Available at
www.ElsevierMathematics.com

Twin solutions to singular semipositone problems ${ }^{\text {*/ }}$

Yansheng Liu
Department of Mathematics, Shandong Normal University, Jinan, 250014, PR China
Received 26 June 2001
Submitted by R. Manásevich

Abstract

In this paper, by a specially constructed cone and the fixed point index theory, we investigate the existence of multiple positive solutions for the following singular semipositone problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda f(t, y)=0, \quad t \in(0,1) \\
y(0)=y(1)=0
\end{array}\right.
$$

The nonlinear term $f(t, y)$ may be singular at $t=0, t=1$, and $y=0$, also may be negative for some values of t and y; and λ is a positive parameter. © 2003 Elsevier Inc. All rights reserved.

Keywords: Multiple positive solutions; Singular semipositone problem; Fixed point index; Cone

1. Introduction

This paper discusses existence of two positive solutions to the singular semipositone problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda f(t, y)=0, \quad t \in(0,1) \\
y(0)=y(1)=0
\end{array}\right.
$$

The nonlinear term $f(t, y)$ may be singular at $t=0, t=1$, and $y=0$, also may be negative for some values of t and y; and λ is a positive parameter.

[^0]The boundary value problem $\left(1.1_{\lambda}\right)$ arises in a variety of differential applied mathematics and physics. As to semipositone problem, we note that the well-known Proudman equation

$$
\left\{\begin{array}{l}
\left(p(t) y^{\prime}\right)^{\prime}+\lambda u=1, \quad t \in(0,1) \\
y^{\prime}(0)=y(1)=0
\end{array}\right.
$$

(which was established by Proudman in 1926, see Proc. London Math. Soc. 24 (1926) 131-139) is of that kind, see [5, p. 2] for details. Also (1.1_{λ}) describes the movement of a particle which is acted by variable forces.

Recently, the case when $f(t, y) \geqslant 0$ (positone problem) for $(t, y) \in(0,1) \times(0,+\infty)$ in (1.1_{λ}) has received almost all the attention (for example, see $[2,3,6,8,9]$ and references therein). And what is more, all the results for twin solutions of (1.1_{λ}) to our knowledge are concentrated on the positone problems (see, for instance, [3] etc.). Only few results exist for semipositone problem (see [1,4] and some references therein). In [1], (1.1 $)_{\lambda}$) has been considered when $y(0)=a>0, f$ is semipositone and singular at $t=0, t=1$, and $y=0$. In [4] the problem similar to (1.1) has been also studied when f is semipositone and singular only at $y=0$. Unfortunately, what obtained in $[1,4]$ are only the existence of one positive solution to $\left(1.1_{\lambda}\right)$ when λ is sufficiently small.

Motivated by the works of $[1,3,4]$, the present paper investigates the existence of multiple positive solutions to $\left(1.1_{\lambda}\right)$ when f is negative for some values of t and y, and λ is small enough. At the same time, we improve and generalize the results obtained in [1,4], since the degree of singularity in $[1,4]$ are lower than that of the present paper (for details, please see our examples and remarks). Our approaches are the approximation method, the fixed point index theory, and a new constructed cone. Also we would like to remark that the theory presented here for Dirichlet problem could be extended (in an obvious way) to general boundary value problems. The organization of this paper is as follows. We shall introduce some definitions and lemmas in the rest of this section. The main result will be stated and proved in Section 2. Finally, two examples are worked out to demonstrate our main result.

A map $y \in C[0,1]$ with $y(t)>0$ for $t \in(0,1)$ is said to be a positive solution to BVP (1.1 $)_{\lambda}$ if it satisfies Eq. (1.1 1_{λ}).

For the remainder of this section, we present some results which will be used in Section 2. First from [7, Lemma 2.3.1, p. 88, and Lemma 2.3.3, p. 91] we can get the following lemma.

Lemma 1.1. Let P be a cone of real Banach space E, Ω be a bounded open set of E, $\theta \in \Omega, A: P \cap \bar{\Omega} \rightarrow P$ be completely continuous.
(i) If $x \neq \mu A x$ for $x \in P \cap \partial \Omega$ and $\mu \in[0,1]$, then

$$
i(A, P \cap \Omega, P)=1
$$

(ii) If $\inf _{x \in P \cap \partial \Omega}\|A x\|>0$ and $A x \neq \mu x$ for $x \in P \cap \partial \Omega$ and $\mu \in(0,1]$, then

$$
i(A, P \cap \Omega, P)=0
$$

Lemma 1.2. If $g \in C\left[(0,+\infty), R^{+}\right]$, then there exists a nondecreasing function $h \in$ $C\left[R^{+}, R^{+}\right]$such that $h(x)>0$ as $x>0$ and $g(x) h(x) \in C\left[R^{+}, R^{+}\right]$(that is, $\lim _{x \rightarrow 0+} g(x) h(x)$ exists), where $R^{+}=[0,+\infty)$.

Proof. Without loss of generality, we assume $g(x) \not \equiv 0$ on $(0,+\infty)$. Then there exists $x_{0} \in(0,+\infty)$ with $g\left(x_{0}\right)>0$. Let

$$
h_{1}(x)= \begin{cases}\max _{t \in\left[x, x_{0}\right]} g(t), & x \in\left(0, x_{0}\right), \\ g\left(x_{0}\right), & x \geqslant x_{0}\end{cases}
$$

Then $h_{1}(x)>0$ and nonincreasing on $(0,+\infty)$.
If $\lim _{x \rightarrow 0+}\left(g(x) / h_{1}(x)\right)$ exists, then we can define $h(x)=1 / h_{1}(x)$. Evidently, $\lim _{x \rightarrow 0+} h(x)$ exists, so $h \in C\left[R^{+}, R^{+}\right]$and nondecreasing on $(0,+\infty)$.

If $\lim _{x \rightarrow 0+}\left(g(x) / h_{1}(x)\right)$ does not exist, since $0 \leqslant g(x) / h_{1}(x) \leqslant 1$ for $x \in\left(0, x_{0}\right)$, we may choose $h(x)=\ln (1+x) / h_{1}(x)$ or $h(x)=x^{\alpha} / h_{1}(x)(\alpha>0)$, which satisfies our requirement.

2. Main results

For convenience, we list the following assumptions:
$\left(\mathrm{H}_{1}\right) f \in C[(0,1) \times(0,+\infty), R]$ and there exist a constant $M>0$ and maps $q \in$ $C\left[(0,1), R^{+}\right], g \in C\left[(0,+\infty), R^{+}\right]$, which satisfy

$$
0 \leqslant f(t, y)+M \leqslant q(t) g(y), \quad \forall t \in(0,1), y \in(0,+\infty)
$$

and

$$
0<\int_{0}^{1} s(1-s) q(s) d s<+\infty
$$

$\left(\mathrm{H}_{2}\right)$ There exists an interval $[\alpha, \beta] \subset(0,1)$ such that

$$
\lim _{x \rightarrow 0+} f(t, x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow+\infty} \frac{f(t, x)}{x}=+\infty
$$

both uniformly with respect to $t \in[\alpha, \beta]$.
The following theorem is our main result.

Theorem 2.1. Suppose that conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. Then for each $r>0$, there exists $\bar{\lambda}=\bar{\lambda}(r)>0$ such that $B V P\left(1.1_{\lambda}\right)$ has at least two positive solutions $x(t)$ and $y(t)$ satisfying $0<\|x\|<r<\|y\|$ provided $\lambda \in(0, \bar{\lambda})$.

Before giving the proof of Theorem 2.1, we first list some preliminaries and prove some lemmas.

Let $E=C[0,1], P=\{x \in E: x(t) \geqslant 0, t \in J\}, J=[0,1]$, and $Q=\{x \in P: x(t) \geqslant$ $t(1-t) x(s), \forall t, s \in J\}$. Then E is a Banach space with norm $\|x\|=\max _{t \in[0,1]}|x(t)|$; and obviously, P and Q are cones in E.

Set $\phi^{*}(t)=\int_{0}^{1} G(t, s) d s$, where

$$
G(t, s)= \begin{cases}t(1-s), & 0 \leqslant t \leqslant s \leqslant 1 \\ s(1-t), & 0 \leqslant s \leqslant t \leqslant 1\end{cases}
$$

For $\lambda \in(0,+\infty), j \in N$, consider the following approximation problem of $\left(1.1_{\lambda}\right)$:

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+\lambda f_{j}^{*}\left(t, y(t)-\phi_{\lambda}(t)+\frac{1}{j}\right)=0, \quad t \in(0,1) \tag{j}\\
y(0)=y(1)=0
\end{array}\right.
$$

where

$$
\phi_{\lambda}=\lambda M \phi^{*}, \quad f_{j}^{*}\left(t, u+\frac{1}{j}\right)= \begin{cases}f\left(t, u+\frac{1}{j}\right)+M, & u>0, \\ f\left(t, \frac{1}{j}\right)+M, & u \leqslant 0 .\end{cases}
$$

Since $\phi^{*}(t) \leqslant t(1-t)$ for $t \in J$, we have $\phi_{\lambda}(t) \leqslant \lambda M t(1-t)$ for $t \in J$. It is easy to see that if $y_{j} \in C^{1}[(0,1) \times(0,+\infty), R] \cap C[0,1]$ is a solution of $\left(2.1_{j}\right)$ and $y_{j}(t)>\phi_{\lambda}(t)$ for $t \in(0,1)$, then $u_{j}(t)=y_{j}(t)-\phi_{\lambda}(t)$ is a positive solution of the following (BVP):

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\lambda f\left(t, u(t)+\frac{1}{j}\right)=0, \quad t \in(0,1), \tag{j}\\
u(0)=u(1)=0
\end{array}\right.
$$

For the sake of solving $\left(2.1_{j}\right)$, we first consider the following operator:

$$
\left(A_{\lambda}^{j} y\right)(t)=: \lambda \int_{0}^{1} G(t, s) f_{j}^{*}\left(s, y(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s, \quad t \in J
$$

Lemma 2.1. For each $\lambda \in(0,+\infty), j \in N, A_{\lambda}^{j}: Q \rightarrow Q$ is a continuous and compact map.

Proof. Since $G(t, \tau) \geqslant t(1-t) G(s, \tau)$ for $t, s, \tau \in J$, it is easy to see that $A_{\lambda}^{j}: Q \rightarrow Q$. Meanwhile, by $f_{j}^{*} \in C\left[(0,1) \times R^{+}, R^{+}\right]$and $\left(\mathrm{H}_{1}\right)$, one can conclude A_{λ}^{j} is continuous and compact from Q to Q.

To sum up, we can see that $y \in Q$ is a solution of $\left(2.1_{j}\right)$ if y is a fixed point of A_{λ}^{j} on Q. Therefore, we next consider the existence of fixed point of A_{λ}^{j} on Q.

Lemma 2.2. For each $r>0$, there exists $\lambda(r)>0$ such that

$$
i\left(A_{\lambda}^{j}, Q_{r}, Q\right)=1, \quad \forall \lambda \in(0, \lambda(r)), j \in N
$$

where $Q_{r}=\{y \in Q:\|y\|<r\}$.

Proof. By Lemma 1.2 and $\left(\mathrm{H}_{1}\right)$, there exists a nondecreasing function $h \in C\left[R^{+}, R^{+}\right]$ such that $g(x) h(x) \in C\left[R^{+}, R^{+}\right]$and $h(x)>0$ as $x>0$. For each $r>0$, let

$$
\lambda(r)=: \min \left\{\frac{r}{2 M}, \frac{2}{a c(r)} \int_{0}^{r / 2} h(s) d s\right\},
$$

where

$$
a=: 2 \int_{0}^{1} s(1-s) q(s) d s, \quad c(r)=: \max _{y \in[0, r+1]} g(y) h(y) .
$$

We now claim that

$$
\begin{equation*}
y \neq \mu\left(A_{\lambda}^{j} y\right) \quad \text { for } \mu \in J=[0,1], y \in \partial Q_{r}, \text { and } \lambda \in(0, \lambda(r)) . \tag{2.3}
\end{equation*}
$$

Suppose this is false. Then there exist $y_{0} \in \partial Q_{r}$ and $\mu_{0} \in[0,1]$ with $y_{0}(t)=$ $\mu_{0}\left(A_{\lambda}^{j} y_{0}\right)(t)$ for all $t \in[0,1]$. Since $y_{0} \in Q$, we have

$$
y_{0}(t) \geqslant t(1-t)\left\|y_{0}\right\|=r t(1-t) \quad \text { for } t \in J .
$$

On the other hand,

$$
\phi_{\lambda}(t)=\lambda M \int_{0}^{1} G(t, s) d s \leqslant \lambda M t(1-t) \leqslant \frac{\lambda M}{r} y_{0}(t) \quad \text { for } t \in J
$$

Thus,

$$
\begin{equation*}
y_{0}(t)-\phi_{\lambda}(t) \geqslant\left(1-\frac{\lambda M}{r}\right) y_{0}(t) \geqslant \frac{1}{2} y_{0}(t) \geqslant \frac{r}{2} t(1-t) \quad \text { for } t \in J . \tag{2.4}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
f_{j}^{*}\left(t, y_{0}(t)-\phi_{\lambda}(t)+\frac{1}{j}\right)=f\left(t, y_{0}(t)-\phi_{\lambda}(t)+\frac{1}{j}\right)+M . \tag{2.5}
\end{equation*}
$$

Therefore, by (2.4), (2.5), and (H_{1}) we have

$$
\begin{align*}
-y_{0}^{\prime \prime}(s) & =\lambda \mu f\left(t, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right)+\lambda \mu M \leqslant \lambda q(s) g\left(y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) \\
& \leqslant \frac{\lambda c(r) q(s)}{h\left(y_{0}(s)-\phi_{\lambda}(s)\right)} \leqslant \frac{\lambda c(r) q(s)}{h\left(\frac{1}{2} y_{0}(s)\right)} \quad \text { for } s \in(0,1) \tag{2.6}
\end{align*}
$$

Since $y_{0}^{\prime \prime} \leqslant 0$ on $(0,1)$ and $y_{0}(t) \geqslant r t(1-t)$ on J, there exists $t_{0} \in(0,1)$ with $y_{0}^{\prime} \geqslant 0$ on $\left(0, t_{0}\right)$ and $y_{0}^{\prime} \leqslant 0$ on $\left(t_{0}, 1\right)$.

Integrate (2.6) from t to t_{0} to obtain

$$
y_{0}^{\prime}(t) \leqslant \lambda c(r) \frac{\int_{t}^{t_{0}} q(s) d s}{h\left(\frac{1}{2} y_{0}(t)\right)} \quad \text { for } t \in\left(0, t_{0}\right)
$$

Consequently,

$$
\begin{equation*}
h\left(\frac{1}{2} y_{0}(t)\right) y_{0}^{\prime}(t) \leqslant \lambda c(r) \int_{t}^{t_{0}} q(s) d s \quad \text { for } t \in\left(0, t_{0}\right) \tag{2.7}
\end{equation*}
$$

Integrate (2.7) from 0 to t_{0} again to obtain

$$
\int_{0}^{r} h\left(\frac{1}{2} s\right) d s=2 \int_{0}^{r / 2} h(s) d s \leqslant \lambda c(r) \int_{0}^{t_{0}} \int_{t}^{t_{0}} q(s) d s d t=\lambda c(r) \int_{0}^{t_{0}} s q(s) d s
$$

Then

$$
\begin{equation*}
\frac{2}{\lambda c(r)} \int_{0}^{r / 2} h(s) d s \leqslant \frac{1}{1-t_{0}} \int_{0}^{t_{0}} s(1-s) q(s) d s \tag{2.8}
\end{equation*}
$$

Similarly, integrate (2.6) from t_{0} to $t\left(t \in\left(t_{0}, 1\right)\right)$ and integrate it again from t_{0} to 1 to get

$$
\frac{2}{\lambda c(r)} \int_{0}^{r / 2} h(s) d s \leqslant \frac{1}{t_{0}} \int_{t_{0}}^{1} s(1-s) q(s) d s
$$

This together with (2.8) guarantees that

$$
\frac{2}{\lambda c(r)} \int_{0}^{r / 2} h(s) d s \leqslant 2 \int_{0}^{1} s(1-s) q(s) d s=a
$$

in contradiction with

$$
0<\lambda<\frac{2}{\operatorname{ac}(r)} \int_{0}^{r / 2} h(s) d s
$$

and consequently, the result of Lemma 2.2 follows.
Lemma 2.3. For each $\lambda \in(0, \lambda(r))$, there exists $R>r>0$ with

$$
i\left(A_{\lambda}^{j}, Q_{R}, Q\right)=0 \quad \text { for } j \in N
$$

Proof. By $\left(\mathrm{H}_{2}\right)$ we know that, for each $\lambda \in(0, \lambda(r))$, there exists $L^{\prime}>r>0$ such that

$$
\begin{equation*}
\frac{f(t, x)}{x} \geqslant 2\left(\lambda \alpha(1-\beta) \min _{t \in[\alpha, \beta]} \int_{\alpha}^{\beta} G(t, s) d s\right)^{-1} \quad \text { for } x>L^{\prime} \tag{2.9}
\end{equation*}
$$

Let

$$
R=R(\lambda)>\max \left\{\frac{2 L^{\prime}}{\alpha(1-\beta)}, 2 \lambda M\right\}
$$

We claim that

$$
A_{\lambda}^{j} y \neq \mu y \quad \text { for } y \in \partial Q_{R} \text { and } \mu \in(0,1] .
$$

In fact, if it is not true, then there exist $y_{0} \in \partial Q_{R}$ and $\mu_{0} \in(0,1]$ such that $A_{\lambda}^{j} y_{0}=\mu_{0} y_{0}$, that is,

$$
\begin{equation*}
y_{0}(t) \geqslant\left(A_{\lambda}^{j} y_{0}\right)(t)=\lambda \int_{0}^{1} G(t, s) f_{j}^{*}\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s \tag{2.10}
\end{equation*}
$$

Since

$$
y_{0}(t)-\phi_{\lambda}(t) \geqslant(R-\lambda M) t(1-t)>0 \quad \text { for } t \in(0,1),
$$

we have

$$
y_{0}(t)-\phi_{\lambda}(t) \geqslant(R-\lambda M) \alpha(1-\beta)>\frac{R}{2} \alpha(1-\beta)>L^{\prime} \quad \text { for } t \in[\alpha, \beta] .
$$

By (2.9) and (2.10), we get

$$
\begin{aligned}
y_{0}(t) & \geqslant \lambda \int_{0}^{1} G(t, s) f_{j}^{*}\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s \\
& =\lambda \int_{0}^{1} G(t, s)\left[f\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right)+M\right] d s \\
& >\lambda \int_{\alpha}^{\beta} G(t, s) f\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s \\
& \geqslant 2 \lambda\left(\lambda \alpha(1-\beta) \min _{t \in[\alpha, \beta]} \int_{\alpha}^{\beta} G(t, s) d s\right)^{-1}(R-\lambda M) \alpha(1-\beta) \int_{\alpha}^{\beta} G(t, s) d s \\
& \geqslant 2(R-\lambda M)>R \quad \text { for } t \in[\alpha, \beta] .
\end{aligned}
$$

This is in contradiction with $y_{0} \in \partial Q_{R}$ and our conclusion follows.
Lemma 2.4. For the above-mentioned $r>0$ and $\lambda(r)>0$, there exists $\bar{\lambda}=\bar{\lambda}(r) \in(0, \lambda(r)]$ satisfying that for each $\lambda \in(0, \bar{\lambda})$, there exists $r^{\prime}=r^{\prime}(\lambda) \in(0, r)$ such that

$$
i\left(A_{\lambda}^{j}, Q_{r^{\prime}}, Q\right)=0 \quad \text { if } j \text { is sufficiently large. }
$$

Proof. By condition $\left(\mathrm{H}_{2}\right)$, we know $\lim _{x \rightarrow 0+} f(t, x)=+\infty$ uniformly with respect to $t \in[\alpha, \beta]$. Therefore, for each $L>M\left(\min _{t \in[\alpha, \beta]} \int_{\alpha}^{\beta} G(t, s) d s\right)^{-1}$, there exists $\delta>0$ such that

$$
\begin{equation*}
f(t, x)>L \quad \text { for } x \in(0, \delta) \text { and } t \in[\alpha, \beta] . \tag{2.11}
\end{equation*}
$$

Let

$$
\bar{\lambda}=\min \left\{\frac{\delta}{M}, \lambda(r)\right\} \quad \text { and } \quad l=L \min _{t \in[\alpha, \beta]} \int_{\alpha}^{\beta} G(t, s) d s
$$

Then $M \lambda<\delta$ for $\lambda \in(0, \bar{\lambda})$. Fix $\lambda \in(0, \bar{\lambda})$, choose $r^{\prime}=r^{\prime}(\lambda) \in(0, \delta)$ and j sufficiently large such that

$$
\frac{r^{\prime}}{l}<\lambda<\frac{r^{\prime}}{M} \quad \text { and } \quad r^{\prime}+\frac{1}{j}<\delta
$$

We claim that

$$
A_{\lambda}^{j} y \neq \mu y \quad \text { for } y \in \partial Q_{r^{\prime}} \text { and } \mu \in(0,1] .
$$

Suppose this is false. Then there exist $y_{0} \in \partial Q_{r^{\prime}}$ and $\mu_{0} \in(0,1]$ with $A_{\lambda}^{j} y_{0}=\mu_{0} y_{0}$, that is,

$$
\begin{equation*}
y_{0}(t) \geqslant\left(A_{\lambda}^{j} y_{0}\right)(t)=\lambda \int_{0}^{1} G(t, s) f_{j}^{*}\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s \quad \text { for } t \in J \tag{2.12}
\end{equation*}
$$

From

$$
y_{0}(t) \geqslant r^{\prime} t(1-t) \quad \text { and } \quad \phi_{\lambda}(t) \leqslant M \lambda t(1-t) \quad \text { for } t \in J
$$

it follows that

$$
\begin{equation*}
y_{0}(t)-\phi_{\lambda}(t) \geqslant\left(r^{\prime}-M \lambda\right) t(1-t)>0 \quad \text { for } t \in(0,1) \tag{2.13}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
f_{j}^{*}\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right)=f\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right)+M . \tag{2.14}
\end{equation*}
$$

On the other hand, by (2.13) we know

$$
0<y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j} \leqslant y_{0}(s)+\frac{1}{j} \leqslant r^{\prime}+\frac{1}{j}<\delta \quad \text { for } s \in J .
$$

Therefore, by (2.11) and (2.14) we obtain

$$
\begin{equation*}
f_{j}^{*}\left(t, y_{0}(t)-\phi_{\lambda}(t)+\frac{1}{j}\right)>L+M>L \quad \text { for } t \in[\alpha, \beta] . \tag{2.15}
\end{equation*}
$$

At last, combining (2.12) with (2.14) and (2.15), it follows that

$$
\begin{aligned}
& y_{0}(t) \geqslant \lambda \int_{0}^{1} G(t, s) f\left(s, y_{0}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) d s>\lambda L \int_{\alpha}^{\beta} G(t, s) d s \geqslant \lambda l>r^{\prime} \\
& \quad \text { for } t \in[\alpha, \beta] .
\end{aligned}
$$

This is in contradiction with $y_{0} \in \partial Q_{r^{\prime}}$ and immediately our result follows.

Lemma 2.5. For each $\lambda \in(0, \bar{\lambda})$ and sufficiently large $j, B V P\left(2.1_{j}\right)$ has at least two positive solutions x_{j} and y_{j} satisfying

$$
r^{\prime}<\left\|x_{j}\right\|<r<\left\|y_{j}\right\|<R,
$$

where r, r^{\prime}, and $\bar{\lambda}$ are the same as in Lemma 2.4.
Proof. By Lemmas 2.2-2.4 and additivity of the fixed point index, we know

$$
\begin{aligned}
& i\left(A_{\lambda}^{j}, Q_{R} \backslash \bar{Q}_{r}, Q\right)=i\left(A_{\lambda}^{j}, Q_{R}, Q\right)-i\left(A_{\lambda}^{j}, Q_{r}, Q\right)=0-1=-1, \\
& i\left(A_{\lambda}^{j}, Q_{r} \backslash \bar{Q}_{r^{\prime}}, Q\right)=i\left(A_{\lambda}^{j}, Q_{r}, Q\right)-i\left(A_{\lambda}^{j}, Q_{r^{\prime}}, Q\right)=1-0=1 .
\end{aligned}
$$

It follows from solution property of the fixed point index that there exist $x_{j} \in Q_{r} \backslash \bar{Q}_{r^{\prime}}$ and $y_{j} \in Q_{R} \backslash \bar{Q}_{r}$ such that

$$
A_{\lambda}^{j} x_{j}=x_{j} \quad \text { and } \quad A_{\lambda}^{j} y_{j}=y_{j}
$$

Consequently, BVP (2.1_{j}) has at least two positive solutions.
Proof of Theorem 2.1. Let $\left\{x_{j}\right\},\left\{y_{j}\right\}\left(j \geqslant j_{0}\right)$ be the positive solutions of $\left(2.1_{j}\right)$ obtained in Lemma 2.5.

First we show $\left\{x_{j}\right\}_{j \geqslant j_{0}}$ is a bounded, equicontinuous family on [0, 1].
Since $\left\|x_{j}\right\|>r^{\prime}, \phi_{\lambda}(t) \leqslant \lambda M t(1-t) \leqslant\left(M \lambda / r^{\prime}\right) x_{j}(t)$ for $j \geqslant j_{0}$, and $M \lambda<r^{\prime}$, we have

$$
\begin{equation*}
x_{j}(t)-\phi_{\lambda}(t) \geqslant\left(1-\frac{M \lambda}{r^{\prime}}\right) x_{j}(t) \quad \text { for } t \in(0,1) \tag{2.16}
\end{equation*}
$$

Return to (2.6) (with y_{0} replaced by x_{j}) to obtain

$$
\begin{align*}
-x_{j}^{\prime \prime}(s) & \leqslant \lambda q(s) g\left(x_{j}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right) \leqslant \frac{\lambda c(r) q(s)}{h\left(x_{j}(s)-\phi_{\lambda}(s)\right)} \leqslant \frac{\lambda c(r) q(s)}{h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) x_{j}(s)\right)} \\
\text { for } s & \in(0,1), \tag{2.17}
\end{align*}
$$

where h is the same as in the proof of Lemma 2.2. Since $x_{j}^{\prime \prime}(t) \leqslant 0$ on $(0,1)$, there exists $t_{j} \in(0,1)$ with $x_{j}^{\prime} \geqslant 0$ on $\left(0, t_{j}\right)$ and $x_{j}^{\prime} \leqslant 0$ on $\left(t_{j}, 1\right)$. Integrate (2.17) from $t\left(t<t_{j}\right)$ to t_{j} to obtain

$$
\begin{equation*}
h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) x_{j}(t)\right) x_{j}^{\prime}(t) \leqslant \lambda c(r) \int_{t}^{t_{j}} q(s) d s \tag{2.18}
\end{equation*}
$$

On the other hand, integrate (2.17) from t_{j} to $t\left(t>t_{j}\right)$ to obtain

$$
\begin{equation*}
-h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) x_{j}(t)\right) x_{j}^{\prime}(t) \leqslant \lambda c(r) \int_{t_{j}}^{t} q(s) d s \tag{2.19}
\end{equation*}
$$

We now claim that there exist a_{0} and a_{1} with $0<a_{0}<a_{1}<1$ such that

$$
\begin{equation*}
a_{0}<\inf \left\{t_{j}: j \geqslant j_{0}\right\} \leqslant \sup \left\{t_{j}: j \geqslant j_{0}\right\}<a_{1} \tag{2.20}
\end{equation*}
$$

First we show $\inf \left\{t_{j}: j \geqslant j_{0}\right\}>0$. If this is not true, then there is a subsequence S of N with $t_{j} \rightarrow 0+$ as $j \rightarrow+\infty$ in S. Now integrate (2.18) from 0 to t_{j} to obtain

$$
\begin{equation*}
\int_{0}^{x_{j}\left(t_{j}\right)} h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) s\right) d s \leqslant \lambda c(r) \int_{0}^{t_{j}} s q(s) d s \quad \text { for } j \in S \tag{2.21}
\end{equation*}
$$

Since $t_{j} \rightarrow 0+$ as $j \rightarrow+\infty$ in S, we have from (2.21) that $x_{j}\left(t_{j}\right) \rightarrow 0$ as $j \rightarrow+\infty$ in S. However, since the maximum of x_{j} on $[0,1]$ occurs at t_{j} we have $x_{j} \rightarrow 0$ in $C[0,1]$ as $j \rightarrow+\infty$ in S. This is in contradiction with $\left\|x_{j}\right\|>r^{\prime}$. Consequently, $\inf \left\{t_{j}: j \geqslant j_{0}\right\}>0$.

A similar argument shows $\sup \left\{t_{j}: j \geqslant j_{0}\right\}<1$.
Moreover, by condition $\left(\mathrm{H}_{1}\right)$, we know that

$$
\begin{equation*}
\lim _{t \rightarrow 0+} t \int_{t}^{1}(1-s) q(s) d s=0 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 1-0}(1-t) \int_{0}^{t} s q(s) d s=0 \tag{2.23}
\end{equation*}
$$

Let $I: R^{+} \rightarrow R^{+}$be defined by

$$
I(u)=\int_{0}^{u} h\left(\left(1-\frac{\lambda M}{r^{\prime}}\right) s\right) d s
$$

Note that I is an increasing and continuous map from R^{+}onto R^{+}(notice $I(\infty)=\infty$ since $h>0$ is nondecreasing on $(0,+\infty)$). We claim that
$\left\{x_{j}\right\}_{j \geqslant j_{0}}$ is a bounded, equicontinuous family on $[0,1]$.
Since the boundedness is obvious, we need to prove only the equicontinuity. In fact, for $0<t_{1}<t_{2}<a_{0}$, by (2.18) we know that

$$
\begin{align*}
& \left|I\left(x_{j}\left(t_{2}\right)\right)-I\left(x_{j}\left(t_{1}\right)\right)\right|=\left|\int_{t_{1}}^{t_{2}} h\left(\left(1-\frac{\lambda M}{r^{\prime}}\right) x_{j}(\tau)\right) x_{j}^{\prime}(\tau) d \tau\right| \\
& \quad \leqslant \lambda c(r) \int_{t_{1}}^{t_{2}} d s \int_{s}^{a_{1}} q(\tau) d \tau=\lambda c(r)\left(\int_{t_{1}}^{t_{2}}\left(s-t_{1}\right) q(s) d s+\left(t_{2}-t_{1}\right) \int_{t_{2}}^{a_{1}} q(s) d s\right) \\
& \quad \leqslant \lambda c(r)\left(\int_{t_{1}}^{t_{2}} s q(s) d s+\left(1-a_{1}\right)^{-1}\left(t_{2}-t_{1}\right) \int_{t_{2}}^{a_{1}}(1-s) q(s) d s\right) \\
& \quad \leqslant \frac{\lambda c(r)}{1-a_{1}}\left(\int_{t_{1}}^{t_{2}} s(1-s) q(s) d s+\left(t_{2}-t_{1}\right) \int_{t_{2}-t_{1}}^{1} s(1-s) q(s) d s\right) \tag{2.25}
\end{align*}
$$

Thus, by (2.22) and (2.25) we obtain $\left\{I\left(x_{j}(t)\right)\right\}_{j \geqslant j_{0}}$ is equicontinuous on $\left[0, a_{0}\right]$.
In addition, by the uniform continuity of I^{-1} on $[0, I(r)]$ and

$$
\left|x_{j}\left(t_{2}\right)-x_{j}\left(t_{1}\right)\right|=\left|I^{-1}\left(I\left(x_{j}\left(t_{2}\right)\right)\right)-I^{-1}\left(I\left(x_{j}\left(t_{1}\right)\right)\right)\right|,
$$

now the equicontinuity of $\left\{x_{j}(t)\right\}_{j \geqslant j_{0}}$ on $\left[0, a_{0}\right]$ is established.
Similarly, by (2.19) and (2.23) we can show the equicontinuity of $\left\{x_{j}(t)\right\}_{j \geqslant j_{0}}$ on $\left[a_{1}, 1\right]$.
On the other hand, for $t \in\left[a_{0}, a_{1}\right]$, it is easy to see

$$
\begin{equation*}
\left|x_{j}^{\prime}(t)\right| \leqslant \frac{\lambda c(r) \int_{a_{0}}^{a_{1}} q(s) d s}{h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) x_{j}(t)\right)} \tag{2.26}
\end{equation*}
$$

Note $x_{j}(t) \in Q$ and

$$
\begin{equation*}
x_{j}(t) \geqslant\left\|x_{j}\right\| t(1-t) \geqslant r^{\prime} a_{0}\left(1-a_{1}\right) \quad \text { for } t \in\left[a_{0}, a_{1}\right] . \tag{2.27}
\end{equation*}
$$

Therefore, by (2.26) and (2.27), we know that

$$
\left|x_{j}^{\prime}(t)\right| \leqslant \frac{\lambda c(r) \int_{a_{0}}^{a_{1}} q(s) d s}{h\left(\left(1-\frac{M \lambda}{r^{\prime}}\right) r^{\prime} a_{0}\left(1-a_{1}\right)\right)} \quad \text { for } t \in\left[a_{0}, a_{1}\right]
$$

Consequently, the equicontinuity of $\left\{x_{j}(t)\right\}_{j \geqslant j_{0}}$ on $\left[a_{0}, a_{1}\right]$ follows, and now establish (2.24).

The Arzela-Ascoli theorem guarantees the existence of a subsequence N_{0} of N and a function $x \in C[0,1]$ with x_{j} converging uniformly on J to x as $j \rightarrow+\infty$ through N_{0}. Also $x(0)=x(1)=0, r^{\prime} \leqslant\|x\| \leqslant r$, and $x(t) \geqslant t(1-t) r^{\prime}$ for $t \in J$. In particular, $x(t)>0$ on $(0,1)$. Fix $t \in(0,1)$ (without loss of generality assume $t \neq 1 / 2$). Now $x_{j}, j \in N_{0}$, satisfies the integral equation

$$
\begin{align*}
x_{j}(t)= & x_{j}\left(\frac{1}{2}\right)+x_{j}^{\prime}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right) \\
& +\lambda \int_{1 / 2}^{t}(s-t)\left[f\left(s, x_{j}(s)-\phi_{\lambda}(s)+\frac{1}{j}\right)+M\right] d s \tag{2.28}
\end{align*}
$$

for $t \in(0,1)$. Notice (take $t=2 / 3)$ that $\left\{x_{j}^{\prime}(1 / 2)\right\}_{j \in N_{0}}$ is a bounded sequence since $r^{\prime} s(1-s) \leqslant x_{j}(s) \leqslant r$ for $s \in J$. Thus $\left\{x_{j}^{\prime}(1 / 2)\right\}_{j \in N_{0}}$ has a convergent subsequence; for convenience, let $\left\{x_{j}^{\prime}(1 / 2)\right\}_{j \in N_{0}}$ denote this subsequence also, and let $r_{0} \in R$ be its limit. Now for the above fixed t, let $j \rightarrow+\infty$ through N_{0} in (2.28) to obtain

$$
x_{0}(t)=x_{0}\left(\frac{1}{2}\right)+r_{0}\left(t-\frac{1}{2}\right)+\lambda \int_{1 / 2}^{t}(s-t)\left[f\left(s, x_{0}(s)-\phi_{\lambda}(s)\right)+M\right] d s
$$

Therefore, $x_{0}(t)$ is a solution of

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+\lambda\left[f\left(t, x(t)-\phi_{\lambda}(t)\right)+M\right]=0, \quad t \in(0,1) \tag{2.29}\\
x(0)=x(1)=0
\end{array}\right.
$$

since

$$
x_{0}(t) \geqslant\left\|x_{0}\right\| t(1-t) \geqslant r^{\prime} t(1-t)>M \lambda t(1-t) \geqslant \phi_{\lambda}(t) \quad \text { for } t \in(0,1)
$$

Let $x(t)=x_{0}(t)-\phi_{\lambda}(t)$ for $t \in[0,1]$, then $x(t) \in Q$. It is easy to see by (2.29) that $x(t)$ is a positive solution of $\left(1.1_{\lambda}\right)$ which satisfies $\|x\| \geqslant r^{\prime}-\lambda M>0$.

Completely similar to the above discussion, from $\left\{y_{j}(t)\right\}_{j \geqslant j_{0}}$ we can obtain the existence of positive solution $y_{0}(t)$ to (2.29) and $y_{0}(t) \geqslant\left\|y_{0}\right\| t(1-t) \geqslant r t(1-t)>\phi_{\lambda}(t)$ for $t \in(0,1)$. Consequently we get that $y(t)=y_{0}(t)-\phi_{\lambda}(t)$ is also a solution of $\left(1.1_{\lambda}\right)$.

Now we prove $x \neq y$. We need to prove only $x_{0} \neq y_{0}$. Since $r^{\prime} \leqslant\left\|x_{0}\right\| \leqslant r, r \leqslant\left\|y_{0}\right\|$ $\leqslant R$, we shall show (2.29) has no solution on ∂Q_{r}. Suppose this is not true. Then there exists $x \in \partial Q_{r}$ satisfying (2.29). Then

$$
\left|x^{\prime \prime}(t)\right| \leqslant \lambda q(t) g\left(x(t)-\phi_{\lambda}(t)\right) \quad \text { for } t \in(0,1) .
$$

Similarly to (2.7) and (2.8), we can get

$$
\frac{2}{\lambda c(r)} \int_{0}^{r / 2} h(s) d s \leqslant 2 \int_{0}^{1} s(1-s) q(s) d s
$$

This is in contradiction with

$$
0<\lambda<\frac{2}{a c(r)} \int_{0}^{r / 2} h(s) d s
$$

To sum up, the Theorem 2.1 is proved.
Example. Consider the following BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda f(t, y)=0, \quad t \in(0,1) \tag{2.30}\\
y(0)=y(1)=0
\end{array}\right.
$$

where

$$
f(t, y)=\frac{1}{\sqrt{t(1-t)}}\left(\frac{a}{y^{\alpha}}+b e^{y} \sin t\right)-M \cos t, \quad a>0, \alpha>0, b>0, M>0
$$

It is easy to see that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are satisfied for (2.30). Then, by Theorem 2.1, we know (2.30) has at least two positive solutions when λ is sufficiently small.

Remark 2.1. Theorem 2.1 in [1] cannot be used to study (2.30), since $f(t, y)$ in (2.30) cannot satisfy conditions (2.4) and (2.6) of [1] when $\alpha>1$.

On the other hand, it is easy to see that for each $\theta>0$, there does not exist $p_{\theta} \in L^{1}[0,1]$ such that $f(t, y) \leqslant p_{\theta}(t)$ for every $y \in C[0,1]$ with $y(t) \geqslant \theta l(t)$ when $\alpha>1$, where $l(t)=$ $\min \{t, 1-t\}$. This implies that condition $\left(\mathrm{A}_{7}\right)$ in [4] is not satisfied if [4, Theorem 3.1] is used to consider (2.30).

Therefore, from the results in $[1,4]$, we cannot derive the existence of solutions for (2.30) when $\alpha>1$. However, by using Theorem 2.1 of the present paper, not only the existence of solution but also twin solutions are obtained for (2.30).

Remark 2.2. When (1.1_{λ}) reduces to positone problem, Theorem 2.1 can also be used. Comparing with [3, Theorem 2.3] (where $f(t, y)=\phi(t)[g(y)+h(y)] \geqslant 0$ and requiring that $g>0$ is nonincreasing on $(0,+\infty)$ and h / g is nondecreasing on $(0,+\infty)$), our result is more general. Please see the following example:

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\frac{\lambda}{t(1-t)}\left(\sin t y+y^{-\alpha} e^{y}\right)=0, \quad t \in(0,1) \tag{2.31}\\
y(0)=y(1)=0, \quad \alpha>0
\end{array}\right.
$$

It is easy to see by Theorem 2.1 that (2.31) has at least two positive solutions when λ is sufficiently small. But [3, Theorem 2.3] is not applicable to study (2.31), since the nonlinear term does not possess any monotonicity in y.

Acknowledgments

The author wishes to thank Professor Dajun Guo for his guidance and encouragement. Also thanks the referee and Professor Raul Manasevich for their valuable suggestions to this paper.

References

[1] R.P. Agarwal, D. O'Regan, A note on existence of nonnegative solutions to singular semipositone problems, Nonlinear Anal. 36 (1999) 615-622.
[2] R.P. Agarwal, D. O'Regan, Second-order initial value problems of singular type, J. Math. Anal. Appl. 229 (1999) 441-451.
[3] R.P. Agarwal, D. O'Regan, Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 (1999) 433-445.
[4] V. Anuradha, D.D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc. 124 (1996) 757-764.
[5] Z. Deng, Introduction to BVP and Sturmian Comparison Theory for Ordinary Differential Equations, Central China Normal University Press, Wuhan, 1990.
[6] L.H. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) 743-748.
[7] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[8] X. Liu, B. Yan, Boundary-irregular solutions to singular boundary value problems, Nonlinear Anal. 32 (1998) 633-646.
[9] X. Xu, On some results of singular boundary value problems, Doctoral thesis of Shandong University, 2001.

[^0]: * The project supported by the Foundation for Outstanding Middle-Aged and Young Scientists of Shandong Province, PR China.

 E-mail address: ysliu6668@sohu.com.
 0022-247X/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
 doi:10.1016/S0022-247X(03)00478-5

