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Abstract

In this paper, by a specially constructed cone and the fixed point index theory, we investigate the
existence of multiple positive solutions for the following singular semipositone problem:

y(0) =y(1)=0.

The nonlinear terny (¢, y) may be singular at= 0, = 1, andy = 0, also may be negative for some
values off andy; andx is a positive parameter.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper discusses existence of two positive solutions to the singular semipositone
problem

y(0)=y(@1)=0. (1.1,)

The nonlinear ternf (¢, y) may be singular at= 0,7 = 1, andy = 0, also may be negative
for some values of andy; andx is a positive parameter.

{y” +Af(t,y)=0, 1e(0,1),
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The boundary value problem .(,) arises in a variety of differential applied mathe-
matics and physics. As to semipositone problem, we note that the well-known Proudman
equation

{ (py)Y +ru=1, te(0,1),
y(0) =yl =0

(which was established by Proudman in 1926, see Proc. London Math. Soc. 24 (1926)
131-139) is of that kind, see [5, p. 2] for details. Alsol¢) describes the movement of a
particle which is acted by variable forces.

Recently, the case whefi(z, y) > 0 (positone problem) fo(z, y) € (0, 1) x (0, +00)
in (1.1,) has received almost all the attention (for example, see [2,3,6,8,9] and references
therein). And what is more, all the results for twin solutions afl() to our knowledge
are concentrated on the positone problems (see, for instance, [3] etc.). Only few results
exist for semipositone problem (see [1,4] and some references therein). In.11), lias
been considered whey(0) = a > 0, f is semipositone and singularat 0,7 =1, and
y = 0. In [4] the problem similar to (1,) has been also studied whegnis semipositone
and singular only ap = 0. Unfortunately, what obtained in [1,4] are only the existence of
one positive solution to (1,) whena is sufficiently small.

Motivated by the works of [1,3,4], the present paper investigates the existence of mul-
tiple positive solutions to (1,) when f is negative for some values ofandy, andx is
small enough. At the same time, we improve and generalize the results obtained in [1,4],
since the degree of singularity in [1,4] are lower than that of the present paper (for details,
please see our examples and remarks). Our approaches are the approximation method, the
fixed point index theory, and a new constructed cone. Also we would like to remark that
the theory presented here for Dirichlet problem could be extended (in an obvious way) to
general boundary value problems. The organization of this paper is as follows. We shall
introduce some definitions and lemmas in the rest of this section. The main result will be
stated and proved in Section 2. Finally, two examples are worked out to demonstrate our
main result.

A mapy € C[0, 1] with y(t) > 0 for ¢ € (0, 1) is said to be a positive solution to BVP
(1.1,) if it satisfies Eq. (11,).

For the remainder of this section, we present some results which will be used in Sec-
tion 2. First from [7, Lemma 2.3.1, p. 88, and Lemma 2.3.3, p. 91] we can get the following
lemma.

Lemma 1.1. Let P be a cone of real Banach spadg 2 be a bounded open set &f,
0ef2, A: PN — P becompletely continuous.

(i) f x£uAxforx e PNos2 andu € [0, 1], then
i(A,PNQ, P)=1.
(iiy Ifinfycpnae |Ax|| > 0andAx # ux forx € PN a2 andu € (0, 1], then

i(A,PN$2,P)=0.
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Lemma 1.2. If g € C[(0, +o0), R"], then there exists a nondecreasing functior
C[R™,R™] such thath(x) > 0 as x > 0 and g(x)h(x) € C[RT,R™] (that is,
lim,_ o+ g(x)h(x) existy, whereR™ = [0, +00).

Proof. Without loss of generality, we assuméx) # 0 on (0, +o0). Then there exists
x0 € (0, +00) with g(xg) > 0. Let

_ | maxex,xq 8(1), x € (0, x0),
hal) = {g(xo), x> x0.

Thenh1(x) > 0 and nonincreasing of®, +00).

If limy_or(gx)/h1(x)) exists, then we can definé(x) = 1/h1(x). Evidently,
lim,_ o4 h(x) exists, soh € C[RT, RT] and nondecreasing af, +oo).

If lim ;04 (g(x)/h1(x)) does not exist, sinceQ g(x)/h1(x) < 1 forx € (0, xg), we
may chooséi(x) = In(1+ x)/h1(x) or h(x) = x*/h1(x) (@ > 0), which satisfies our re-
quirement. O

2. Main results
For convenience, we list the following assumptions:
(H1) f € C[(0,1) x (0,400), R] and there exist a constadf > 0 and mapsg €
C[(0, 1), R*], g € C[(0, +00), R*], which satisfy
0<fE, ) +M<q)g(y), Vre(0,1), ye(0,+00),
and
1
0< /s(l— $)q(s)ds < 4o0.
0
(H2) There exists an intervéd, 8] C (0, 1) such that

. . t,x
lim f(,x)=+0c0 and lim AURY =400
x—>0+ x—>400 X

both uniformly with respect to € [«, B].

The following theorem is our main result.
Theorgm 2.1. Suppose that condition$d;) and (H2) hold. Then for each > 0, there
existsh = A(r) > 0 such that BVR1.1,) has at least two positive solutiongs) and y(r)

satisfying0 < ||x|| < r < ||| providedx € (O, A).

Before giving the proof of Theorem 2.1, we first list some preliminaries and prove some
lemmas.
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LetE=C[0,1],P={x€E: x(t) >0, teJ},J=[0,1],andQ ={x € P: x(t) >
t(L—1)x(s), Vt,s € J}. ThenE is a Banach space with norfw || = max¢o,1; |x (#)]; and
obviously,P andQ are cones irE.

Set¢*(1) = [y G(t,5)ds, where

@ =s), 0<r<s <]
G(t’s)_{s(l—t), 0<s<r<1.

For € (0, +00), j € N, consider the following approximation problem of13):
" * _ 1y _
{y (1) +Af; (t. y() ¢A(t)+j)—0, 1€(0,1), 2.1))
y(0)=y(1) =0,
where

f(t,u—i—%)—i—M, u>0,

. " 1\ _
O =AMop™, fj(t’u+j>_{f(t,7]-‘)+M, u<0.

Sinceg™(r) <t(1—1t) fort € J, we havep, (1) < AMt(1—1t) fort € J. Itis easy to see
thatify; e C1[(0, 1) x (0, 4+00), RN CIO, 1] is a solution of (&) andy;(t) > ¢:.(r) for
t €(0,1), thenu; () =y;(t) — ¢x(¢) is a positive solution of the following (BVP):

{u/’(t)+kf(t,u(t)+%)=0’ te(0,1), (221)

u(0)=u(l)=0.

For the sake of solving (2;), we first consider the following operator:

1
j 1
(Af\y)(t) Z:)‘/G(I’s)f;k<sa)’(5)—¢A(S)+7) ds, tel.
0

Lemma2.1. Foreachi € (0, +00), j € N, A{ 1 Q — Qis acontinuous and compact map.

Proof. SinceG(t,7) > t(1—1)G(s,7) fort,s, T € J, itis easy to see thazt{ 0 — 0.
Meanwhile, byf € C[(0, 1) x RT, R™]and(H1), one can concludg; is continuous and
compactfromQto Q. O

To sum up, we can see thak Q is a solution of (21;) if y is a fixed point ofA{ on Q.
Therefore, we next consider the existence of fixed point0bn Q.

Lemma 2.2. For eachr > 0, there exists.(r) > 0 such that
i(AL,0,,0)=1, Vire(0,r(r), jEN,

whereQ, ={y € Q: [yl <r}.
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Proof. By Lemma 1.2 andH), there exists a nondecreasing functioe C[R™, R*]
such thatg(x)h(x) € C[RT, R*] andh(x) > 0 asx > 0. For each > 0, let

r/2

2 h(s)d
o [ s,
0

. r
)\.(V) = m|niﬁ,

where
1

a=: 2/5(1 —8)q(s)ds, c(ry=: max gh(y).
ye[0,r+1]
0
We now claim that

y#u(Aly) forpe=[0,1], ycaQ,, andxe (0, A(r)). (2.3)

Suppose this is false. Then there exigte 90, and uo € [0,1] with yo(r) =
ro(A7yo)(t) for all ¢ € [0, 1]. Sinceyg € Q, we have

yo) Zt(1—=0)lyoll =rt(1—1t) fortelJ.
On the other hand,

1
M
qb)\(t)=AM/G(t,s)ds<AMt(1—t)<—yo(t) forr e J.
r
0

Thus,

M 1 r
yo(t) — () > (l— T)yo(t) 2 5y0(t) 2 51(1—1) forteJ. (2.4)

This implies that

1 1
fi <t, yo(t) — () + ;) = f(t, yo(t) — ¢a(t) + 7) + M. (2.5)
Therefore, by (2.4), (2.5), an@H1) we have

1 1
—¥o(8) = Auf (t, Yo(s) = i (s) + ;) +AuM < g (S)g(yo(S) — () + ;)
Ae(r)g(s) _ Ae(r)gls)
T h(yo(s) = da(9))  h(3yo(s))

Sinceyg <0 0n(0,1) andyo(r) > rt(1—1) on J, there existsp € (0, 1) with yj >0
on (0, 10) andyy < 0 on(ro, 1).
Integrate (2.6) from to g to obtain

ftto q(s)ds
h(3y0(1))

fors € (0, 1). (2.6)

yo(1) < re(r) for ¢ € (0, o).

Consequently,
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fo
h(%yo(t))yé(t) gxc(r)/q(s)ds for r € (0, 10). (2.7)
t

Integrate (2.7) from 0 ta again to obtain

r/2 1o

r [40] Ig
/h(%s) ds=2/h(s)dsg)»c(r)//q(s)dsdt=Ac(r)/sq(s)ds.
0 0 0t 0

Then
r/2 to

2 /h(s)ds < L/s(l—s)q(s)ds. (2.8)
1—1
0 0

Ae(r)

Similarly, integrate (2.6) fromg to z (¢ € (f0, 1)) and integrate it again from to 1 to
get

1

r/2

/h(s)ds < ;/s(l—s)q(s)ds.
0

0

fo

2
re(r)

This together with (2.8) guarantees that
r/2 1

/h(s)ds éZ/s(l—s)q(s)ds:a,
0 0

2
Ae(r)

in contradiction with
r/2
2 / h(s)d
ac(r) a8
0
and consequently, the result of Lemma 2.2 follows:

O<Ai<

Lemma 2.3. For eacha € (0, A(r)), there existR > r > 0 with
i(A], Qr, Q) =0 forjeN.

Proof. By (H2) we know that, for each € (0, A(r)), there existd.’ > r > 0 such that

B -1
AGL) >2(m(1—ﬂ) min /G(r,s)ds> forx > L. (2.9)
x tela,B]
Let
R=R() max{ 2L ZAM}
= > VN .
a(l—p)
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We claim that
Aly#puy foryeaQgandue (0,1l

Infact, ifitis not true, then there exisy € d Qg andug € (0, 1] such tham{yo = [L0Y0,
that is,

1

; 1
yo(t) > (Aﬁyo)(t) = ?»/ Gz, S)ff (s, yo(s) — ¢a(s) + ;) ds. (2.10)
0
Since

yo(t) —p(t) = (R—AM)t(1—1t)>0 forte(0,1),
we have
yo(t) — ¢a(t) = (R —AM)a(l—B) > ga(l— B)>L" forrela, Bl

By (2.9) and (2.10), we get
1

1
yo(r) >k/G(I,S)f}"<S, yo(s) — ¢a(s) + 7>ds
0

1
1
:A/G(t,s)[f(s, yo(s) — ¢ (s) + ;) + M:| ds
0

B
> A/G(t, s)f(s, yo(s) — ¢ (s) + ;1) ds

B -1 B
22A<Aa(l—,B)IErT[]Jr/;]/G(t,s)ds) (R—AM)a(l—,B)/G(t,s)ds

o

>2(R— M) >R forre]la,B)].

This is in contradiction withyg € 3 Qg and our conclusion follows. O

Lemma 2.4. For the above-mentioned> 0 andi(r) > 0, there exists. = A(r) € (0, A(r)]
satisfying that for each < (0, 1), there exists’ =r'(1) € (0, r) such that

i(A{, 0., Q) =0 if jis sufficiently large

Proof. By condition (Hz), we know lim,_.o+ f (¢, x) = +o0 uniformly with respect to

t € [, B]. Therefore, for eaclh > M (Min;c(q, g fof’ G(t,s)ds)~L, there exist$ > 0 such
that

f(t,x)>L forxe(0,§) andr € [«, B]. (2.12)
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Let

- |6 .
A:mm{—,k(ﬂ} and [=L min /G(t,s)ds.
M refa, ]
o

ThenMx < 8 for A € (0, 1). Fix A € (0, 1), chooser’ =r/(1) € (0, 8) andj sufficiently
large such that

/ r/ 1
—<i<— and r+=<3.
l M j

We claim that
Aly#uy foryedQ. andu e (0,1].

Suppose this is false. Then there exigte 90, and uo € (0, 1] with A{yo = 10Y0,
that is,

1
yo(t) = (A{yo)(t) =A/ G(t, s)f;k (s, yo(s) — ¢ (s) + ;1) ds forreJ. (2.12)

From
yo(t) >r't(1—1t) and ¢ () <Mit(l—1t) forteld,

it follows that

yo(t) — . (t) = (r' = MMit(L—1) >0 fors e (0,1). (2.13)
Consequently,
1 1
fi <S, yo(s) — ¢ (s) + ;) = f(S, yo(s) — énls) + ;) +M. (2.14)

On the other hand, by (2.13) we know
1 1, 1
O<yo(s) =) += <yo(s) + - <r'+- <3 forsel.
J J J
Therefore, by (2.11) and (2.14) we obtain
1
fi <t, yo(t) — ¢i. () + —.) >L+M>L forsela, Bl (2.15)
’ J

At last, combining (2.12) with (2.14) and (2.15), it follows that

1 B
yo(?) >k/G(t,S)f(s,yo(S) —¢i(s) + E) ds >AL/G(I,S)ds >M>r
J
0 o

fort € [«, B].

This is in contradiction withyg € 9 Q,» and immediately our result follows.O
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Lemma 2.5. For each € (0, 1) and sufficiently largej, BVP (2.1;) has at least two
positive solutions; andy; satisfying

/
ro<lxjll<r<lyjl <R,

wherer, r/, and are the same as in Lemn2a4.

Proof. By Lemmas 2.2-2.4 and additivity of the fixed point index, we know
i(A], Ok \ Or, Q) =i(A], Qr. Q) —i(A], 0,, Q) =0—1=—1,
l(Aia Qr \ Qr” Q) = l(A;” Qr’ Q) - l(Aia er7 Q) =1-0=1
It follows from solution property of the fixed point index that there exist O, \ 0, and
y;j € Qr \ O, such that
Aixj =X; and A{yj =Yj-
Consequently, BVP (2;) has at least two positive solutionso

Proof of Theorem 2.1. Let {x;}, {y;} (j > jo) be the positive solutions of (2;) obtained
in Lemma 2.5.

First we show(x;} ;> j, is a bounded, equicontinuous family f® 1].

Sincellx;ll > r’, ¢p(t) < AMt(1—1) < (MA/r')x;(t) for j > jo, andMA <1, we
have

xj(t) —a(t) = <1— ?)x,-(r) forr € (0, 1). (2.16)

Return to (2.6) (withyg replaced by ;) to obtain

y 1 rc(r)g(s) Ae(r)g(s)
—x7(s) <A i(s) — -] < <
x;j(s) t](S)g<x1 () — () + j> o ® — 6 ) A= %))

fors e (0, 1), (2.17)
whereh is the same as in the proof of Lemma 2.2. Sim?&) <0o0n(0, 1), there exists
tj € (0,1) with x’: > 0 on (0, ;) andx’; <0 on(z;, 1). Integrate (2.17) from (1 < ;) to
t; to obtain

1
h<<1 — ?)x-" (t))x} ) < he(r) / q(s)ds. (2.18)
t
On the other hand, integrate (2.17) freprto ¢ (¢ > ¢;) to obtain
13
—h((l— ?)xj(t))x}(t) < )»c(r)/q(s) ds. (2.19)
]

We now claim that there exigp anda; with 0 < ag < a1 < 1 such that

ap < inf{t;: j > jo} <supt;: j = jo} <a1. (2.20)
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First we show inft;: j > jo} > 0. If this is not true, then there is a subsequefioé N
with t; — 04+ asj — +ocin S. Now integrate (2.18) from 0O tg to obtain

Xj(tj) 1

M
/ h<<1— 7>s) ds g)»c(r)/sq(s) ds forjes. (2.22)
0 0

Sincet; — 04+ asj — +oo in S, we have from (2.21) that;(¢;) - 0 asj — 4+o0in §.
However, since the maximum af; on [0, 1] occurs at; we havex; — 0 in C[0, 1] as
j — +ooin S. Thisis in contradiction with|x | > r’. Consequently, irff;: j > jo} > 0.
A similar argument shows s{: j > jo} < 1.
Moreover, by conditior{H1), we know that

1
lim t/(l—s)q(s) ds=0 (2.22)
t—0+
t
and
'
lim (1-1) / sq(s)ds =0. (2.23)
t—1-0
0

Let/:RT — R* be defined by

u
AM
I1(u) =/h(<1— —/)s) ds.
r
0
Note that! is an increasing and continuous map fr&®M onto R+ (notice I (c0) = oo
sinceh > 0 is nondecreasing of®, +00)). We claim that

{x;};>}, is a bounded, equicontinuous family i 1]. (2.24)

Since the boundedness is obvious, we need to prove only the equicontinuity. In fact, for
0 <11 < t2 < ao, by (2.18) we know that

f "M ,
/h((l— = >xj(t)>xj(r)dt

1

1] ay 17 ayg
<A0(r)/dS/q(f)df=>»C(r)</(s —tl)q(S)ds+(tz—tl)/q(S)dS)
11 s 43 2

t ai
< he(r) ( / 5q(s)ds + (L—a1) L2 — 12) / (L= 5)q(s) ds)
2

141

[1(xj(2)) = 1(x; ()| =

2

. re(r) (/
1—ap
4

1
s(L—1s)q(s)ds + (to —11) / s(1—s)q(s) ds). (2.25)

fr—11
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Thus, by (2.22) and (2.25) we obt&in(x; (1))} ;> j, iS equicontinuous of0, ao].
In addition, by the uniform continuity of ~* on [0, /()] and

ey 12) = 2,0 = 1741 (3,2)) = 1741 (3 0)

now the equicontinuity ofx;(#)} ;> j, onI0, ac] is established.
Similarly, by (2.19) and (2.23) we can show the equicontinuitygts)} ;> ;, on[aa, 1].
On the other hand, fare [ao, a1], it is easy to see

re(r) fjol q(s)ds

’

x| < . (2.26)
Ol = )
Notex;(¢) € Q and
xj(t) = lxjllit(—1) >r'ag(l —a1) fort € lag, ail. (2.27)
Therefore, by (2.26) and (2.27), we know that
re(r) [Lq(s)ds
|xi0)| < Jao 4 for t € [ag, a1].

h((1— 22)rag(1 - ar))

r/
Consequently, the equicontinuity ¢f;(z)};>, on [ao, a1] follows, and now establish
(2.24).

The Arzela—Ascoli theorem guarantees the existence of a subseqpgioéeVv and a
functionx e C[0, 1] with x; converging uniformly ory tox asj — +oo throughNo. Also
x(0)=x(1)=0,r < |x|| <r,andx(r) = t(1—r)r’ for ¢t € J. In particular,x () > 0 on
(0,1). Fix ¢ € (0, 1) (without loss of generality assumes 1/2). Nowx;, j € No, satisfies
the integral equation

1 s 1
so=u(3)+4(z)(-3)

t
+k/(s—t)l:f(s,xj(s)—¢x(s)+1:)+Mi|ds (2.28)
1/2 /
for t € (0,1). Notice (taker = 2/3) that {x;(l/Z)}jeN0 is a bounded sequence since
r's(1—s) <xj(s) <rfors e J. Thus{x’(1/2)};en, has a convergent subsequence; for
convenience, Ietx}(l/Z)}jeNO denote this subsequence also, anddet R be its limit.
Now for the above fixed, let j — 400 throughNg in (2.28) to obtain

1 1 ’
xo(?) =x0<§> +ro(t — 5) + A /(s =) f (5. x0(s) — ¢5.(s)) + M] ds.
1/2

Therefore xo(t) is a solution of

x"() AL x(0) — () + M]=0, te(0,1),
{x(O):x(l) =0, (2.29)



Y. Liu / J. Math. Anal. Appl. 286 (2003) 248260 259

since
xo() = |lxollt(A =) =2rt(d—1) > Mit(L—1) > ¢ (t) forte(O,1).

Letx(r) = xo(t) — ¢y (¢) fort € [0, 1], thenx(z) € Q. Itis easy to see by (2.29) thafr) is
a positive solution of (11,) which satisfieq|x|| > r' — AM > 0.

Completely similar to the above discussion, fr¢m(t)} ;> ;, we can obtain the exis-
tence of positive solutiomg(z) to (2.29) andyo(z) > |yollt (1 —t) = rt (1 —1t) > ¢, (¢) for
t € (0,1). Consequently we get thats) = yo(¢) — ¢, (¢) is also a solution of (11,).

Now we provex # y. We need to prove onlyg # yo. Sincer’ < |lxoll <r, r < |lyoll

< R, we shall show (2.29) has no solution 8@,. Suppose this is not true. Then there
existsx € 3 Q, satisfying (2.29). Then

X" (O] <rq(Dg(x () — ¢2() forre(0,1).
Similarly to (2.7) and (2.8), we can get
5 r/2 1

o) /h(s) ds < Z/S(l—s)q(s) ds.
0

0

This is in contradiction with
r/2

2
O<i< —/h(s)ds.
ac(r)
0
To sum up, the Theorem 2.1 is proveda

Example. Consider the following BVP:

y'+Af(t,y)=0, te(0,1),
2.30
{J’(O)=y(1)=0, ( )
where
1 a
f(t,y)zi(——i—beysint)—MCOSt, a>0, >0, b>0, M>0.
VL =) \ ¥

Itis easy to see thatH1) and(H>) are satisfied for (2.30). Then, by Theorem 2.1, we know
(2.30) has at least two positive solutions wheis sufficiently small.

Remark 2.1. Theorem 2.1 in [1] cannot be used to study (2.30), sifice y) in (2.30)
cannot satisfy conditions (2.4) and (2.6) of [1] wher- 1.

On the other hand, it is easy to see that for eaeh0, there does not exigy € L1[0, 1]
such thatf (¢, y) < po(¢) for everyy e C[0, 1] with y(¢) > 61(¢) whena > 1, wherd/ (1) =
min{¢, 1 — ¢}. This implies that conditiotA7) in [4] is not satisfied if [4, Theorem 3.1] is
used to consider (2.30).

Therefore, from the results in [1,4], we cannot derive the existence of solutions for
(2.30) wheno > 1. However, by using Theorem 2.1 of the present paper, not only the
existence of solution but also twin solutions are obtained for (2.30).
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Remark 2.2. When (11,) reduces to positone problem, Theorem 2.1 can also be used.
Comparing with [3, Theorem 2.3] (wher&z, y) = ¢ (t)[g(y) + h(y)] = 0 and requiring
thatg > 0 is nonincreasing oD, +o00) andh /g is nondecreasing off), +-00)), our result

is more general. Please see the following example:

7 A H — _

y0O)=y1) =0, «o=>0.

It is easy to see by Theorem 2.1 that (2.31) has at least two positive solutions\vigien
sufficiently small. But[3, Theorem 2.3] is not applicable to study (2.31), since the nonlinear
term does not possess any monotonicity in
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