the sense

2—0

lim E[sup |Q, — P "] = 0. (3.21)
te[0,T]

4. One example

Let us consider a stochastic age-dependent population equation with Possion jumps of the form
diP=[- B LP, |dt + @(P)dW, — P-dN;, in Q,

da

P(0,a)=1—a, in 0,1, (4.1)
P(t,0) =2 [ P(t,a)da, in [0,T].

Solution without Perburtation Numerical solution with 6=0.4

Fig. 1. Numerical simulations of stochastic population equation.
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(1-2)(1+0.01%A B+0.01"A N) o=0.4

0.06

0044

Err

0.02

el =]

0.06

0.04

Err

0.02

=Q

Fig. 2. Mean-square error of simulation.

This example is the modification of example in [4]. Where W, is a real standard Brownian motion, N, is a Possion jumps
with intensity /1, and ¢(.) : R — R is a Lipschitz continuous function such that ¢(0) = 0. Let H = *([0,1]), and V = W}([0, 1))
(a Sobolov space with elements satisfying the boundary conditions above), M =R, u(a) =+, B(t,a) =2, f(t,p) =0,
h(t,p) = —p, g(t,a) = ¢(a) and P(0,a) =1 — a. Clearly, the operators f, g and h satisfy conditions (i) and (ii), u(t,a) and
B(t,a) satisfy condition (iii). that is for arbitrary v € V

2 <f(t,v) + Mh(t,v),v > +]g(t V)5 < —al|VIP + v} +p(0)e

where o > 0 is small enough, k is the Lipschitz constant for the function ¢.

Therefore, it follows that condition (iv) is satisfied. Consequently, the semi-implicit approximate solution will converge to
the true solution of (4.1) for any (t,a) € (0,T) x (0,1) in the sense of Theorem 3.2, provided E(Z£ )2 is bounded in almost sure t.

Take ¢(p) = p, T = 1in Eq. (4.1). First, we fix the step sizes A, = 0.002, A, = 0.005 and let 4; = 0.2, and change the param-
eter 0 in Fig. 1. The upper in the left is the explicit solution to Eq. (4.1) without perturbation, that is EP(t,a) = 1 — a. The other
three pictures are numerical simulations of the stochastic age-dependent population equations with 0 =0.4,0 = 0.6 and
0 = 0.8, respectively, where Q(t,a) = s ey Qi (£, a, ), It clearly reveals the fact that the numerical approximation will
tend to the true solution in the mean sense. Since the analytic explicit solution to Eq. (4.1) is not obtained, so the explicit
solution P(t,a) to Eq. (4.1) can be replaced by (1 —a) x (1 +0.001AW, + 0.001AN,). Fig. 2 shows the computer simulation
for the differences between (1 —a) x (1+0.001aW,+0.001aN;) and the Euler approximation solution Q(t,a) with
0=0.4,0=0.6 and 0 = 0.8, respectively. The maximum value of the error square is not greater than 0.042. Clearly the
numerical approximation will tend to the true solution in the mean square sense.

5. Conclusion

In this paper, we proposed new method for the numerical solution of stochastic age-dependent population equations
with Poisson jumps. The approach is based on constructing a discrete-time approximation to exact solution by consider
the jump time. The error analysis has been presented for approximate solutions and exact solutions, It was proved that
the semi-implicit Euler methods were convergent with strong order p = 1/2. Finally, the efficiency of this method has illus-
trated by a simple example of stochastic age-dependent population equations with Poisson jumps. Our results have general-
ized and improved some known results, it can be probably extended to obtain approximate numerical solutions of stochastic
population equations with Markovian switching arising in mathematical biological.
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