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Abstract

In this paper, by a specially constructed cone and the fixed point index theory, we investig
existence of multiple positive solutions for the following singular semipositone problem:{

y′′ + λf (t, y) = 0, t ∈ (0,1),
y(0) = y(1) = 0.

The nonlinear termf (t, y) may be singular att = 0, t = 1, andy = 0, also may be negative for som
values oft andy; andλ is a positive parameter.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper discusses existence of two positive solutions to the singular semipo
problem{

y ′′ + λf (t, y)= 0, t ∈ (0,1),
y(0)= y(1)= 0.

(1.1λ)

The nonlinear termf (t, y) may be singular att = 0, t = 1, andy = 0, also may be negativ
for some values oft andy; andλ is a positive parameter.
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The boundary value problem (1.1λ) arises in a variety of differential applied math
matics and physics. As to semipositone problem, we note that the well-known Prou
equation{

(p(t)y ′)′ + λu = 1, t ∈ (0,1),
y ′(0)= y(1)= 0

(which was established by Proudman in 1926, see Proc. London Math. Soc. 24
131–139) is of that kind, see [5, p. 2] for details. Also (1.1λ) describes the movement of
particle which is acted by variable forces.

Recently, the case whenf (t, y) � 0 (positone problem) for(t, y) ∈ (0,1) × (0,+∞)

in (1.1λ) has received almost all the attention (for example, see [2,3,6,8,9] and refe
therein). And what is more, all the results for twin solutions of (1.1λ) to our knowledge
are concentrated on the positone problems (see, for instance, [3] etc.). Only few
exist for semipositone problem (see [1,4] and some references therein). In [1], (1.1λ) has
been considered wheny(0) = a > 0, f is semipositone and singular att = 0, t = 1, and
y = 0. In [4] the problem similar to (1.1λ) has been also studied whenf is semipositone
and singular only aty = 0. Unfortunately, what obtained in [1,4] are only the existenc
one positive solution to (1.1λ) whenλ is sufficiently small.

Motivated by the works of [1,3,4], the present paper investigates the existence o
tiple positive solutions to (1.1λ) whenf is negative for some values oft andy, andλ is
small enough. At the same time, we improve and generalize the results obtained in
since the degree of singularity in [1,4] are lower than that of the present paper (for d
please see our examples and remarks). Our approaches are the approximation me
fixed point index theory, and a new constructed cone. Also we would like to remar
the theory presented here for Dirichlet problem could be extended (in an obvious w
general boundary value problems. The organization of this paper is as follows. We
introduce some definitions and lemmas in the rest of this section. The main result w
stated and proved in Section 2. Finally, two examples are worked out to demonstra
main result.

A mapy ∈ C[0,1] with y(t) > 0 for t ∈ (0,1) is said to be a positive solution to BV
(1.1λ) if it satisfies Eq. (1.1λ).

For the remainder of this section, we present some results which will be used in
tion 2. First from [7, Lemma 2.3.1, p. 88, and Lemma 2.3.3, p. 91] we can get the follo
lemma.

Lemma 1.1. Let P be a cone of real Banach spaceE, Ω be a bounded open set ofE,
θ ∈ Ω , A :P ∩ Ω̄ → P be completely continuous.

(i) If x �= µAx for x ∈ P ∩ ∂Ω andµ ∈ [0,1], then

i(A,P ∩Ω,P) = 1.

(ii) If infx∈P∩∂Ω ‖Ax‖> 0 andAx �= µx for x ∈ P ∩ ∂Ω andµ ∈ (0,1], then

i(A,P ∩Ω,P) = 0.
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Lemma 1.2. If g ∈ C[(0,+∞),R+], then there exists a nondecreasing functionh ∈
C[R+,R+] such that h(x) > 0 as x > 0 and g(x)h(x) ∈ C[R+,R+] (that is,
limx→0+ g(x)h(x) exists), whereR+ = [0,+∞).

Proof. Without loss of generality, we assumeg(x) �≡ 0 on (0,+∞). Then there exist
x0 ∈ (0,+∞) with g(x0) > 0. Let

h1(x)=
{

maxt∈[x,x0] g(t), x ∈ (0, x0),

g(x0), x � x0.

Thenh1(x) > 0 and nonincreasing on(0,+∞).
If lim x→0+(g(x)/h1(x)) exists, then we can defineh(x) = 1/h1(x). Evidently,

limx→0+ h(x) exists, soh ∈ C[R+,R+] and nondecreasing on(0,+∞).
If lim x→0+(g(x)/h1(x)) does not exist, since 0� g(x)/h1(x) � 1 for x ∈ (0, x0), we

may chooseh(x) = ln(1+ x)/h1(x) or h(x) = xα/h1(x) (α > 0), which satisfies our re
quirement. ✷

2. Main results

For convenience, we list the following assumptions:

(H1) f ∈ C[(0,1) × (0,+∞),R] and there exist a constantM > 0 and mapsq ∈
C[(0,1),R+], g ∈ C[(0,+∞),R+], which satisfy

0 � f (t, y)+M � q(t)g(y), ∀t ∈ (0,1), y ∈ (0,+∞),

and

0<

1∫
0

s(1− s)q(s) ds <+∞.

(H2) There exists an interval[α,β] ⊂ (0,1) such that

lim
x→0+f (t, x)= +∞ and lim

x→+∞
f (t, x)

x
= +∞

both uniformly with respect tot ∈ [α,β].

The following theorem is our main result.

Theorem 2.1. Suppose that conditions(H1) and (H2) hold. Then for eachr > 0, there
existsλ̄ = λ̄(r) > 0 such that BVP(1.1λ) has at least two positive solutionsx(t) andy(t)
satisfying0< ‖x‖< r < ‖y‖ providedλ ∈ (0, λ̄).

Before giving the proof of Theorem 2.1, we first list some preliminaries and prove
lemmas.
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p.
Let E = C[0,1], P = {x ∈ E: x(t) � 0, t ∈ J }, J = [0,1], andQ = {x ∈ P : x(t) �
t (1− t)x(s), ∀t, s ∈ J }. ThenE is a Banach space with norm‖x‖ = maxt∈[0,1] |x(t)|; and
obviously,P andQ are cones inE.

Setφ∗(t) = ∫ 1
0 G(t, s) ds, where

G(t, s)=
{
t (1− s), 0 � t � s � 1,
s(1− t), 0 � s � t � 1.

Forλ ∈ (0,+∞), j ∈N , consider the following approximation problem of (1.1λ):{
y ′′(t)+ λf ∗

j

(
t, y(t)− φλ(t)+ 1

j

)= 0, t ∈ (0,1),

y(0)= y(1)= 0,
(2.1j )

where

φλ = λMφ∗, f ∗
j

(
t, u+ 1

j

)
=
{
f
(
t, u+ 1

j

)+M, u > 0,

f
(
t, 1

j

)+M, u� 0.

Sinceφ∗(t) � t (1 − t) for t ∈ J , we haveφλ(t) � λMt(1 − t) for t ∈ J . It is easy to see
that if yj ∈C1[(0,1)× (0,+∞),R] ∩C[0,1] is a solution of (2.1j ) andyj (t) > φλ(t) for
t ∈ (0,1), thenuj (t) = yj (t)− φλ(t) is a positive solution of the following (BVP):{

u′′(t)+ λf
(
t, u(t)+ 1

j

)= 0, t ∈ (0,1),

u(0)= u(1)= 0.
(2.2j )

For the sake of solving (2.1j ), we first consider the following operator:

(
A
j
λy
)
(t) =: λ

1∫
0

G(t, s)f ∗
j

(
s, y(s)− φλ(s)+ 1

j

)
ds, t ∈ J.

Lemma 2.1. For eachλ ∈ (0,+∞), j ∈N , Aj
λ :Q →Q is a continuous and compact ma

Proof. SinceG(t, τ ) � t (1 − t)G(s, τ ) for t, s, τ ∈ J , it is easy to see thatAj
λ :Q → Q.

Meanwhile, byf ∗
j ∈C[(0,1)×R+,R+] and(H1), one can concludeAj

λ is continuous and
compact fromQ to Q. ✷

To sum up, we can see thaty ∈ Q is a solution of (2.1j ) if y is a fixed point ofAj
λ onQ.

Therefore, we next consider the existence of fixed point ofA
j
λ onQ.

Lemma 2.2. For eachr > 0, there existsλ(r) > 0 such that

i
(
A
j
λ,Qr ,Q

)= 1, ∀λ ∈ (0, λ(r)), j ∈ N,

whereQr = {y ∈ Q: ‖y‖< r}.
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Proof. By Lemma 1.2 and(H1), there exists a nondecreasing functionh ∈ C[R+,R+]
such thatg(x)h(x) ∈C[R+,R+] andh(x) > 0 asx > 0. For eachr > 0, let

λ(r) =: min

{
r

2M
,

2

ac(r)

r/2∫
0

h(s) ds

}
,

where

a =: 2

1∫
0

s(1− s)q(s) ds, c(r)=: max
y∈[0,r+1]

g(y)h(y).

We now claim that

y �= µ
(
A
j
λy
)

for µ ∈ J = [0,1], y ∈ ∂Qr, andλ ∈ (0, λ(r)). (2.3)

Suppose this is false. Then there existy0 ∈ ∂Qr and µ0 ∈ [0,1] with y0(t) =
µ0(A

j
λy0)(t) for all t ∈ [0,1]. Sincey0 ∈Q, we have

y0(t) � t (1− t)‖y0‖ = rt (1− t) for t ∈ J.

On the other hand,

φλ(t) = λM

1∫
0

G(t, s) ds � λMt(1− t) � λM

r
y0(t) for t ∈ J.

Thus,

y0(t)− φλ(t) �
(

1− λM

r

)
y0(t) � 1

2
y0(t) � r

2
t (1− t) for t ∈ J. (2.4)

This implies that

f ∗
j

(
t, y0(t)− φλ(t)+ 1

j

)
= f

(
t, y0(t)− φλ(t)+ 1

j

)
+M. (2.5)

Therefore, by (2.4), (2.5), and(H1) we have

−y ′′
0(s)= λµf

(
t, y0(s)− φλ(s)+ 1

j

)
+ λµM � λq(s)g

(
y0(s)− φλ(s)+ 1

j

)

� λc(r)q(s)

h(y0(s)− φλ(s))
� λc(r)q(s)

h
(1

2y0(s)
) for s ∈ (0,1). (2.6)

Sincey ′′
0 � 0 on (0,1) andy0(t) � rt (1 − t) on J , there existst0 ∈ (0,1) with y ′

0 � 0
on (0, t0) andy ′

0 � 0 on(t0,1).
Integrate (2.6) fromt to t0 to obtain

y ′
0(t) � λc(r)

∫ t0
t
q(s) ds

h
(1

2y0(t)
) for t ∈ (0, t0).

Consequently,
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h

(
1

2
y0(t)

)
y ′

0(t) � λc(r)

t0∫
t

q(s) ds for t ∈ (0, t0). (2.7)

Integrate (2.7) from 0 tot0 again to obtain

r∫
0

h

(
1

2
s

)
ds = 2

r/2∫
0

h(s) ds � λc(r)

t0∫
0

t0∫
t

q(s) ds dt = λc(r)

t0∫
0

sq(s) ds.

Then

2

λc(r)

r/2∫
0

h(s) ds � 1

1− t0

t0∫
0

s(1− s)q(s) ds. (2.8)

Similarly, integrate (2.6) fromt0 to t (t ∈ (t0,1)) and integrate it again fromt0 to 1 to
get

2

λc(r)

r/2∫
0

h(s) ds � 1

t0

1∫
t0

s(1− s)q(s) ds.

This together with (2.8) guarantees that

2

λc(r)

r/2∫
0

h(s) ds � 2

1∫
0

s(1− s)q(s) ds = a,

in contradiction with

0< λ<
2

ac(r)

r/2∫
0

h(s) ds,

and consequently, the result of Lemma 2.2 follows.✷
Lemma 2.3. For eachλ ∈ (0, λ(r)), there existsR > r > 0 with

i
(
A
j
λ,QR,Q

)= 0 for j ∈ N.

Proof. By (H2) we know that, for eachλ ∈ (0, λ(r)), there existsL′ > r > 0 such that

f (t, x)

x
� 2

(
λα(1 − β) min

t∈[α,β]

β∫
α

G(t, s) ds

)−1

for x > L′. (2.9)

Let

R =R(λ) > max

{
2L′

,2λM

}
.

α(1 − β)
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We claim that

A
j
λy �= µy for y ∈ ∂QR andµ ∈ (0,1].

In fact, if it is not true, then there existy0 ∈ ∂QR andµ0 ∈ (0,1] such thatAj
λy0 = µ0y0,

that is,

y0(t) �
(
A
j
λy0

)
(t) = λ

1∫
0

G(t, s)f ∗
j

(
s, y0(s)− φλ(s)+ 1

j

)
ds. (2.10)

Since

y0(t)− φλ(t) � (R − λM)t (1− t) > 0 for t ∈ (0,1),

we have

y0(t)− φλ(t) � (R − λM)α(1− β) >
R

2
α(1 − β) > L′ for t ∈ [α,β].

By (2.9) and (2.10), we get

y0(t) � λ

1∫
0

G(t, s)f ∗
j

(
s, y0(s)− φλ(s)+ 1

j

)
ds

= λ

1∫
0

G(t, s)

[
f

(
s, y0(s)− φλ(s)+ 1

j

)
+M

]
ds

> λ

β∫
α

G(t, s)f

(
s, y0(s)− φλ(s)+ 1

j

)
ds

� 2λ

(
λα(1− β) min

t∈[α,β]

β∫
α

G(t, s) ds

)−1

(R − λM)α(1− β)

β∫
α

G(t, s) ds

� 2(R − λM) > R for t ∈ [α,β].
This is in contradiction withy0 ∈ ∂QR and our conclusion follows. ✷
Lemma 2.4. For the above-mentionedr > 0 andλ(r) > 0, there exists̄λ = λ̄(r) ∈ (0, λ(r)]
satisfying that for eachλ ∈ (0, λ̄), there existsr ′ = r ′(λ) ∈ (0, r) such that

i
(
A
j
λ,Qr ′ ,Q

)= 0 if j is sufficiently large.

Proof. By condition (H2), we know limx→0+ f (t, x) = +∞ uniformly with respect to
t ∈ [α,β]. Therefore, for eachL>M(mint∈[α,β]

∫ β

α G(t, s) ds)−1, there existsδ > 0 such
that

f (t, x) > L for x ∈ (0, δ) andt ∈ [α,β]. (2.11)
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Let

λ̄ = min

{
δ

M
,λ(r)

}
and l = L min

t∈[α,β]

β∫
α

G(t, s) ds.

ThenMλ < δ for λ ∈ (0, λ̄). Fix λ ∈ (0, λ̄), chooser ′ = r ′(λ) ∈ (0, δ) andj sufficiently
large such that

r ′

l
< λ <

r ′

M
and r ′ + 1

j
< δ.

We claim that

A
j
λy �= µy for y ∈ ∂Qr ′ andµ ∈ (0,1].

Suppose this is false. Then there existy0 ∈ ∂Qr ′ andµ0 ∈ (0,1] with A
j
λy0 = µ0y0,

that is,

y0(t) �
(
A
j
λy0

)
(t) = λ

1∫
0

G(t, s)f ∗
j

(
s, y0(s)− φλ(s)+ 1

j

)
ds for t ∈ J. (2.12)

From

y0(t) � r ′t (1− t) and φλ(t)� Mλt(1− t) for t ∈ J,

it follows that

y0(t)− φλ(t) � (r ′ −Mλ)t (1− t) > 0 for t ∈ (0,1). (2.13)

Consequently,

f ∗
j

(
s, y0(s)− φλ(s)+ 1

j

)
= f

(
s, y0(s)− φλ(s)+ 1

j

)
+M. (2.14)

On the other hand, by (2.13) we know

0< y0(s)− φλ(s)+ 1

j
� y0(s)+ 1

j
� r ′ + 1

j
< δ for s ∈ J.

Therefore, by (2.11) and (2.14) we obtain

f ∗
j

(
t, y0(t)− φλ(t)+ 1

j

)
>L+M >L for t ∈ [α,β]. (2.15)

At last, combining (2.12) with (2.14) and (2.15), it follows that

y0(t) � λ

1∫
0

G(t, s)f

(
s, y0(s)− φλ(s)+ 1

j

)
ds > λL

β∫
α

G(t, s) ds � λl > r ′

for t ∈ [α,β].
This is in contradiction withy0 ∈ ∂Qr ′ and immediately our result follows.✷
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Lemma 2.5. For eachλ ∈ (0, λ̄) and sufficiently largej , BVP (2.1j ) has at least two
positive solutionsxj andyj satisfying

r ′ < ‖xj‖< r < ‖yj‖<R,

wherer, r ′, andλ̄ are the same as in Lemma2.4.

Proof. By Lemmas 2.2–2.4 and additivity of the fixed point index, we know

i
(
A
j
λ,QR \ Q̄r ,Q

)= i
(
A
j
λ,QR,Q

)− i
(
A
j
λ,Qr ,Q

)= 0− 1 = −1,

i
(
A
j
λ,Qr \ Q̄r ′ ,Q

)= i
(
A
j
λ,Qr ,Q

)− i
(
A
j
λ,Qr ′ ,Q

)= 1− 0 = 1.

It follows from solution property of the fixed point index that there existxj ∈Qr \ Q̄r ′ and
yj ∈QR \ Q̄r such that

A
j
λxj = xj and A

j
λyj = yj .

Consequently, BVP (2.1j ) has at least two positive solutions.✷
Proof of Theorem 2.1. Let {xj }, {yj } (j � j0) be the positive solutions of (2.1j ) obtained
in Lemma 2.5.

First we show{xj }j�j0 is a bounded, equicontinuous family on[0,1].
Since‖xj‖ > r ′, φλ(t) � λMt(1 − t) � (Mλ/r ′)xj (t) for j � j0, andMλ < r ′, we

have

xj (t)− φλ(t) �
(

1− Mλ

r ′

)
xj (t) for t ∈ (0,1). (2.16)

Return to (2.6) (withy0 replaced byxj ) to obtain

−x ′′
j (s)� λq(s)g

(
xj (s)− φλ(s)+ 1

j

)
� λc(r)q(s)

h(xj (s)− φλ(s))
� λc(r)q(s)

h
((

1− Mλ
r ′
)
xj (s)

)
for s ∈ (0,1), (2.17)

whereh is the same as in the proof of Lemma 2.2. Sincex ′′
j (t) � 0 on (0,1), there exists

tj ∈ (0,1) with x ′
j � 0 on (0, tj ) andx ′

j � 0 on (tj ,1). Integrate (2.17) fromt (t < tj ) to
tj to obtain

h

((
1− Mλ

r ′

)
xj (t)

)
x ′
j (t) � λc(r)

tj∫
t

q(s) ds. (2.18)

On the other hand, integrate (2.17) fromtj to t (t > tj ) to obtain

−h

((
1− Mλ

r ′

)
xj (t)

)
x ′
j (t) � λc(r)

t∫
tj

q(s) ds. (2.19)

We now claim that there exista0 anda1 with 0< a0 < a1 < 1 such that

a0 < inf{tj : j � j0} � sup{tj : j � j0}< a1. (2.20)
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ct, for
First we show inf{tj : j � j0}> 0. If this is not true, then there is a subsequenceS of N
with tj → 0+ asj → +∞ in S. Now integrate (2.18) from 0 totj to obtain

xj (tj )∫
0

h

((
1− Mλ

r ′

)
s

)
ds � λc(r)

tj∫
0

sq(s) ds for j ∈ S. (2.21)

Sincetj → 0+ asj → +∞ in S, we have from (2.21) thatxj (tj ) → 0 asj → +∞ in S.
However, since the maximum ofxj on [0,1] occurs attj we havexj → 0 in C[0,1] as
j → +∞ in S. This is in contradiction with‖xj‖> r ′. Consequently, inf{tj : j � j0}> 0.

A similar argument shows sup{tj : j � j0}< 1.
Moreover, by condition(H1), we know that

lim
t→0+ t

1∫
t

(1− s)q(s) ds = 0 (2.22)

and

lim
t→1−0

(1− t)

t∫
0

sq(s) ds = 0. (2.23)

Let I :R+ →R+ be defined by

I (u) =
u∫

0

h

((
1− λM

r ′

)
s

)
ds.

Note thatI is an increasing and continuous map fromR+ ontoR+ (noticeI (∞) = ∞
sinceh > 0 is nondecreasing on(0,+∞)). We claim that

{xj }j�j0 is a bounded, equicontinuous family on[0,1]. (2.24)

Since the boundedness is obvious, we need to prove only the equicontinuity. In fa
0< t1 < t2 < a0, by (2.18) we know that

∣∣I(xj (t2))− I
(
xj (t1)

)∣∣=
∣∣∣∣∣

t2∫
t1

h

((
1− λM

r ′

)
xj (τ )

)
x ′
j (τ ) dτ

∣∣∣∣∣
� λc(r)

t2∫
t1

ds

a1∫
s

q(τ ) dτ = λc(r)

( t2∫
t1

(s − t1)q(s) ds + (t2 − t1)

a1∫
t2

q(s) ds

)

� λc(r)

( t2∫
t1

sq(s) ds + (1− a1)
−1(t2 − t1)

a1∫
t2

(1− s)q(s) ds

)

� λc(r)

1− a1

( t2∫
s(1− s)q(s) ds + (t2 − t1)

1∫
s(1− s)q(s) ds

)
. (2.25)
t1 t2−t1
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Thus, by (2.22) and (2.25) we obtain{I (xj (t))}j�j0 is equicontinuous on[0, a0].
In addition, by the uniform continuity ofI−1 on [0, I (r)] and∣∣xj (t2)− xj (t1)

∣∣= ∣∣I−1(I(xj (t2)))− I−1(I(xj (t1)))∣∣,
now the equicontinuity of{xj (t)}j�j0 on [0, a0] is established.

Similarly, by (2.19) and (2.23) we can show the equicontinuity of{xj (t)}j�j0 on[a1,1].
On the other hand, fort ∈ [a0, a1], it is easy to see

∣∣x ′
j (t)

∣∣� λc(r)
∫ a1
a0

q(s) ds

h
((

1− Mλ
r ′
)
xj (t)

) . (2.26)

Notexj (t) ∈ Q and

xj (t) � ‖xj‖t (1− t) � r ′a0(1− a1) for t ∈ [a0, a1]. (2.27)

Therefore, by (2.26) and (2.27), we know that

∣∣x ′
j (t)

∣∣� λc(r)
∫ a1
a0

q(s) ds

h
((

1− Mλ
r ′
)
r ′a0(1− a1)

) for t ∈ [a0, a1].

Consequently, the equicontinuity of{xj (t)}j�j0 on [a0, a1] follows, and now establis
(2.24).

The Arzela–Ascoli theorem guarantees the existence of a subsequenceN0 of N and a
functionx ∈C[0,1] with xj converging uniformly onJ to x asj → +∞ throughN0. Also
x(0) = x(1) = 0, r ′ � ‖x‖ � r, andx(t) � t (1 − t)r ′ for t ∈ J . In particular,x(t) > 0 on
(0,1). Fix t ∈ (0,1) (without loss of generality assumet �= 1/2). Nowxj , j ∈ N0, satisfies
the integral equation

xj (t) = xj

(
1

2

)
+ x ′

j

(
1

2

)(
t − 1

2

)

+ λ

t∫
1/2

(s − t)

[
f

(
s, xj (s)− φλ(s)+ 1

j

)
+M

]
ds (2.28)

for t ∈ (0,1). Notice (taket = 2/3) that {x ′
j (1/2)}j∈N0 is a bounded sequence sin

r ′s(1 − s) � xj (s) � r for s ∈ J . Thus{x ′
j (1/2)}j∈N0 has a convergent subsequence;

convenience, let{x ′
j (1/2)}j∈N0 denote this subsequence also, and letr0 ∈ R be its limit.

Now for the above fixedt , let j → +∞ throughN0 in (2.28) to obtain

x0(t) = x0

(
1

2

)
+ r0

(
t − 1

2

)
+ λ

t∫
1/2

(s − t)
[
f
(
s, x0(s)− φλ(s)

)+M
]
ds.

Therefore,x0(t) is a solution of{
x ′′(t)+ λ[f (t, x(t)− φλ(t))+M] = 0, t ∈ (0,1), (2.29)

x(0)= x(1)= 0,
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x0(t) � ‖x0‖t (1− t) � r ′t (1− t) >Mλt(1− t) � φλ(t) for t ∈ (0,1).

Let x(t)= x0(t)−φλ(t) for t ∈ [0,1], thenx(t) ∈ Q. It is easy to see by (2.29) thatx(t) is
a positive solution of (1.1λ) which satisfies‖x‖ � r ′ − λM > 0.

Completely similar to the above discussion, from{yj (t)}j�j0 we can obtain the exis
tence of positive solutiony0(t) to (2.29) andy0(t) � ‖y0‖t (1− t) � rt (1− t) > φλ(t) for
t ∈ (0,1). Consequently we get thaty(t)= y0(t)− φλ(t) is also a solution of (1.1λ).

Now we provex �= y. We need to prove onlyx0 �= y0. Sincer ′ � ‖x0‖ � r, r � ‖y0‖
� R, we shall show (2.29) has no solution on∂Qr . Suppose this is not true. Then the
existsx ∈ ∂Qr satisfying (2.29). Then∣∣x ′′(t)

∣∣� λq(t)g
(
x(t)− φλ(t)

)
for t ∈ (0,1).

Similarly to (2.7) and (2.8), we can get

2

λc(r)

r/2∫
0

h(s) ds � 2

1∫
0

s(1− s)q(s) ds.

This is in contradiction with

0< λ<
2

ac(r)

r/2∫
0

h(s) ds.

To sum up, the Theorem 2.1 is proved.✷
Example. Consider the following BVP:{

y ′′ + λf (t, y)= 0, t ∈ (0,1),
y(0)= y(1)= 0,

(2.30)

where

f (t, y)= 1√
t (1− t)

(
a

yα
+ bey sint

)
−M cost, a > 0, α > 0, b > 0, M > 0.

It is easy to see that(H1) and(H2) are satisfied for (2.30). Then, by Theorem 2.1, we kn
(2.30) has at least two positive solutions whenλ is sufficiently small.

Remark 2.1. Theorem 2.1 in [1] cannot be used to study (2.30), sincef (t, y) in (2.30)
cannot satisfy conditions (2.4) and (2.6) of [1] whenα > 1.

On the other hand, it is easy to see that for eachθ > 0, there does not existpθ ∈L1[0,1]
such thatf (t, y)� pθ(t) for everyy ∈C[0,1] with y(t)� θl(t) whenα > 1, wherel(t) =
min{t,1− t}. This implies that condition(A7) in [4] is not satisfied if [4, Theorem 3.1] i
used to consider (2.30).

Therefore, from the results in [1,4], we cannot derive the existence of solution
(2.30) whenα > 1. However, by using Theorem 2.1 of the present paper, not only
existence of solution but also twin solutions are obtained for (2.30).
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Remark 2.2. When (1.1λ) reduces to positone problem, Theorem 2.1 can also be
Comparing with [3, Theorem 2.3] (wheref (t, y) = φ(t)[g(y) + h(y)] � 0 and requiring
thatg > 0 is nonincreasing on(0,+∞) andh/g is nondecreasing on(0,+∞)), our result
is more general. Please see the following example:{

y ′′ + λ
t (1−t )

(sinty + y−αey) = 0, t ∈ (0,1),

y(0)= y(1)= 0, α > 0.
(2.31)

It is easy to see by Theorem 2.1 that (2.31) has at least two positive solutions wheλ is
sufficiently small. But [3, Theorem 2.3] is not applicable to study (2.31), since the non
term does not possess any monotonicity iny.
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