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Abstract Grid computing solves high performance and high-throughput computing problems

through sharing resources ranging from personal computers to super computers distributed around

the world. As the grid environments facilitate distributed computation, the scheduling of grid jobs

has become an important issue. In this paper, an investigation on implementing Multiobjective

Variable Neighborhood Search (MVNS) algorithm for scheduling independent jobs on computa-

tional grid is carried out. The performance of the proposed algorithm has been evaluated with

Min–Min algorithm, Simulated Annealing (SA) and Greedy Randomized Adaptive Search

Procedure (GRASP) algorithm. Simulation results show that MVNS algorithm generally performs

better than other metaheuristics methods.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Grid computing is a form of distributed computing that

involves coordinating and sharing computing, application,
data and storage or network resources across dynamic and
geographically dispersed organization [1]. Users can share grid

resources by submitting computing tasks to grid system.
Resources can be computers, storage space, instruments, soft-
ware applications, and data, all connected through the Internet

and a middleware layer that provides basic services for secu-
rity, monitoring, resource management and so forth.

One of the main motivations of the grid computing para-

digm has been the computational need for solving many com-
plex problems from science, engineering, and business such as
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hard combinatorial optimization problems, protein folding
and financial modelling [2–4]. As a cooperative environment
of solving problem, it is necessary for the grids to develop

efficient job scheduling schemes and resource management
policies in regard to their objectives, scope, and structure.
However, there exists different and somewhat conflicting

QOS objectives for management and security policies among
the hierarchy based grid entities such as grid users (applica-
tions), grid resource administrative and virtual organization

administrative. To increase the level of satisfaction of various
grid entities, grid resource management system must use the
scheduling strategy, which provides a compromise solution
by considering several conflicting objectives.

Minimization of makespan is the most popular and exten-
sively studied system-related optimization criterion.
Makespan is an indicator of the general productivity of the

grid system: Small values of makespan mean that the scheduler
is providing good and efficient planning of tasks to resources.
Considering makespan as a standalone criterion not necessar-

ily implies the optimization of other objectives. Hence, it is
necessary to devise the task scheduling algorithms in order
to optimize both system-related and user-related objectives.

One of the user-related objectives is the flowtime, which refers
to the response time to the user submissions of task executions.
Minimizing the value of flowtime means that the average
response time of the grid system is being reduced. However,

as discussed in [5], minimizing the makespan requires the most
demanding jobs to be assigned to the fastest resource, at the
expense of increasing the finish time of other jobs, and hence

increasing flowtime. On the other hand, optimizing flowtime
requires all jobs to finish quickly on the average, at the expense
of having the most demanding jobs taking a longer completion

time, thus increasing makespan. This justifies the search for
algorithms that minimize both makespan and flowtime.
Scheduling n jobs to m resources had been shown to be

NP-complete [6]. Meta-heuristic approaches have shown their
effectiveness for a wide variety of hard combinatorial problems
and also for multi-objective optimization problems.

The main contribution of this work is the thorough exper-

imental exploration of multiobjective VNS, with the problem
specific neighborhood structures to solve the grid job schedul-
ing problem, by minimizing the makespan and flowtime objec-

tives. Efficient numerical results are reported in the
experimental analysis performed on a set of 72 well known
and large heterogeneous computing scheduling problem

instances. The comparative study shows that the proposed
MVNS is able to achieve high problem efficiency and outper-
forming the results of Min–Min algorithm, SA and GRASP
algorithms.

Variable Neighborhood Search is a simple and effective
meta-heuristic method developed to efficiently deal with the
hard optimization problem. VNS is a framework for building

heuristics, based upon systematic changes of neighborhoods
both in descent phase, to find a local minimum, and in pertur-
bation phase to emerge from the corresponding valley. VNS

has also demonstrated good performance on industrial appli-
cations such as the design of an offshore pipeline network [7]
and the pooling problem [8]. It has also been applied to real-

world optimization problems, including optimization of a
power plant cable layout [9], optical routing [10] and online
resources allocation problem for ATM networks [11].
Applications of VNS are diverse which include the areas such
as location problems, data mining, graph problems, mixed

integer problems, scheduling problems, vehicle routing
problems and problems in biosciences and chemistry [12].
2. Related works

Due to the popularization of distributed computing and the
growing use of heterogeneous clusters in the 1990s [13,14],

the heterogeneous computing scheduling problem (HCSP)
became especially important. Hence many researchers paid
attention in solving the HCSP. But the multiobjective HCSP

variants that propose the simultaneous optimization of several
efficiency metrics have been scarcely studied. Krauter et al. [15]
provided a useful survey on grid resource management sys-

tems, in which most of the grid schedulers such as AppLes,
Condor, Globus, Legion, Netsolve, Ninf and Nimrod use sim-
ple batch scheduling heuristics. Braun et al. [16] studied the
comparison of the performance of batch queuing heuristics,

Tabu Search (TS), GA and Simulated Annealing (SA) to
minimize theMakespan. The results revealed that GA achieved
the best results compared with the batch queuing heuristics.

Some of the job scheduling algorithms are nature-inspired,
e.g., SA [17], Ant Colony Optimization [18], Particle Swarm
Optimization [19], Differential Evolution (DE) [20], parallel

Cross generational elitist selection, Heterogeneous recom-
bination, and Cataclysmic mutation (pCHC) [21]. There are
also non-nature-inspired metaheuristics, such as TS [22],
Threshold Accepting (TA) [23], and VNS algorithm [24].

Xhafa [25] studied the performance of Memetic algorithm
(MA) with different local search algorithms including TS
and VNS. The experimental results revealed that MA+ TS

hybridization outperforms the combinations of MA with other
local search algorithms. Abraham et al. [26] proposed the vari-
able neighborhood particle swarm optimization algorithm.

They empirically showed the performance of the proposed
algorithm and its feasibility and effectiveness for scheduling
work flow applications. Lusa and Potts [27] proposed the

VNS algorithm for the constrained task allocation problem
and compared the performance of the proposed algorithm with
the other local search procedures. Moghaddam et al. [28]
presented a hybrid GA and VNS to reduce the overall cost

of task executions in grid environment.
Few works have considered the optimization of makespan

and flowtime objectives for the scheduling problem [25,29].

Jacob et al. [30] studied the optimization of four objectives,
namely makespan, resource utilization, time and cost of appli-
cation for solving the HCSP. Xu et al. [31] experimented the

Chemical Reaction Optimization (CRO) algorithm based grid
job scheduling problem by considering makespan, flowtime
and tardiness of the solution.

The VNS algorithm has received relatively little attention in

solving the grid job scheduling problem. From the literature, it
is known that VNS has been used in hybridization with other
algorithms for such problems. To our knowledge, there are no

other antecedents on applying explicit VNS to solve the
heterogeneous computing scheduling problem tackled in this
work, so the approach presented here is a novel approach in
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this line of research. The performance of VNS algorithm
depends on the performance of its neighborhood. Working
in that line, the performance of VNS algorithm had been

enriched by framing new problem specific neighborhoods, in
order to solve the large scale heterogeneous computing
scheduling problem instances. The multiobjective version of

the scheduling problem studied in this work considers the opti-
mization of an aggregation function that sums the makespan
and flowtime of the solutions.

3. The Grid scheduling process and components

A computational grid is a hardware and software infrastruc-

ture that provides dependable, consistent, pervasive and inex-
pensive access to high end computational capabilities [1]. A
Grid Scheduler (GS) receives applications from grid users,

selects feasible nodes for these applications according to the
acquired information from the Grid Information Service
(GIS) module, and finally generates application-to-node map-
pings, based on certain objective functions and predicted node

performance. Scheduling algorithms are used in the GS for
mapping tasks to resources in order to simultaneously opti-
mize both systems-related (e.g. makespan) and user-related

objectives (e.g. flowtime).
Fig. 1 depicts a model of grid scheduling system. Grid

scheduler is referred as Meta scheduler in the literature

[32,33] and which is not an indispensible component in the
Grid infrastructure.

The role of the Grid information service is to provide infor-
mation about the status of available nodes to Grid schedulers.

GIS is responsible for collecting and predicting the node state
information, such as CPU capacities, memory size, network
bandwidth, software availabilities and load of a site in a partic-

ular period. GIS can answer queries for node information or
push information to subscribers.

Besides raw node information from GIS, application prop-

erties such as approximate instruction quantity, memory and
storage requirements, subtask dependency in a job and com-
munication volumes and performance of a node for different

application species are also necessary for making a feasible
schedule. Application profiling (AP) is used to extract proper-
ties of applications, while analogical benchmarking (AB)
provides a measure of how well a node can perform a given

type of job [34,35]. Cost estimation module computes the cost
of candidate schedules. On the basis of knowledge from AP,
AB and cost estimation module, the scheduler chooses those

that can optimize the objective functions.
The Launching and Monitoring (LM) module is known as

the ‘‘binder’’ which implements a finally-determined schedule

by submitting applications to selected nodes, staging input
data and executables if necessary, and monitoring the execu-
tion of the applications [36].

A Local Resource Manager (LRM) is mainly responsible

for two jobs: local scheduling inside a node domain, where
not only jobs from exterior Grid users, but also jobs from
the domain’s local users are executed, and reporting node

information to GIS. For clarity, some key terminologies [37]
are defined as follows.
� Grid node

A grid node is an autonomous entity composed of one or
multiple nodes. The computational capacity of the node

depends on its number of CPUs, amount of memory, basic
storage space and other specifications.

� Jobs and operations

A job is considered as a single set of multiple atomic
operations/tasks. Each operation will be typically allocated

to execute on one single node without pre-emption. It has
input and output data and processing requirements in order
to complete its task.

� Task scheduling

A task scheduling is the mapping of tasks to a selected
group of nodes which may be distributed in multiple adminis-
trative domains.

This work deals with the static scheduling problem, in
which all tasks can be independently performed. All the infor-
mation about tasks and resources is gathered by the Grid

scheduler before computing the schedule, and the task to
resource assignment is not allowed to change during the
execution. Static scheduler acts as the basic building block to

develop a powerful dynamic scheduler, able to solve more
complex scheduling problems. The concept of static scheduling
frequently appears in many scientific research problems,
especially in Single-Program Multiple-Data applications used

for multimedia processing, scientific computing, data mining,
parallel domain decomposition of numerical models for
physical phenomena, etc. The independent tasks model also

arises when different users submit their tasks to execute in
volunteer-based and grid computing services and in parameter
sweep applications, which are structured as a set of multiple

experiments, each one executed with a different set of
parameter values [21].
4. Scheduling problem formulation

The problem is formulated based on the ‘‘Expected time to
compute’’ (ETC) model [16]. In a particular time interval, n

independent jobs J1,J2,J3, . . . ,Jn (expressed in millions of
instructions) are submitted to Meta scheduler for scheduling,
and at the same time, GIS locates m (usually n� m) grid
nodes G1,G2,G3, . . . ,Gm, donating nodes. The processing

power of a grid node is measured in terms of ‘‘millions of
instructions per second’’. To address the problem, the follow-
ing assumptions are considered [31].

1. Any job Ji has to be processed in one of the grid nodes Gj

until completion.

2. Jobs come in batch mode.
3. A node cannot remain idle when jobs have been assigned to

it.

4. A job can only be executed on one grid node in each
interval.



Figure 1 A logical Grid scheduling architecture.
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5. When a node processes its tasks, there is no priority distinc-
tions between the tasks assigned in the previous intervals
and those assigned in the current interval.

Based on the specifications of the nodes and tasks, Meta

scheduler computes n · m matrix ETC (ETC : J� G! RþÞ
where entity ETCij represents the expected time for node j to

process job i. Rþ denotes that the entry ETCij is the positive

real number. The multi-objective scheduling problem can be
formulated by defining the following notations and variables.

i index of tasks, i ¼ 1; 2; . . . ; n,
j index of nodes, j ¼ 1; 2; . . . ;m,
n number of tasks,

m number of heterogeneous nodes,
xi variable representing the node to execute the task i,

xðUÞi maximum allowed value of xi,

xðLÞi minimum allowed value of xi,
ETCij expected time for node j to process task i,

Cj completion time of node j.

The job scheduling problem is considered as a bi-objective
optimization problem, in which both makespan and flowtime
are simultaneously minimized, which is possible since both
parameters are measured in the same unit (time units).

fitness ¼ a�Makespanþ ð1� aÞ � Flowtime

m

� �
ð1Þ

As flowtime has higher order of magnitude over makespan, it

is normalized by m. Actually, in this method the multi-
objective task scheduling problem is converted to a single
objective scheduling problem using the linear combination of

both objectives. The objective function can be expressed as
follows:

Minimize fitness; fðxÞ ¼ a �max
X
½i=xi¼j�

ETCij

( )
þ ð1� aÞ

m

�
Xm
j¼1

X
Cj

� � !
ð2Þ
s:t: x ¼ fx1; x2; . . . ; xng; 8xi 2 ½1;m�; 8i 2 ½1; n�; 8j 2 ½1;m�
ð3Þ

a ¼ 0:75 ð4Þ

ETCij > 0; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m ð5Þ

x
ðUÞ
i ¼ m; i ¼ 1; 2; . . . ; n ð6Þ

x
ðLÞ
i ¼ 1; i ¼ 1; 2; . . . ; n ð7Þ

x
ðUÞ
i P xi P x

ðLÞ
i ; i ¼ 1; 2; . . . ; n ð8Þ

Cj ¼
X
½i=xi¼j�

ETCij; ½i=xi ¼ j�

represents the tasks assigned to node j ð9Þ

In this model, the objective function (2) minimizes both make-
span and flowtime. Constraint (3) defines the weighing factor
[25]. Constraint (4) denotes a vector composed of n objective

function parameters. Constraint (5) ensures that all entries of
n · m ETC matrix are positive. Constraints (6) and (7) define
the upper and lower boundary constraints of the objective
function parameters respectively. Constraint (8) defines the

upper and lower boundary constraints of the variable xi.
Constraint (9) calculates the completion time of node j, which
is defined as the time required for node j to complete all its

assigned tasks.

5. Implementation of MVNS algorithm for scheduling jobs on

computational grid

The following subsections deal with the representation of solu-
tion, generation of initial solution, explanation of neighbor-

hood structures, and the proposed grid job scheduling
algorithm.

5.1. Solution representation

The solution is represented as an array of length equal to the
number of jobs. The value corresponding to each position i



J1 J2 J3 J4 J5 … Ji …
G2 G5 G9 G1 G7 … Gj …

(a)
2 1 2 3 1 2 3 1 2 3 2 1 1

(b)

Grid Node 1 J2 J5 J8 J12 J13 

Grid Node 2 J1 J3 J6 J9 J11

Grid Node 3 J4 J7 J10

(c)

Figure 2 (a) Solution representation, (b) solution for the problem of 13 jobs and 3 Grid nodes, (c) mapping of jobs with Grid nodes for

the solution given in (b).
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in the array represents the node to which job i was allocated.
The representation of the solution for the problem of schedul-
ing 13 jobs to 3 Grid nodes is illustrated in Fig. 2. The first

element of the array denotes the first job (J1) in a batch which
is allocated to the Grid node 2; the second element of the array
denotes the second job (J2) which is assigned to the Grid node

1, and so on.
5.2. Initial solution generation

The random initial solution is considered. Let x be
the solution composed of n parameters, which is specified as
x ¼ fx1; x2; . . . ; xng. The parameters are subject to lower and
upper boundary constraints (Eqs. 3, 6, 7 and 8).
5.3. Neighborhood structures

The neighborhood structure defines the type of modifications

a current solution can undergo and thus, different neighbor-
hoods offer different ways to explore the solution space. In
other words, definition of the proper neighborhood struc-

tures leads to better exploration and exploitation of the
solution space. Two attributes of the solutions are consid-
ered to define six neighborhood structures so that a larger

part of the solution space can be searched and the chance
of finding good solutions will be enhanced. The attributes
that can be altered from one solution to another are
‘‘Random assignment of grid nodes to jobs’’, and

‘‘Workload of grid nodes’’. The defined neighborhood struc-
tures and corresponding moves associated with them are
explained in detail below.

5.3.1. SwapMove

This neighborhood structure provides a set of neighbors for
current solution x, based on exchanging the nodes assigned

for the randomly selected three jobs.
5.3.2. Makespan-InsertionMove

This neighborhood assigns the Light node to the randomly
selected job in the job list of Heavy node. Light and Heavy
nodes are the nodes with minimum and maximum local make-
span respectively, where the local makespan of individual node

gives the completion time of its latest job. Maximum local
makespan is the makespan of the solution.
5.3.3. InsertionMove

Neighbors generated using this neighborhood structure can be
constructed using the assignment of random node G1 in G to
the random job J1 in J.
5.3.4. Weightedmakespan-InsertionMove

Based on this neighborhood structure, solutions are generated

by assigning the random node Lr to the random job J1 selected
from the job list of the random node Hr. Lr and Hr are the
nodes having local makespan value less than or equal to 0.25

and greater than or equal to 0.75 of the makespan of current
solution respectively.

5.3.5. BestInsertionMove

This neighborhood maps the longest job J1 in the job list of
Heavy to the node having minimum execution time for J1.

To illustrate, a small scale job scheduling problem involving

3 nodes and 13 jobs is considered. The node speeds are 4, 3, 2
cycles/second, and the job lengths of 13 jobs are 6, 12, 16, 20,
24, 28, 30, 36, 40, 42, 48, 52, 60 cycles, respectively. Consider

the initial solution with fitness 100.055, which is represented
in Fig. 3a. The SwapMove operator swaps the nodes assigned
for the selected three jobs J9, J2, and J4 (already mapped with
G3, G2, and G1 respectively) and changes the fitness of the

solution as 92.33 (Fig. 3b). Then the job J1 assigned for G3

(Heavy-with localmakespan 105) is mapped with the node G2

(Light-with localmakespan 28), according to the Makespan-

InsertionMove neighborhood. Thus the fitness of the current
solution becomes 90, which is illustrated in Fig. 3c. Then
InsertionMove neighborhood selects the node G2 and maps

with the Job J11 (already mapped with G1). This mapping
changes the localmakespan of G1 and G2 (18 and 46 respec-
tively), and also the fitness of current solution as 90.16
(Fig. 3d). According to the Weightedmakespan-InsertionMove,

the job J13 from the joblist of G3 (considered as Hr) is assigned
to the nodeG1 (considered asLr). This neighborhoodminimizes
the fitness of current solution as 66.58 (Fig. 3e). Then the

BestInsertionMove neighborhood selects the longest job J12
from G3 (considered asHeavy) and assigns with G1 (High speed
node of J12) (Fig. 3f). Hence the final solution has the fitness 46,

which is the optimal result for the example problem.

5.4. Proposed MVNS grid job scheduling algorithm

VNS is a metaheuristic which systematically exploits the idea
of neighborhood change, both in descent to local minima
and in escape from the valleys which contain them. The term
VNS is referred to all local search based approaches that are

centered on the principle of systematically exploring more than
one type of neighborhood structures during the search. VNS
iterates over more than one neighborhood structures until

some stopping criterion is met. The basic scheme of the VNS
was proposed by Mladenović and Hansen [38]. Its advanced
principles for solving combinatorial optimization problems

and applications were further introduced in [39–41] and
recently in [42].



Figure 3 Explanation of different neighborhood structures (a) initial solution, (b) SwapMove, (c) Makespan-InsertionMove,

(d) InsertionMove, (e) Weightedmakespan-InsertionMove, and (f) BestInsertionMove.
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VNS uses a finite set of pre-selected neighborhood struc-
tures denoted as Nkðk ¼ 1; . . . ; kmaxÞ. NkðxÞ denotes the set
of solutions in the kth neighborhood of solution x. VNS

employs a local search to obtain a solution x�X, called as a
local minimum, such that there exists no solution
x0�NkðxÞ#X with fðx0Þ < fðxÞ. The local search can be per-

formed in different ways. The generic way consists of choosing
an initial solution x, finding a direction of descent from x
within a neighborhood N(x), and moving to the minimum of

f(x) within N(x) in the same direction. If there is no direction
of descent, the heuristic stops; otherwise, it is iterated. After
the local search, a change in the neighborhood structure is per-
formed. Function NeighborhoodChange compares the value

f(x0) of a new solution x0 with the value f(x) of the incumbent
solution x obtained in the neighborhood k. If an improvement
is obtained, k is returned to its initial value and the incumbent

solution is updated with the new one. Otherwise, the next
neighborhood is considered.

The proposed MVNS grid job scheduling algorithm is sum-

marized in Algorithm 1. VNS uses two parameters: tmax, which
is the maximum CPU time allowed as the stopping condition,
and kmax, which is the number of neighborhood structures

used. Step 4 of Algorithm 1, which is called shaking, randomly
chooses a solution x0 from the kth neighborhood of the incum-
bent solution x. After improving this solution via the
PALSheuristic local search (Algorithm 3), a neighborhood

change is employed. The fitness of the solution is evaluated
based on the procedure described in the Algorithm 2.

Algorithm 1. MVNS grid job scheduling algorithm

Input: x, kmax, tmax, ETC[ ][ ], PALS_maxiter

Output: x

1 repeat

2 k 1

3 repeat

4 x0  shakeðx; kÞ
5 x00  PALSHeuristicðx0;ETC½ �½ �;PALS maxiterÞ /* Local

search */

6 Neighborhoodchangeðx; x00; kÞ
7 until k ¼ kmax

8 t CputimeðÞ
9 until t > tmax

Algorithm 2. fðx;ETC½ �½ �Þ /*fitness evaluation */

Input: x;ETC½ �½ �
Output: localmakespan½ �; fitnes
1. [n, m] ‹ size(ETC[ ][ ])

2. localmakespan½ �  0; flowtime 0

3. for i= 1 to n do

4. localmakespanðx½i�Þ  localmakespanðx½i�Þ þ ETCði;x½i�Þ
5. endfor

6. Makespan maximumðlocalmakespan½ �Þ
7. for j= 1 to m do

8. flowtime flowtimeþ localmakespan½j�
9. endfor

10. fitnes 0:75 �Makespanþ 0:25 � ðflowtime=mÞ
Algorithm 3. Problem Aware Local Search Heuristic

Input: x, ETC[ ] [ ], PALS_maxiter

Output: x

1 for i= 1 to PALS maxiter do

2 ½localmakespan½ �; fitnes�  fðx;ETC½ �½ �Þ / * Algorithm 2 */

3 Best 1
4 JJ½ �  Job list of Heavy

5 Select a random node G1, where G1–Heavy

6 JJJ½ �  Job list of G1

7 ln lengthðJJ½ �Þ
8 lnr lengthðJJJ½ �Þ
9 startheavy randið1; ln� 1Þ
10 endheavy randiðstartheavy; lnÞ
11 startres randið1; lnr� 1Þ
12 endres randiðstartres; lnrÞ
13 for i = startheavy to endheavy do

14 for j= startres to endres

15 x00  Swap the resources assigned for JJ[i] and JJJ[j]

16 ½localmakespan½ �; temp�  fðx;ETC½ �½ �Þ
17 if (temp < Best)

18 x0  x00

19 Best ‹ temp

20 endif

21 endfor

22 endfor

23 if (fitnes> Best) then

24 fitnes ‹ Best

25 x x0

26 break

27 endif

28 endfor
5.4.1. Problem Aware Local Search (PALS)

Basic concept of this local search has been used in the litera-

ture for the DNA fragment assembly problem [43], and the
heterogeneous computing scheduling problem [44]. Working
on a given schedule x, this algorithm selects a node Heavy to

perform the search. The outer cycle iterates on ‘it’ number of
jobs (where it = endheavy � startheavy + 1) of the node
Heavy, while the inner cycle iterates on ‘jt’ number of jobs

(where jt = endres � startres + 1) of the randomly selected
node G1, other thanHeavy. For each pair (i, j), the double cycle
calculates the makespan variation when swapping the nodes
assigned for JJ[i] and JJJ[j], where JJ and JJJ denote the

job list of the nodes Heavy and G1 respectively. This neighbor-
hood stores the best improvement on the makespan value for
the whole schedule found in the evaluation process of it · jt.

At the end of the double cycle, the best move found so far is
applied. In this algorithm, startheavy and endheavy, startres
and endres are assigned with random values based on the

length of array JJ and JJJ respectively (Refer lines 4 and 6
of Algorithm 3). The randomness introduced in the parameters
endheavy and endres makes this local search to differ from the
concept existing in the literature.

After the extensive experimentation, the combination of
SwapMove, Makespan-InsertionMove and BestInsertionMove
was selected for the proposed MVNS. The details of the neigh-

borhood structures are given in Algorithms 4, 5, and 6. The
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parameters PALS_maxiter and kmax are set to 5 and 3
respectively.
Algorithm 4. SwapMove

Input: x

Output: x0

1. Choose three random jobs J1, J2, and J3 in J

2. x0 ‹ Swap the resources assigned for J1, J2, and J3 of x

Algorithm 5. Makespan-InsertionMove

Input: x, ETC½ �½ �
Output: x0

1. Evaluate the fitness of x

2. Select two nodes Light and Heavy from G, where Light and

Heavy are the nodes with minimum and maximum

localmakespan respectively

3. Select a random job J1 from the job list assigned for Heavy

4. x0 ‹ Assign Light to J1

Algorithm 6. BestInsertionMove

Input: x, ETC½ �½ �
Output: x0

1. Evaluate the fitness of x

2. Select a longest job from the job list assigned for Heavy

3. Select a node G1 in G, where G1 has minimum execution time

for J1
4. x0 ‹ Assign G1 to J1

6. Computational experiments

When facing the heterogeneous computing scheduling prob-
lem, researchers have often used the test instances proposed
by Braun et al. [16], following the ETC performance estima-

tion model by Ali et al. [45]. ETC takes into account three
key properties: machine heterogeneity, task heterogeneity,
and consistency. Machine heterogeneity evaluates the varia-

tion of execution times for a given task across the heteroge-
neous computing nodes, while task heterogeneity represents
the variation of the tasks execution times for a given machine.

Regarding the consistency property, in a consistent scenario,
whenever a given node Gj executes any task Ji faster than other
machine Gk, and then node Gj executes all tasks faster than
machine Gk. In an inconsistent scenario, a given machine Gj

may be faster than machine Gk when executing some tasks
and slower for others. Finally, a semiconsistent scenario
models those inconsistent systems that include a consistent

subsystem.
Nesmachnow et al. [21] proposed a test suite of several large

dimension heterogeneous computing scheduling problem

instances, in order to model large heterogeneous computing
clusters and medium sized grid infrastructures. All test
instances of each dimension are composed of m grid nodes

and n jobs, which is referred as the configuration m · n.
Each dimension has 24 test instances regarding all the hetero-
geneity and consistency combinations, twelve of them consid-
ering the parameterization values from Ali et al. [45], and

twelve using the values from Braun et al. [16]. The instances
are named as M.u_x_yyzz, where the first letter (M) describes
the heterogeneity model (A for Ali, and B for Braun), u means

uniform distribution (in the ETC matrix generation), x is the
type of consistency (c – consistent, i – inconsistent and s means
semi-consistent), and yy and zz indicate the job and machine

heterogeneity (hi – high, and lo – low).
This paper considers the test instances proposed by

Nesmachnow et al., with dimension 1024 · 32, 2048 · 64,
and 4096 · 128 [21]. The grid job scheduling algorithm was

developed using MATLAB R2010a and run on an Intel(R)
Core(TM) i5 2.67 GHz CPU with 4 GB RAM. As the problem
size increases, the evaluation of the fitness function consumes

larger computing time than the application of neighborhood
operators. The maximum running time of the algorithm is
not set to uniform value for all configurations. The stopping

condition tmax is set to 150, 300, and 700 s for 1024 · 32,
2048 · 64, and 4096 · 128 dimension problems respectively.

6.1. Results and discussion

This section discusses the experimental results of applying the
MVNS algorithm to solve the grid job scheduling problem.
The MVNS results are compared with the deterministic heuris-

tic Min–Min algorithm, Simulated Annealing algorithm and
GRASP algorithm. For SA, Initial temperature, temperature
reduction factor and reannealing interval are set to 50, 0.95

and 10 respectively. GRASP was experimented with PALS
heuristic (Algorithm 3) in the local search phase, in which
PALS_maxiter and threshold parameter are set to 50 and 0.2

respectively.
Each experiment (for each algorithm) was repeated 50 times

with different random seeds. The fitness values of the best solu-

tions throughout the optimization run were recorded. In the
computation experiments, 72 test instances were solved with
SA, GRASP, Min–Min algorithm and MVNS algorithm.
The experimental results displayed in bold fonts indicate that

the corresponding solution is the best solution obtained out
of all algorithms considered for comparison along with
MVNS algorithm. The overall best result produced by the

MVNS algorithm compared with all algorithms is represented
in bold and italic.

The improvement of an algorithm over another is com-

puted using Eq. (10).

Improvement ð%Þ ¼ d1 � d2

d2

� 100% ð10Þ

where d1 and d2 are the fitness values of two different

algorithms.

6.1.1. Solution quality

Tables 1–3 show the MVNS result for 1024 · 32, 2048 · 64,

and 4096 · 128 configurations. The best, average, and stan-
dard deviation on the fitness results achieved during the exper-
imentation of Min–Min, SA, GRASP and MVNS algorithm

are reported in Tables 1–3. From Tables 1–3, it is observed
that MVNS produces a good quality schedule for all the test



Table 1 Fitness results for the test instances of 1024 · 32 configuration.

Instance Min–Min S A GRASP MVNS Impr. over (%)

Best Average r (%) Best Average r (%) Best Average r (%) Min–Min SA GRASP

A.u_c_hihi 32303475.0 49691000.0 52535501.9 0.23 59296276.0 60246004.0 0.17 22371956.0 22816668.0 0.12 30.74 54.98 62.27

A.u_c_hilo 3202078.0 5024400.0 5256028.4 0.18 5804483.0 5868504.5 0.12 2239553.3 2329903.8 0.11 30.06 55.43 61.42

A.u_c_lohi 2999.5 5744.9 5801.1 0.25 5707.0 5761.8 0.18 2094.2104 2138.5461 0.14 30.18 63.54 63.30

A.u_c_lolo 322.2 1023.0 1055.4 0.21 587.5 594.7 0.21 225.4 233.2 0.15 30.04 77.97 61.63

A.u_i_hihi 7401064.0 40800000.0 45610922.1 0.13 60450692.0 61488296.0 0.19 5377229.5 5448493.5 0.17 27.35 86.82 91.10

A.u_i_hilo 697545.9 3781400.0 4390844.7 0.15 5738513.5 5813609.0 0.18 508015.1 513903.4 0.13 27.17 86.57 91.15

A.u_i_lohi 738.4 4291.0 4423.9 0.11 5759.698.5 5824.558.5 0.20 506.9 507.4 0.14 31.34 88.18 91.19

A.u_i_lolo 70.9 870.3 876.4 0.17 600.9 609.7 0.16 51.8 52.4 0.20 26.94 94.05 91.37

A.u_s_hihi 18596806.0 51040000.0 51572046.8 0.16 60811624.0 61591852.0 0.16 13564793.0 13928393.0 0.10 27.06 73.42 77.69

A.u_s_hilo 1794747.0 4817900.0 5140694.7 0.20 5992918.0 6092478.0 0.15 1314495.6 1320775.0 0.17 26.76 72.72 78.07

A.u_s_lohi 1775.5 5843.8 5900.2 0.17 5893.8 5938.9 0.19 1344.5 1379.6 0.09 24.27 76.99 77.19

A.u_s_lolo 189.6 931.9 942.4 0.19 610.1 619.4 0.22 136.3 137.6 0.11 28.12 85.38 77.66

B.u_c_hihi 9337642.0 15579000.0 15792000.0 0.14 17502926.0 17579946.0 0.10 6782008.0 6801153.0 0.10 27.37 56.47 61.25

B.u_c_hilo 96095.4 148340.0 160230.0 0.10 177707.3 180220.3 0.14 67642.0 69478.0 0.12 29.61 54.40 61.94

B.u_c_lohi 328379.2 516070.0 531230.0 0.19 601621.1 612066.1 0.13 237388.9 239105.3 0.11 27.71 54.00 60.54

B.u_c_lolo 3356.1 5945.7 6076.2 0.16 5922.2 6086.5 0.19 2368.3 2410.0 0.09 29.43 60.17 60.01

B.u_i_hihi 2430464.0 12067000.0 12998000.0 0.11 17947406.0 18234360.0 0.11 1696470.3 1734982.0 0.16 30.19 85.94 90.55

B.u_i_hilo 21965.5 123700.0 135330.0 0.17 177127.2 178480.8 0.13 15521.0 15626.0 0.15 29.34 87.45 91.23

B.u_i_lohi 71860.4 448320.0 463540.0 0.12 576534.1 589052.8 0.12 50793 50846.0 0.13 29.32 88.67 91.19

B.u_i_lolo 727.9 5650.1 5728.5 0.19 5692.9 5787.9 0.14 509.0 512.6 0.08 30.07 90.99 91.06

B.u_s_hihi 5288315.0 14570000.0 14804000.0 0.20 17642298.0 17837298.0 0.17 3780893.5 3806248.3 0.12 28.50 74.05 78.57

B.u_s_hilo 54543.1 151830.0 157430.0 0.13 179943.6 182090.1 0.16 40931.0 40994.0 0.13 24.96 73.04 77.25

B.u_s_lohi 173757.7 493960.0 511880.0 0.15 579778.4 585129.1 0.22 128936.9 129450.7 0.10 25.79 73.89 77.76

B.u_s_lolo 1841.8 5706.3 5824.9 0.18 5812.3 6014.0 0.17 1324.8 1395.2 0.18 28.07 76.78 77.21
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Table 2 Fitness results for the test instances of 2048 · 64 configuration.

Instance Min–Min S A GRASP MVNS Impr. over (%)

Best Average r (%) Best Average r (%) Best Average r (%) Min–Min SA GRASP

A.u_c_hihi 28033987.0 63057210.0 65655774.9 0.20 75062880.0 75076790.0 0.14 21029586.0 21262348.0 0.12 24.99 66.65 71.98

A.u_c_hilo 2705653.0 6211341.2 6454726.9 0.14 7266130.5 7292718.5 0.17 2022377.5 2040942.9 0.13 25.25 67.44 72.17

A.u_c_lohi 2814.2 8309.7 8439.8 0.12 7403.7 7555.1 0.16 2063.1 2108.7 0.11 26.69 75.17 72.13

A.u_c_lolo 274.4 1148.9 1170.1 0.17 726.2 797.3 0.12 202.6 216.7 0.18 26.17 82.37 72.10

A.u_i_hihi 3743631.0 62529503.6 63917261.3 0.16 70379080.0 70751824.0 0.17 2759628.3 2769008.0 0.14 26.28 95.59 96.08

A.u_i_hilo 398833.4 6286869.7 6364513.8 0.18 7078694.0 7110455.5 0.14 296976.4 300144.7 0.18 25.54 95.28 95.80

A.u_i_lohi 376.4 7372.9 7451.7 0.19 7077.3 7134.3 0.11 288.9 299.4 0.16 23.24 96.08 95.92

A.u_i_lolo 39.4 915.8 947.3 0.13 715.4 798.0 0.10 29.2 32.4 0.14 25.94 96.81 95.92

A.u_s_hihi 15976701.0 63710491.2 64741290.5 0.18 72879208.0 73588240.0 0.15 11702970.0 12037198.0 0.19 26.75 81.63 83.94

A.u_s_hilo 1401827.0 6397732.1 6479820.2 0.14 7048720.5 7144016.5 0.17 1092334.1 1117282.5 0.12 22.07 82.92 84.50

A.u_s_lohi 1470.237.0 7443.3 7665.6 0.15 7125.5 7246.6 0.20 1142.9 1216.9 0.11 22.26 84.65 83.96

A.u_s_lolo 156.4123.0 1011.1 1092.6 0.19 725.6 793.9 0.21 120.4 183.8 0.17 23.02 88.09 83.41

B.u_c_hihi 8121108.0 18158549.2 18376320.1 0.21 21944496.0 22045496.0 0.19 5989006.0 6091842.5 0.13 26.25 67.02 72.71

B.u_c_hilo 86169.9 186526.4 193921.4 0.20 223248.7 234241.1 0.13 64344.0 65238.0 0.14 25.33 65.50 71.18

B.u_c_lohi 275896.6 610010.6 620614.3 0.15 722534.5 728163.1 0.17 204034.09 204913.9 0.19 26.05 66.55 71.73

B.u_c_lolo 2841.1 7780.9 8175.8 0.13 7419.4 7512.7 0.15 2097.5 2154.9 0.17 26.17 73.04 71.73

B.u_i_hihi 1165077.0 18452110.1 19626383.8 0.10 21808722.0 21901420.0 0.18 835526.0 849462.0 0.11 28.29 95.47 96.17

B.u_i_hilo 11379.9 179072.2 191441.1 0.16 219308.0 224996.6 0.13 8610.1 8737.5 0.15 24.34 95.19 96.07

B.u_i_lohi 39146.1 619006.4 651141.9 0.19 729385.9 743063.9 0.11 29719.0 30775.0 0.13 24.08 95.20 95.93

B.u_i_lolo 402.7 7226.8 7342.4 0.14 7060.0 7129.1 0.15 287.0 318.4 0.12 28.73 96.03 95.93

B.u_s_hihi 4585171.0 17836001.2 19109691.2 0.15 21312070.0 21347198.0 0.09 3512196.5 3539540.8 0.18 23.40 80.31 83.52

B.u_s_hilo 46261.4 185801.3 195186.9 0.17 218541.4 219074.1 0.17 36135.0 37281.0 0.11 21.89 80.55 83.47

B.u_s_lohi 155270.5 588907.6 610393.4 0.12 715308.9 721908.3 0.13 117174.3 127560.3 0.16 24.54 80.10 83.62

B.u_s_lolo 1575.4 7552.6 7617.3 0.11 7238.8 7373.8 0.15 1225.0 1340.9 0.15 22.24 83.78 83.08
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Table 3 Fitness results for the test instances of 4096 · 128 configuration.

Instance Min–Min S A GRASP MVNS Impr. over (%)

Best Average r (%) Best Average r (%) Best Av age r (%) Min–Min SA GRASP

A.u_c_hihi 24593149.0 79148329.6 80748803.4 0.14 89394336.0 89424336.0 0.13 19487692.0 196 084.0 0.11 20.75 75.37 78.20

A.u_c_hilo 2424948.0 8033663.2 8128561.1 0.16 8823599.0 8862629.0 0.12 1922381.6 193 03.0 0.15 20.72 76.07 78.21

A.u_c_lohi 2470.0 9874.8 9997.8 0.17 8629.3 8765.4 0.11 1920.4 200 6 0.14 22.25 80.55 77.75

A.u_c_lolo 244.3 1266.2 1370.0 0.11 885.9 900.7 0.09 192.4 234 0.11 21.24 84.80 78.28

A.u_i_hihi 1839977.0 72457718.4 73869752.8 0.19 80649928.0 81731023.1 0.13 1511832.1 154 06.4 0.16 17.83 97.91 98.12

A.u_i_hilo 201020.1 7375050.2 7475654.4 0.13 8112595.0 8147229.5 0.16 159347.4 165 5.2 0.12 20.73 97.83 98.03

A.u_i_lohi 195.2 8695.4 8797.1 0.20 7895.4 8052.7 0.17 157.4 181 0.13 19.37 98.18 98.00

A.u_i_lolo 20.2 998.0 1106.1 0.17 816.1 898.0 0.19 16.6 20. 0.09 17.69 98.33 97.96

A.u_s_hihi 12527613.0 74430768.8 75017361.9 0.16 82881328.0 83730163.0 0.16 11131578.0 112 319.0 0.11 11.14 85.04 86.57

A.u_s_hilo 1286190.0 7494309.5 7514031.1 0.12 8291316.0 8319271.4 0.13 1148052.3 116 10.3 0.14 10.74 84.68 86.15

A.u_s_lohi 1310.1 8947.3 9329.4 0.11 8273.7 8376.6 0.11 1147.7 122 1 0.11 12.39 87.17 86.12

A.u_s_lolo 131.2 1066.6 1113.7 0.12 835.2 899.4 0.17 118.9 140 0.13 9.34 88.85 85.76

B.u_c_hihi 7590400.0 24228415.1 24616949.9 0.13 27585398.0 27991308.1 0.12 5918685.5 598 81.0 0.10 22.02 75.57 78.54

B.u_c_hilo 72638.3 245304.8 253107.4 0.18 262315.0 265552.4 0.14 57197.6 580 .1 0.11 21.25 76.68 78.19

B.u_c_lohi 249037.0 778626.7 807824.1 0.12 875624.0 889914.3 0.19 195185.1 197 3.5 0.13 21.62 74.93 77.71

B.u_c_lolo 2441.0 9566.3 9725.4 0.16 8853.5 8900.1 0.15 1950.6 120 9 0.11 20.09 79.60 77.96

B.u_i_hihi 584618.6 21902051.1 22263576.9 0.14 24223036.0 24295410.3 0.16 471521.6 477 3.7 0.13 19.35 97.85 98.05

B.u_i_hilo 6321.1 222209.2 225070.2 0.15 242991.9 250100.1 0.12 4945.9 503 2 0.12 21.76 97.77 97.96

B.u_i_lohi 18749.9 743870.4 747313.8 0.12 803492.7 809431.1 0.17 15613.9 161 .3 0.14 16.72 97.90 98.05

B.u_i_lolo 203.9 8526.3 8921.9 0.19 8048.1 8200.1 0.13 162.5 203 0.12 20.30 98.09 97.98

B.u_s_hihi 3797274.0 22403862.4 23761526.7 0.11 25001098.0 25151943.2 0.12 3463622.5 347 60.3 0.11 8.78 84.54 86.14

B.u_s_hilo 39325.8 218693.9 229336.4 0.09 250195.5 258700.1 0.11 35569.2 368 .9 0.13 9.55 83.74 85.79

B.u_s_lohi 130279.3 758302.0 769156.7 0.11 850445.5 859920.1 0.17 117944.9 119 4.3 0.11 9.46 84.44 86.13

B.u_s_lolo 1332.2 8610.2 8766.8 0.16 8244.0 8903.1 0.16 1180.9 122 4 0.15 11.35 86.28 85.67
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Figure 5 Convergence of MVNS, GRASP and SA.

Figure 6 I�H measure of three algorithms for 1024 · 32.
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instances. Min–Min algorithm gave the second best mapping
by yielding better solutions for all the test instances. As the
numbers of jobs and resources increase, the performance of

Min–Min algorithm improves significantly. SA and GRASP
yielded the better mapping for the consistent test cases. The
percentage improvement of MVNS over Min–Min, SA and

GRASP is reported in column 12, 13 and 14 of Tables 1–3
respectively. Min–Min, SA and GRASP gave better schedules
for the semiconsistent and consistent test cases. The percentage

improvement of MVNS over Min–Min, SA and GRASP is
found to be 23.5%, 82.3% and 83.6% respectively, by consid-
ering 72 test cases of various configurations.

Fig. 4 shows the average improvement of MVNS over other

heuristic algorithms. It is revealed from Fig. 4 that the percent-
age improvement of MVNS is gradually increased when the
problem dimension grows for SA and GRASP. Even though

MVNS has better improvement over Min–Min algorithm,
the percentage of improvement is gradually decreased for
increasing problem dimension.

6.1.2. Speed of convergence

Fig. 5 illustrates the performance of MVNS, GRASP and SA
algorithms during the search process, for the test case of

Braun’s semi-consistent, low job and low machine heterogene-
ity model with the configuration of 1024 · 32. It is found that
the MVNS algorithm converges faster than the considered

multi-objective algorithms with the exploration of shorter
schedule.

6.1.3. Performance assessment

The comparison of two sets of non-dominated solutions
obtained through two multi-objective optimization algorithms
is important. In the literature, many performance assessment

metrics for the multi-objective algorithms have been proposed
[46–50]. This work makes use of the hyper volume difference
indicator I�H for the performance assessment.

The reference set, R had been constructed by merging all of
the archival non-dominated solutions found by each of the

algorithms for a given configuration across 50 runs [51].
Then the hyper volume difference indicator I�H had been used

to measure the differences between non-dominated fronts gen-
erated by the algorithms and the reference set R [51,52]. The
objective values are normalized to find the hyper volume
Figure 4 Average improvements of MVNS over other heuristics.

Figure 7 I�H measure of three algorithms for 2048 · 64.
difference indicator [53]. I�H measures the portion of the objec-

tive space that is dominated by R. The lower the value of I�H,

the better the algorithm performs [51].



Figure 8 I�H measure of three algorithms for 4096 · 128.
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The performance assessment plots had been drawn for the
Ali’s consistent, high job and high machine heterogeneity

model, Braun’s inconsistent, low job and high machine hetero-
geneity model, and Braun’s semi-consistent, high job and high
machine heterogeneity model with the configuration of

1024 · 32, 4096 · 128 and 4096 · 128 respectively.
Box plots for different configurations clearly prove that

MVNS algorithm is better than GRASP and SA (Figs. 6–8).
From the simulation result of MVNS algorithm in solving grid

job scheduling problems, it is seen that the performance of
MVNS algorithm is much better than other optimization
techniques mentioned in this study.

7. Conclusions

Grid computing has emerged as one of the hot research areas

in the field of computer networking. Scheduling, which decides
how to distribute tasks to resources, is one of the most impor-
tant issues. This paper presents the VNS algorithm with novel

local search for grid job scheduling problem to minimize
makespan and flowtime. Extensive computational experiments
have been devised to study the performance of the proposed

algorithm. The performance of MVNS was evaluated with
other optimization algorithms, for a large variety of test cases,
and with the consideration of the heterogeneous environment
of different configurations. The results of MVNS are better

for most of the instances. The computational results demon-
strate the superiority of the proposed MVNS in solving the
grid job scheduling problem and its computational efficiency.

In future work, VNS algorithm for multi-objective complex
scheduling problems and workflow model of grid scheduling
problems will be developed.
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