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Abstract

In this paper we develop a new mathematical approach to the pattern formation problem in biology. This problem was first posed
mathematically by A.M. Turing, however some principal questions were left open (for example, whether there exists a “universal”
mathematical model that allows one to obtain any spatio-temporal patterns).

Here we consider the pattern formation ability of some class of genetic circuits. First, we show that the genetic circuits are
capable of generating arbitrary spatio-temporal patterns. Second, we give upper and lower bounds on the number of genes in a
circuit generating a given pattern. A connection between the complexity of gene interaction and the pattern complexity is found.
We investigate the stochastic stability of patterning algorithms. Results are consistent with experimental data.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction. Turing approach

This paper deals with special circuits of the neural type playing a key role in contemporary biology, and our results
can be applied to the pattern formation problem in biology. Mathematical approaches to this problem started with the
seminal paper of Turing [1]. Turing studied how chemical patterns could emerge from spatially uniform states. His
model is a system of two special partial differential equations, the so-called two component reaction-diffusion system.
In a more general multicomponent case, these systems have the form:

∂ui

∂ t
= di �ui + fi (u1, u2, . . . , um), x ∈ Ω , t ≥ 0, (1.1)

where unknown functionsui (x, t) can be interpreted as a reagent concentration, the termdi �ui describes the
reagent diffusion, andfi are smooth (usually polynomial or rational inui ) functions describing a nonlinear chemical
interaction between the reagents. We suppose thatΩ is a bounded domain and set some boundary and initial
conditions. Turing also introduced some key notions such as an activator and an inhibitor. He assumed that state
cells are discrete and that they can be modified by special chemical reagents.
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Now the existence of such reagents is well known [3,4]. Moreover, it is proved experimentally that, in multicellular
organisms, the state of a cell can depend on gene expression inside this cell and on some signals from the environment
(electrical, chemical or pressure, [4]).

The Turing approach was developed by numerous works (see [5] for a review). Patterns obtained numerically are
often similar to patterns actually observed in biology [5]. However, the equations for these models have been selected
to be mathematically tractable and a priori they do not takeinto account experimental genetic information. Moreover,
there is no direct evidence for Turing’s patterning of any developing organism ([3], p. 347).

Mathematically, the two main questions are open: first, whether the model (1.1) is actually capable of producing
any patterns or not; second, whether there exist algorithms that allow us to choose parameters (functionsfi anddi )
such that the solution of (1.1) will approximate a given pattern.

More precisely, the first problem can be formulated as follows:

Universal pattern generation problem for Turing model(1.1)

Let T0 > 0 and T0 < T . Given a function z(x, t), x ∈ Ω , t ∈ [0, T] anda positive numberε, find a number m,
functions fi (u1, . . . , um) and coefficients di (where i = 1, . . . , m) such that the solution of problem(1.1) with initial
conditions uj = 0 satisfies

sup
x,t

|z(x, t) − um(x, t)| < ε, x ∈ Ω , t ∈ [T0, T]. (1.2)

Below we consider a time discrete version of (1.1). (Notice that, if we try to resolve (1.1) numerically, this version
inevitably arises from (1.1).)

Using genetic circuits (a special subclass of systems (1.1)) we show that the universal pattern generation problem
can be resolved. Moreover, it can be done by an algorithm, i.e., the pattern problem can be resolved constructively.

2. Genetic circuits

Genetic circuit models were proposed ([7–9,11–13] among many others; see [10] for a review)to take into ac-
count theoretical ideas and experimental information on gene interaction. Model [9] uses Boolean algebra (a so-called
Boolean switch network). The circuit studied by [11–13] is a generalization of the famous Hopfield model of the attrac-
tor neural network [2]. On other hand, this circuit is a particular case of the Turing model, wherefi has a special form.

The genetic circuit approach, developed in [11–13], is based on two main biological ideas. The first one is to choose
the gene concentrations as state variables for the description of gene regulation. The second one is to use networks
similar to neural networks to describe the activation or depression of one gene by another. Mathematically, such a
model can be described as a system of partial differential equations of a special form [11,12], namely

dui

dt
= Ri σ

(
m∑

j =1

Ki j u j +
m1∑
j =1

Mij θ j (x) − ηi

)
− λi ui + di �ui , (2.1)

wherem is the number of genes included in the circuit,ui (x, t) is the concentration of thei -th gene,λi are the gene
decay rates anddi the gene diffusion coefficients, the parametersηi are activation thresholds, andσ is the so-called
sigmoidal function (see below).

The real numberKi j measures the influence of thej -th gene on thei -th gene. The assumption that gene interactions
can be expressed by a single real number per pair of genes is asimplification that excludes complicated interactions
between three, four and more genes. Clearly such interactions can exist, however the problem then becomes much
more complicated mathematically.

In (2.1), θi are fixed functions. They give the densities of the so-called “maternal genes” that derive pattern growth.
The number of these genes ism1. (For example, forDrosophila Melanogasterthe key maternal gene isbicoid. The
complete number of the maternal genes is about 50; see [3].) Also they can describe concentrations of the substrates
involved in patterning. Indeed, we need some food for growth. The matrixMij describes an interaction between the
genesui and the maternal genes.

One considers (2.1) in some open domainΩ with a regular boundary∂Ω . If di > 0 then, in addition to (1.1), one
sets the standard zero Neumann conditions [33] for ui on∂Ω :
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∂ui

∂n
(x) = 0, x ∈ ∂Ω ,

wheren = n(x) is theunit vector orthogonal to the boundary∂Ω at the pointx and directed inwardΩ .
If di = 0, then there are no boundary conditions. The initial data equal zero:

ui (x, 0) ≡ 0, x ∈ Ω . (2.2)

The functionσ satisfies the following supposition:

Assumption 2.1. Suppose thatσ is a strictly monotonically increasing function satisfying

lim
z→−∞ σ(z) = 0, lim

z→∞ σ(z) = 1 (2.3)

and a differential equation

σ ′ = P(σ ), (2.4)

whereP is apolynomial.

The well known example can be given byσ(z) = 1+tanh(z)
2 (here,P = σ(1 − σ)/2). It is easy to see that the

polynomialP satisfies the following properties:P(0) = 0, P(1) = 0 andP(z) is positive for anyz ∈ (0, 1). We also
observe thatσ is a real analytic function satisfying estimates

σ(z) = O(exp(−c1|z|)), z → −∞
σ(z) − 1 = O(exp(−c2z)), z → +∞, (2.5)

whereci are positive constants.
An example ofσ playing an important role for biology is given by the so-called Michaelis–Menten function.

This functionσ equalsx/(K + x) for positive x and equals 0 forx ≤ 0, whereK is a positive constant. This
function satisfies (2.3) and (2.5). Relation (2.4) holds forσ ∈ (0, 1), but σ ′(0) is not defined. Nonetheless, under
some additional conditions, some results hold in this case as well (seeSection 6).

Model (2.1) takes into account only three fundamental processes: (a) the decay (degradation) of gene products
(the term−λi ui ); (b) the exchange of gene products between cells (the term with�); and (c) gene regulation and
synthesis. Notice that (2.1) is a particular case of (1.1) with nonlinearities of a special form.

Another possible model is a dynamical system with discrete time, for example, defined by the following iterative
process:

ut+1
i (x) = r i σ

(
m∑

j =1

Ki j ut
j (x) +

m1∑
j =1

Mij θ j (x) − ηi

)
− λi u

t
i (x) + di �ut

i (x), (2.6)

u0
i (x) ≡ 0 (2.7)

wheret = 0, 1, 2, . . . , T , T is an integer, andx ∈ Ω . Numerical procedures solving (2.1) lead to models similar to
(2.6). A simplified variant of system (2.6) was investigated, for example in [14].

An important advantage of (2.6) with respect to (2.1) is that, if di = 0, the Khovanskii [15] results can be applied
to this model. In fact, we shall see below that (2.6) defines aPfaffian chain if the functionsθi are Pffafian.

Of course, models (2.1) and (2.6) are rough simplifications. Actually, many other processes can be taken into
account. In fact, the number of involved genes is of the order of many thousands; even a reasonable approximation of
this process isnot known [3]. There is no single universal strategy of patterning ([3], p. 10). Nonetheless, it is clear that
this rough approximation (2.6) has a connection with actual biology. There are no doubts that threshold mechanisms
are important and complicated circuits of interacting proteins and genes actually exist [17,18].

To investigate (2.1) and (2.6), most of the previous works used numerical simulations. For example, the paper [13]
analyzes complicated patterns occurring under a random choice of the matrixK .

In this paper we focus our attention on model (2.6). We show that model (2.6) is mathematically tractable. First,
we show, in a purely analytical way and without any numerical calculations, that any time sequence of any space
patterns can be approximated by a genetic circuit (2.6). Second, we examine a connection between “the complexity of
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a genetic circuit” and the “pattern complexity”. Naturally, both complexities should be defined in a reasonable way.
Third, we are going to investigate the stability of the morphogenesis process with respect to random perturbations.

Now let us formulate the pattern generation problem for system (2.6).
Let us fix some functionσ satisfyingAssumption 2.1. On the contrary, we considerN, Ki j , Mij , λi , di , r i andθi

as “control” parameters. We denote the set of these parameters byP . The morphogenesis problem for (2.6) can be
described as follows. Given a spatio-temporal pattern and a numberε > 0, the problemis to adjust parametersP
of (2.6) such that network (2.6) would approximate the given target pattern. The target pattern is defined by a time
sequence of functionszt (x) wherex ∈ Ω ⊂ Rn, t ∈ [0, T] with the valuesz from [0, 1].
Pattern generation problem for gene circuits

Let T0 > 0 and T0 < T , where T0, T are integers. Given functions zt (x) ∈ [0, 1], x ∈ Ω , t = 0, 1, . . . , T and a
positive ε, find parametersP such that the functions generated by relations(2.6) and(2.7) satisfy

sup
x,t

|zt (x) − ut
m(x)| < ε, x ∈ Ω , t = T0, . . . , T. (2.8)

Remark. We cannot satisfy (2.8) for t = 0, since initial functionsu0
j are equal zero.

Let us give a biological interpretation of this formulation. Among the genesui , we select a special gene, sayum.
The cell states depend on the expression of this gene. Other genesu1, u2, . . . , um−1 are “hidden genes”. These are
involved in a cell biochemical machinery, but do not act directly on thecell states. Such an approach is in good accord
with experimental facts (see [3,4]). It reminds one of classical approaches of neural network theory [20,22,25] where,
similarly, we distinguish “input” neurons, “output” neurons, and “hidden” neurons.

3. Main results and organization of paper

Now let us formulate the main mathematical results, ideasof proofs, and give their biological interpretation (see
also [40]).

Results

A Under some conditions onθi (x) andT0, problem (2.8) always has a solution. Any sequences of the patternszt (x)

can be approximated, within an arbitrarily small error, by gene circuits (2.6). Notice that our conditions are necessary
and sufficient (seeSection 4for details).

B The parameters of a circuit that approximate a given sequencezt (x) can be found by an algorithm.
C Given a final patternzT (x), one can estimate the minimum number of genes in a network that generates

this pattern. We give definitions of the “complexity” of the circuits and the pattern “complexity”. We show, by
the Khovanski theory [15], that there exists a connection between these complexities: it is impossible to obtain a
“complex” pattern using a “simple” circuit.

We introduce and apply the different measures of the pattern complexity. Basic biological concepts on gene
expression [3,4] lead, in a natural way, to the definition of pattern complexity as the number of connectivity
components of some setsD defined by the pattern zT (x). Thesesetscan be defined in different ways. Here we
consider two cases. In the first case we defineD as a level set,

Dc,t = {x : zt (x) = c}.
In the second case,

Dc1,c2,t = {x : c1 ≤ zt (x) ≤ c2}.
Here 0≤ c ≤ 1, 0 ≤ c1 < c2 ≤ 1. These definitions admit a biological interpretation [4,13]. The setsDc,t andDc1,c2,t

are boundaries of a domain, where the geneum (which defines the “structure” of the “organism”) is expressed.
In the first case, in order to connect the pattern complexity and the circuit parameter, we use estimates following

from the fundamental results of Khovanskii [15]. These estimates are independent of the diameter of the domain
Ω ⊂ Rn and of the maximum of the absolute values of the entries|Ki j |. In this case, the pattern complexity can be
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estimated via(rθ + mT + n), whereparameterrθ is a complexity of inputsθ(x, t), and thenumbermT characterizes
the complexityof gene interactions.

In the second case, we obtain essentially stronger estimates, in a quite elementary, inductive way. However, in
contrast to the previous estimates, these estimates depend on the diameter of the domainΩ and on the maximum of
the absolute values of the entries|Ki j |.

It is not sufficient to have a patterning algorithm; actually, algorithms have to be stable under random errors and
perturbations. In particular, they must be stable under random noise and sharp changes of ecological conditions.
Indeed, ecological catastrophes can eliminate food; mutations can change properties of some genes. Mathematically,
this means that the functionsθi (x) actually depend randomly on timet .

We consider the question of the stochastic stability of genetic circuits (2.6). We define the stochastic stability of
system (2.6) on time interval[0, T] as the probability that the gene densitiesut

i (x) stay inside some fixed bounded
domain for allt from [0, T]. Notice that such a definition follows standardideas of the theory of random perturbations
of dynamical systems [27]. This probability can be called the survival probability.

Simple estimates allow us to conclude that:
D the higher the valency of a node, the stabler the circuit with respect to perturbations in this node. (The valency

of the node is the number of links connecting this node with other nodes; in our case the valency of thei -th gene is
thenumber of non-zero entriesKi j .)

M. Gromov and A. Carbone formulated the following important problem: “Homeostasis of an individual cell
cannot be stable for a long time, as it would be destroyed by random fluctuations within and without a cell. There is
no adequate mathematical formalism to express the intuitively clear idea of replicative stability of dynamical systems”
([26], p. 40).

Recall that homeostasis here means supporting life functionsof the cell. Namely, it is well known that biological
molecules amd chemical mechanisms in the cell are fragile [4]. Thus, in order to support their functioning, the main
parameters of the cell medium (temperature, pressure, pH, reagent concentrations) must be within some (sometimes
narrow) intervals independently of external medium oscillations [4].

This problem can be formulated within the framework of model (2.6). Here we use a classical measure of stability
from the theory of dynamic systems under random perturbations [27]. We prove that the survival probability of each
circuit of a fixed structure tends to zero asT → ∞. Therefore, “homeostasis” generated by a fixed circuit will be
broken as time tends toinfinity.

E To answer Gromov–Carbone’s question by means of model (2.6), we show that, although a fixed isolated circuit
is always stochastically unstable, a chain of circuits canbe stable. In this chain, eachcircuit is obtained from the
previous one by some algorithm modifying the circuit parameter (replication algorithm). Roughly speaking, to survive,
it is necessary to evolve.

However, the replication algorithm leading to “eternal” evolution cannot be arbitrary. We show that, for example,
the mean valency must increase during evolution.

Outline of the proofs

The key point of the proof ofA is Lemma 4.2. This lemma can be interpreted as a Superposition principle. Namely,
if circuits C1, C2, . . . , Ck generate chains of functionszt

i (x), wheret ∈ [0, T] and i = 1, 2, . . . , k, then, for any
continuous functionF(u1, u2, . . . , uk), we can find a new circuit that generates the superpositionF(zt

1, zt
2, . . . , zt

k).
We show how the matrix K of the new circuit can be obtained from the matrices of given circuits. To this end, we use
a special decomposition of the matrixK.

Notice that the proof is constructive and gives us an algorithm. This algorithm exploits a modular structure of the
circuits. The key tool is the well studied multilayered approximation [22–25]. This gives an explicit upper estimate
of gene numberm via the target pattern. Suppose that, for anyt = 0, 1, . . . , T , the functionszt (x) are Lipshitzian.
Then the numberm of the genes participating in a circuit generating a sequencezt (x), t = 1, . . . , T , can be estimated
through maxt Lip(zt ). Here,Lip(z) is the Lipshitz constant ofz(x).

In the one-dimensional case (dimΩ = 1), to approximate anyzt (x) by (2.6), it is sufficient to haveonly one strictly
monotonic functionθi (x) (m1 = 1).

To demonstrate resultsC weshow that, under our assumptions onσ , this function is Pffafian. Under the assumption
that θi are Pffafian, it is easy to prove, by induction, that circuit (2.6) gives rise to a Pfaffian chain of functions.
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The Khovanskii estimates allow us now to connect the topological properties of final patternzT (x) with some circuit
parameter and to obtain the resultC.

The proof ofD andE is quite straightforward.

Comments and interpretations

Result A can be considered as a generalization of previous results on multilayered neural networks and the
Hopfield circuits. It is well known that any patternz(x) can be approximated, within arbitrary precision, by a
multilayered neural network with a sufficiently large number of neurons [22–25]. On other hand, it was shown that
the Hopfield model produces, within arbitrary precision, any time trajectories [20] and evenany structurally stable
attractors [21]. To obtain a complex time trajectory or a complex attractor, we must take a sufficient number of
neurons.

ResultA generalizes, for system (2.6), both previous results simultaneously. This shows that any time sequences
of any patternsz(x) can be approximated. Of course, such a result is quite evident if we consider a sufficiently large
circuit with parametersθi (x) and if we can adjust theseθi (x). However, in our case the functionsθi (x) are subject to
some conditions and are fixed as well as the whole structure of our dynamic systems (2.6).

It is interesting to note that the main idea in provingA andB is connected with contemporary ideas of molecular and
developmental biology [3,4,6,16,19]. It is well known now that the genes are organized in blocks and their interaction
has a modular structure [3,4]. Mathematically, this means that the matrixK is decomposed into blocks (seeSection 4).

Let us observe that conclusionD is in good accordance with the experimental results of [18]. This work investigated
protein networks in 43 microorganisms. It was shown that the most connected proteins in the cell are the most
important for its survival.

ConclusionE is also confirmedby experimental data (see [17]). It is known that, for biological networks, the
averaged valency increases during the evolution process.

Organization of the paper

We state the resultsA andB in Section 4. In Sections 5–7 we state resultsC. In Section 5we introduce different
measures of complexities.Section 6studies the Khovanskii estimates of network complexity via pattern complexity.
Section 7is focused on simpler non-uniform estimates.Section 8considers stability under random perturbations and
Section 9concerns Gromov–Carbone’s problem.

4. Pattern generation and patterning algorithm

We simplify model (2.6) by removing theterms describing the gene diffusion and degradation (i.e., we put
λi = di = 0). We setMij = δi j , whereδi j is the Kronecker symbol, andm1 = m. We also suppose thatr i = 1. Let
us denotem0, the number of non-trivial functionsθi , i.e., such thatθi (x) �= constonΩ .

As a result, we obtain the following iterative model

ut+1
i (x) = σ

(
m∑

j =1

Ki j ut
j (x) + θi (x) − ηi

)
, (4.1)

where

u0
i (x) = 0, t = 0, 1, 2, . . . , T, x ∈ Ω . (4.2)

We show thattheuniversal pattern generation problem can be resolved even for this simplified model. Notice that this
system is a particular case of circuits considered in [29–32].

For (4.1), the pattern generation problem can be formulated as above (see (2.8)), but now the parametersP are the
integernumberm, the matrix K, and thenumbersηi , i = 1, . . . , m. Recall thatθ j (x) are fixed.

Our main result is:

Theorem 4.1. Suppose that T0 > 2 and that there exist continuous functionsφl (θ), l = 1, . . . , d defined onRm

such that xl = φl (θ1(x), . . . , θm(x)) for each x ∈ Ω ⊂ Rd. Then the pattern generation problem for(4.1) has a
solution.
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Remark 1. The assumption of the theorem implies thatm0 ≥ d (at leastd functionsθi are non-trivial). In the one-
dimensional cased = 1, this assumption holds if at least one functionθi is strictly monotonic. Moreover, under the
condition ofTheorem 4.1, any function f (x1, . . . , xd) can be represented as a function ofθ = (θ1, . . . , θm). Indeed,
f (x1, . . . , xd) = f (φ1(θ), . . . , φd(θ)) = f̃ (θ).

Remark 2. We alsoobserve that the assumption onθi is necessary toapproximate any sequenceszt (x) by (4.1).
In fact, chain (4.1) can generate only such sequenceszt , where eachzt (x) depends onx through θ(x) =
(θ1(x), . . . , θm(x)). This means that, for eachzt , there must exist a functionGt (θ) suchthat zt (x) = Gt (θ). If
our assumption does not hold, the trivial target sequencezt = xk cannot be approximated by (4.1). Consequently,
we conclude that the assumption of the theorem is sufficient and necessary in order to resolve by (4.1) the pattern
generation problem for any outputszt .

A brief proof ofTheorem 4.1can be obtained by the following lemma.

Superposition Lemma 4.2. Consider a family consisting of p circuits(4.1) generating functions uti,s, where t =
0, . . . , T1, s = 1, . . . , p, and i = 1, 2, . . . , ms (here the index s marks the functions generated by the s-th
circuit, and ms is the number of the genes involved in s-th circuit). Denote byut the vector with the components
ut

1,1, ut
2,1, . . . , ut

m1,1, ut
1,2, . . . , ut

m2,2, . . . , ut
1,p, . . . , ut

mp,p.

Suppose that zt (x) = F(ut (x)), where F is a continuous function of N variables defined on the N-dimensional
cube QN = [0, 1]N and N = ∑p

s=1 ms is the complete number of functions involved in the circuits. (This means that
the target pattern can be expressed through the patterns generated by our family.) Then, for anyε > 0, there exists a
circuit (4.1) satisfying(2.8) with T0 = 2 and T = T1 + 2.

The main idea of the proof is based on the well known fact: the gene networks have modular structure and are
organized in blocks [19]. We also use the following well known approximation result (see [22,25,24,21]): for κ > 0
there exist suchM and coefficientsAkjs, bk, ηk suchthat∣∣∣∣∣σ−1(F(u)) −

M∑
k=1

bkσ

(
p∑

s=1

ms∑
j =1

Akjsu j ,s − ηk

)∣∣∣∣∣ < κ, u ∈ QN . (4.3)

Now let us construct a large circuit including given networks and additional variablesvk, w, wherek = 1, . . . , M.
The time evolution is defined by

vt+1
k = σ

(
p∑

s=1

ms∑
j =1

Akjsu
t
j ,s − ηk

)
, wt+1 = σ

(
M∑

k=1

bkv
t
k

)
. (4.4)

This means thatwt+2 is determined throughut . We renumerate all sets of the functionsu j ,s, vk, w in such a way that
um′ = w, wherem′ is the completenumber of these functions, i.e.,w defines “the output pattern”. Now relations (4.3)
and (4.4) yield (2.8) if κ = κ(ε) is sufficiently small andM is large enough.

Theorem 4.1follows from Lemma 4.2. To show this, we construct the circuit defined by the following relations.
We can suppose, without any loss of generality, that allθi are not constants inΩ . Furthermore, we setµi = 1.
To apply Lemma 4.2, we define a family of networks consisting of a single circuit, where the number of the genes
m = m0 + 1. We define this circuit by the relationsut+1

m rew = σ(ut
m − ηm), ut+1

i = σ(θi ), wherei = 1, . . . , m0.
We nowobserve thatut

m is a strictly monotonically increasing sequence of constants, i.e.,ut
m = qt , whereqt are

independent ofx. For i ≤ m0 andt ≥ 1 we haveut
i = σ(θi (x)) = ρi (x). ThenLemma 4.2entails that any sequence

of the functionszt of the formzt (x) = F(ρ1(x), ρ2(x), . . . , ρm0(x), qt ) can be approximated by a circuit (4.1). Since
the sequenceqt is strictly monotonic int , this means that any sequences of the functions of the formGt (ρ1, . . . , ρm0)
can be approximated as well. Now we use thatσ(z) is strictly monotonic inz. This entails that circuits (4.1) can
approximate any sequences of functionsG̃t (θ1, . . . , θm0) and thus, according toRemark 1(see above), any sequences
f (x1, . . . , xd). This completes the proof.

Moreover, this proof gives an algorithm to resolve the universal pattern generation problem. Namely, the key step of
the proof (approximation (4.3)) can be performed by a constructive procedure (see [21]). With little modification of the
proof, a simple explicit estimate of the gene numberM can be obtained under some supplementary assumptions onF
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from Lemma 4.2and onzt from Theorem 4.1. Namely, we suppose that the functionsF(u) andzt (x) are Lipshitzian,
with the Lipshitz constantsLip(F) andLip(zt ).

Then the functionF can be approximated as follows. First, for anyκ > 0 we can approximateF by a sum of
characteristic functions∣∣∣∣∣F(u) −

M1∑
k=1

fkχπk(u)

∣∣∣∣∣ < κ, (4.5)

whereπk are theN-dimensional boxesπk = {ai < ui < bi } anduk are components of the vectoru. ThenumberM1
can be evaluated by

M1 < const(κ−1N1/2Lip(F))N . (4.6)

Eachχπk can be approximated by the sigmoidal functions:∣∣∣∣∣χπk − σ

(
α

(
N∑

k=1F

σ(α(bk − uk)) + σ(α(uk − ak))

)
− α(2N − 1/2)

)∣∣∣∣∣ < κ1, (4.7)

whereα(κ1) is a large enough positive number. Relations (4.4) can be modified in the following way. We introduce a
network consisting of the old genesuk and new genesvk, ṽk andw. We set

vt+1
k = σ(α(ut

k − ak)), ṽt+1
k = σ(α(bk − ut

k)),

wt+1 = σ

(
α

(
N∑

k=1

vt
k + ṽt

k

)
− α(2N − 1/2)

)
. (4.4a)

In contrast to (4.4), Lemma 4.2now holds withT0 = 3 sincewt+3 can be expressed throughut .
The network generatingzt can be constructed as above in the proof ofTheorem 4.1under condition thatT0 > 3.
Inequalities (4.6) and (4.7) and arguments from the proof ofTheorem 4.1give the following upper estimate for the

numberm of genes in the chain generating a given sequencezt :

m < const( max
t∈[0,T]

ε−1 Lip(zt ))m0. (4.8)

Let us find conditions on the matrixK guaranteeing that the pattern sequencesut
i (x) converge ast → ∞. Iterations

(4.1) can be considered as a dynamic system with discrete time. Such a convergence property holds for so-called
monotonic systems preserving some (partial) order in an appropriate Banach phase space [35–37].

For mappings acting inRn wecan introduce such a partial orderu < v by

u < v if u j < v j for each j . (4.9)

Let u → F(u) be a smooth map. This mapF conserves order (4.9) if

∂ Fi

∂u j
> 0, i �= j . (4.10)

In the case of dynamics (4.1), this condition holds for matricesK suchthat

Ki j > 0, (i �= j ). (4.11)

The theory of monotonic dynamic systems has been pioneered by the seminal work of Hirsch [35], later developed by
Polácik et al. (for example, [36]; for a review, see [37]).

If (4.11) is satisfied, the functionsut
i (x) converge to functionsUi (x) (“final pattern”). This final pattern is the

solution of the system

Ui (x) = σ

(
m∑

j =1

Ki j U j (x) + µi θi (x) − ηi

)
.

The properties of this pattern can be investigated in some cases (see below).
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To conclude this section, let us notice that the universal pattern generation problem for the Turing model (1.1)
(formulated above, seeSection 1) can be studied by means of an analogous approach (see work [41]).

5. Complexity of a pattern and complexity of a network

In this section we consider the following problem. Suppose that we observe some sequence of patternszt (x), x ∈
Ω , t ∈ [0, T]. We would like to estimate the number of the genes required to create this sequence.

To resolve this problem, we can use different characteristics of pattern complexity. In this paper, we employ the
following three quantities:C1(zt (·), c), C2(zt (·), c1, c2) , E(zt (·)). These are functions of the discrete timet .

The quantityC1 is thenumber of connected components of the set

Dc,t = {x : zt (x) = c}. (5.1)

To defineC2, let usconsider a setDc1,c2,t that depends on two parametersc1, c2 andt . Namely, let us define

Dc1,c2,t = {x : c1 ≤ zt (x) ≤ c2}. (5.2)

ThenC2 is thenumber of connected components of this set.
Both complexity measures are discrete, whereasE is a continuous quantity defined by

E(t) =
∫
Ω

|∇zt |2 dx. (5.3)

Now let usdiscuss the biological sense ofC1, C2 andE and the relations between them.
Organisms consist of cells, and these cells can be in different states. Following the ideas stated in the Introduction

(also see [3,4,13]), we assume that different cell states appear as a result of the expression of different genes. Here we
consider the case of one gene. Letum be such a gene.

Then we can study structures consisting of two kinds of cells: modified cells and the usual cells. Ifum is expressed
at x, then here we have a modified cell atx, otherwisethe cell remains in a usual state.

Following the threshold approach (see Introduction) we suppose that the geneum is expressed ifum > c, andit is
not expressed in the opposite case (um ≤ c). In this case we obtain, as a natural measure of complexity, the quantityC1.

The measureC2 admits a similar interpretation. Here we assume thatum is expressed ifum > c2, and it is not
expressed ifum < c1. In thecasec1 < um < c2, we deal with an intermediate (transient) state.

Thus both measuresC1 andC2 relate to the number of transitions between cells of different types.
Notice that, using Sard’s theorem, we can choosec, c1, c2 in definitions (5.1) and (5.2) such that, at least locally,

the boundaries of the connected components will be smooth submanifolds ofΩ of codimension 1. In particular, ifΩ
is an interval, these components will be isolated points.

Example. For a functionzt (x) that is periodic in x (“layered structure”), C1 = C2 = the number of layers (for
appropriatec, c1, c2).

The third measure, the quantityE, can be interpreted as a mean value of the “oscillations” ofz.
The results forC1 andC2 are quite different. To estimatem throughC1, we use the so-called Pfaffian chains [15],

under some additional assumptions onσ . This allows us to obtain rough estimates ofC1 from Khovanski’s results.
Estimates ofC2 andE can be derived in a simpler way and appear to be essentially better.

Up to now, nobody has known if the Khovanskii bounds can be improved. The key difference between estimates
of C1 on the one hand andC2, E on the other is that the estimates ofC2 andE depend, in particular, on the diameter
diam(Ω) of domainΩ , whereas the ones ofC1 are independent of this diameter.

6. An estimate of m via C1

Let us introduce the key notion of a Pfaffian chain [15,28].

Definition. A Pfaffian chain of length r and degreed ≥ 1 is a sequence of real analytic functions
f1(x), f2(x), . . . , fT (x) in Rn with the followingproperty: everyf j , 1 ≤ j ≤ T , satisfies a Pfaffian equation
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∂ f j

∂xk
= gkj (x, f1(x), . . . , f j (x)), (6.1)

wheregkj are polynomials of degrees≤ d. ThenT is called the length andd the degree of the Pfaffian chain.

Pffafian functions are well studied. They enjoy the following properties: the sum and the product of two Pfaffian
functions f1 and f2 of lengthsr i and degreesdi are again Pffafian functions of lengthr1 + r2 and degreed1 + d2 for
both the sum and the product. Superpositions ofPfaffian functions also are Pfaffian (see [28] for details).

Consider some elementary examples. The exponent exp(ax), x ∈ R, is a Pfaffian function of length 1 and degree
2. More generally, any real analytic functionf (z), z ∈ R, satisfying an equation

d f

dz
= P(z, f ) (6.2)

is a Pfaffianof degreedeg P. We thus observe that many classical sigmoidal functions are Pfaffian. For example,
f = (1 + exp(z))−1 satisfies (6.2) with P = f 2 − f . Superposition σ(exp(ax)) is also a Pfaffian, etc.

Let us first show that, underAssumption 2.1, chain (4.1) can be considered to be a Pfaffian chain. Let us introduce
the complexity of chain (4.1) as the tuple of integers

Comp= { m, T, rθ , dθ , deg P}, (6.3)

whererθ is the sum of the lengths of Pfaffian chains forθi , dθ is the maximum of the degree of Pfaffian chains
determining θi , anddeg Pis the degree of the polynomial from (6.2) that definesσ .

Using induction, let us now consider the functionsu1
i . By differentiating, one has

∂u1
i

∂xl
= σ ′(µi θi − ηi )µi

∂θi (x)

∂xl
.

Consequently, byAssumption 2.1, one obtains

∂u1
i

∂xl
= P(µi θi − ηi )µi Pi,l (x, vi

1, v
i
2, . . . , θi ), (6.4)

wherePj ,l are appropriate polynomials, andv
j
k are functions of chains determiningθ j . Thus,u1

i andθ j form a chain
of degreedθ + deg Pand lengthrθ + m. Repeating these calculations, we conclude thatut

i , ut−1
i , . . . , θi form a chain

of degreedθ + tdeg Pand lengthrt = rθ + tm.
Now, the complexity of the patternuT

m(x) can be estimated applying the known results ([15]; see also [28],
Proposition A4).

Theorem 6.1. Thenumber C1 of connected components of the pattern uT
m(x) generated by(4.1) can be bounded from

above by

C1 < 2(rθ+T m)2
(dθ + T deg P)O(rθ +T m+n). (6.5)

Thus, givenC1, we can bound from belowR = rθ + T m roughly as(log2 C1)
1/2, provided that log(deg P),

log(dθ ), n1/2 are less thanrθ + T m. Thequantity R can be interpreted as a “complexity” of the gene circuit (4.1).
This estimate does not look optimal but, in the general case, until now there have been no methods that could

improve it.
However, if we consider rationalσ , for example the Michaelis–Menten case, then this estimate can be improved.
Recall that matricesKi j , which actually meet in biologicalapplications, are “sparse”, i.e., each gene interacts with

only a few other genes. To describe this situation, we introduce the following characteristics: the valencyV of the
circuit. For eachi , we defineVi as the number of entriesKi j suchthatKi j �= 0. ThenV is the maximum ofVi overi .

We first consideruT
m as a function of variablesθ1, θ2, . . . , θs. (We suppose, after permuting subscripts, thatuT

m
actually depends only ons functionsθi amongθ1, θ2, . . . , θm, i.e.,µ1 = µ2 = · · · = µs = 1, µs+1 = · · · = µm = 0.)

Finally, for Michaelis -Menten circuits, we consider the following set as a complexity of the circuit:

CompM = { m, s, T, rθ , dθ }. (6.6)
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Weshall now show that, under suitable suppositions, the final patternuT
m is a rational function inθ1, θ2, . . . , θs and

calculate the degrees of the numerator and the denominator of this function. This allows us to evaluateC1 through
CompM .

Assumption 6.2. Suppose that the chainut
i consists of strictly positive functions.

(This assumptions is natural from the biological point of view and means that the concentrationsut
i (x) staypositive

for anyx.)
Again, we apply an inductive procedure. Let us consideru1

i (θ). We seethat

u1
i = µi θi − ηi

1 + µi θi − ηi
= R1

i /Q1
i ,

whereR1 andQ1 are polynomials inθk of degree 1. At the second step, we have

u2
i =

∑
j Ki j R1

j /Q1
j + µi θi − ηi

1 +∑
j Ki j R1

j /Q1
j + µi θi − ηi

. (6.7)

By elementary transformations, we find from (6.7) that

u2
i = R2

i /Q2
i ,

wheredeg R2
i , deg Q2

i ≤ V + 1.
Repeating this procedure for the final pattern, we find

uT
i = RT

i /QT
i , deg RT

i , deg QT
i ≤ (V + 1)T−1. (6.8)

Applying Khovanski’s bound [15] to the polynomialsRT
m, we conclude with the following proposition:

Proposition 6.1. UnderAssumption6.2, the complexity C1 of the pattern uT
m(x) of the Michaelis–Menten circuit does

not exceed

2r 2
θ (VT + dθ )

rθ +n. (6.9)

7. Estimates of E and C2

The estimates of the previous section were independent of maxi, j |Ki j | and the diameterdiamΩ . Throughout this
section we assume that the domainΩ is open and topologically trivial (contractable). In this section the bounds onE
andC2 are stronger than those onC1 from the previous section, but hold under the conditions that

max
i, j

|Ki j | ≤ K∗, diamΩ = δ > 0. (7.1)

Other parameters involved in our estimates areV (the circuit valency defined above) and

ρ = sup
i,k

∣∣∣∣ ∂θi

∂xk

∣∣∣∣ . (7.2)

Let us denote

supσ ′(z) = Cσ . (7.3)

Now we can estimate∇ut
i inductively. Indeed, denote supi,x |∇ut

i | = µt . Then

µt+1 ≤ Cσ (V K∗µt + ρ), t = 0, 1, . . . , (7.4)

whereµ0 = 0. Therefore,

µt ≤ ρCσ
(Cσ V K∗)t − 1

Cσ V K∗ − 1
(7.5)
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if a = Cσ V K∗ �= 1 and

µt ≤ tρCσ , (7.6)

if a = 1. We can suppose, without any loss of generality, thata �= 1.
It is obvious that

E(ut
m) < cδn

(
ρCσ

(Cσ V K∗)t − 1

Cσ V K∗ − 1

)2

, n = dim Ω . (7.7)

Now we proceed to an estimate ofC2 and begin with the one-dimensional case. The inequalityC2 > k, wherek is
an integer, entails that there are two pointsx1, x2 suchthat

|x1 − x2| < δ/k, ut
m(x1) = c1, ut

m(x2) = c2. (7.8)

Thus there is a pointξ suchthat∣∣∣∣dut
m

dx
(ξ)

∣∣∣∣ >
(c2 − c1)C2

δ
. (7.9)

But, by (7.5), we then obtain:

Proposition 7.1. If Ω is an interval, the following estimate of the pattern complexity via the circuit complexity holds:

C2(u
t
m, c1, c2) < diamΩ(c2 − c1)

−1ρCσ
(Cσ V K∗)t − 1

Cσ V K∗ − 1
. (7.10)

This gives us the required estimate. Let us note that an analogue of this estimate also holds for the continuous
model (2.1). Its deduction is similar, and we leave it to the reader.

Let us now turn to the casen = dimΩ > 1.

Theorem 7.2. If Ω is a topologically trivial domain with a smooth boundary, for generic c1 and c2 wehave

C2(u
T
m, c1, c2) < const mesΩ

(
ρCσ

(Cσ V K∗)T − 1

Cσ V K∗ − 1

)n

. (7.11)

Westart with an elementary assertion: if each connected component contains a ball of radiusr , then the number of
connected components

C2 < const mesΩ r −n, (7.12)

where the factorconstdepends onn.
Now, to prove the theorem, we are going to estimater .
First, using Sard’s Theorem, we choosec1, c2 such that they are regular values of a smooth functionuT

m.
Consider a connected componentDk of the set defined by (4.2). Then the boundary∂ Dk is a union of two disjoint

smooth manifoldsBi of codimension 1,Bi = {x : uT
m(x) = ci }, i = 1, 2; herein we employ the theorem on a regular

value (see [34]). Since the boundaries are compact, there are two pointsx1 ∈ B1, x2 ∈ B2 suchthat

dist(x1, x2) = inf
x∈B1, y∈B2

dist(x, y). (7.13)

Let us set 2r = dist(x1, x2) and show that the open ballB that has the interval[x1, x2] with the endpointsx1, x2 as a
diameter is contained inDk.

Indeed, we have just two possibilities: eitherB lies completely in Dk or completely outsideDk. Otherwise,B
would contain some points of the boundary∂ Dk, for example a pointz whereuT

m(z) = c1. But thendist(z, x2) < r ,
which gives us a contradiction with (7.13).

Let us now check that the second possibility (B is outsideDk) also leads to a contradiction.
Let us denote byW the unique connected component ofB1 that contains the pointx1 ∈ W. SinceW is a smooth

submanifold of codimension 1, due to Alexander’s duality [38] the complementΩ \ W consists of two connected
componentsU0,U1 (taking into account the topological triviality ofΩ ). ThenDk lies completely in one ofU0,U1;
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let Dk ⊂ U0 for definiteness. The interval(x1, x2] (with deleted endpointx1) does not intersectW (due to (7.13)),
therefore this interval is contained completely either inU0 or in U1. On theother hand, the pointx2 ∈ Dk ⊂ U0,
hence the whole interval(x1, x2] ⊂ U0.

For asmall enough ballBx1(e) centered atx1, the complementBx1(e) \ W has two connected components (again,
we make use of the fact thatW is a smooth submanifold of codimension 1 and a connected component of the boundary
of Dk). One of these two components coincides withBx1(e)∩Dk and another coincides withBx1(e)\Dk. This partition
is the same as the partition ofBx1(e) \ W into two connected componentsBx1(e) ∩ U0 andBx1(e) ∩ U1. Because we
haveDk ⊂ U0, we conclude thatBx1(e) ∩ Dk = Bx1(e) ∩ U0. Therefore, a suitable beginning(x1, x3] ⊂ (x1, x2]
of the interval(x1, x2] is contained inBx1(e) ∩ Dk (see the previous paragraph). Taking into account that the open
interval(x1, x2) does not intersect the boundary ofDk thanks to (7.13), this implies finally that(x1, x2) ⊂ Dk, which
is a contradiction with the fact thatB is outsideDk.

To conclude the proof, it is sufficient now to estimater . Using the Lagrange theorem, we obtain

c2 − c1 = 2r |(n · ∇um)|,
wheren is a unit vector directed along the diameter[x1, x2]. This relation entails

r −n ≤ C sup|∇um|n.
Applying estimates (7.5) and (7.12), we obtain (7.11).

Notice that the complexitiesC1 andC2 are stable under small perturbations.

Lemma 7.3. For generic c and ci , thecomplexities C1, C2 of the pattern ut
m(x) are conserved under small smooth

perturbations: the complexities of the pattern ut
m coincide with the corresponding complexities of ut

m + z̃(x) if
|z̃C1| < ε andε is small enough.

Proof. Consider the caseC2. The connected components are disjoint. Since they are compact, the distancesdk

between these components are positive. Ifc1, c2 are regular values ofum, their boundaries are smooth submanifolds
of codimension 1. Ifε is sufficiently small, the perturbation of these level submanifolds is small, due to the regularity
of the valuesci .

Thus, since infdk > 0, the perturbed connected components remain disjoint.
An interesting particular case is given by the Michaelis–Menten dynamics. Suppose that all the entriesKi j are

positive. Then the patterns converge (seeSection 4). Final patternsui (x) satisfy

ui

(
1 +

m∑
j =1

Ki j u j + µi θi − ηi

)
=

m∑
j =1

Ki j u j + µi θi − ηi . (7.14)

From Khovanski’s bounds we get, for the solutions of (7.14), the bounds on their complexities

C1, C2 < 2r 2
θ (m + dθ )

rθ +n.

8. Stochastic stability

The important meaning has the problem of the stability of networks under random perturbations of different
parameters. This problem attracts much attention from biologists (see [17–19]).

Here we prove some estimates on the stability of (4.1) under noise leading to important biological consequences.
Moreover, we develop an approach to the replicator stability answering the question of M. Gromov and A. Carbone,
formulated in the Introduction.

Consider a perturbed problem (4.1):

ut+1
i (x) = σ

(
m∑

j =1

Ki j ut
j (x) + hi (x) − ξi (t)

)
, (8.1)

wherehi = µi θi −ηi . Here,ξi (t) are some random processes with discrete time. We assume that they are independent
for different i . The random quantities ξi (t) can be distributed, for example according to gaussian lawsN (ei , κi )
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with averageei and deviationsκi > 0. Different choices of the valuesξi may correspond to different “ecological
conditions”. We introduce two functions:

Prob(ξi (t) ≥ a, for somet ∈ [T1, T2]) = Φi (a, T1, T2) (8.2)

and

Prob(ξi (t) < a, for all t ∈ [T1, T2]) = Ψi (a, T1, T2). (8.3)

It is clear that 1− Φi = Ψi . The following assumption plays an important role in what follows. Suppose that

Ψi (a, T1, T2) > 0, (T2 > T1), Ψi (a, T1, T2) → 0 asT2 → ∞ (8.4)

for fixed T1. This means, roughly speaking, thatξk can take any large values with non-zero probabilities. This
assumption holds for the gaussian probability distribution. It is clear thatΦi (a, T1, T2) are increasing functions of
T2 for any fixeda, while Ψi (a, T1, T2) are decreasing.

Suppose that an “organism” (a gene circuit (8.1)) “survives” (supports homeostasis) if the concentrationsui stayat
some closed domainΠ in theu-phase space.

Notice thatAssumption 2.1entails

ut
i (x) ∈ (0, 1). (8.5)

It is thus natural to suppose thatΠ is contained inside the cube[0, 1]m.
As a measure of the stochastic stability of the circuit homeostasis, we consider the probability

P(P,Π ,Ω , T1, T2) = Prob{ut
i (x) ∈ Π for eachx ∈ Ω , andt ∈ [T1, T2]}. (8.6)

This probability depends on the circuit parametersP , thehomeostasis domainΠ andΩ . We shallname it the survival
probability on the time interval[T1, T2] and denote it byP(T1, T2), omitting the dependence on the parametersP , Π
andΩ . Such a measure of the stability is standard in the theory of dynamic systems [27]. However, one can introduce
other important measures of stability, for example with respect to the random elimination of some genes (proteins)
or the vanishing of someentries of the matrixK. This kind of stability has received much attention in recent works
connected with random graph theory (see the review [39] and references therein). We shall not consider this kind of
stability here.

We estimate the stability via the following parameters: the valency, the maximum|K∗| of absolute values of the
entriesKi j , the maximumb of |θi (x)|, and some parameterNkey that we introduce below. It is important to take into
account the valency, since it is well known that biologicalcircuits are not completely connected: for each fixed node
i we have a valencyVi < m: only Vi of the entriesKi j are non-zero.

To introduceNkey, let usobserve that

inf
u∈Π

ui = Wi ≥ 0, u = (u1, . . . , um). (8.7)

DenoteUi = σ−1(Wi ). SomeWi andUi could be positive. The corresponding indicesi1, . . . , i s ∈ [m] we name key
indices, and the corresponding genes we name the key genes. In fact, ifWi > 0, this means that the organism cannot
survive if the concentration of thei -th gene is small enough at some points. The numbers of the key genes is denoted
by Nkey. We denote byI the set of key indices corresponding to the key genes.

Consider (8.1). Let us take some key indexi ∈ I . We have thefollowing simple inequality:

m∑
j =1

Ki j ut
j (x) + θi − ξi ≤ Si = Vi K∗ + b − ξi . (8.8)

Thus, if

ξi (t) > Vi K∗ + b − Ui , (8.9)
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the concentrationut+1
i (x) is less than the critical valueWi . Moreover, ifat least oneut

i (x) is less thanWi at some
point x, the stateut (x) is outside of this domainΠ . Hence, we have

Prob{ut (x) ∈ Π , t ∈ [T1 + 1, T2], x ∈ Ω} <
∏
i∈I

Ψi (Vi K∗ + b − Ui , T1, T2 − 1). (8.10)

Therefore, we have proved:

Proposition 8.1. The survival probability satisfies

P(T1, T2) <
∏
i∈I

Ψi (Vi K∗ + b − Ui , T1 − 1, T2 − 1) = P+(T1, T2). (8.11)

This estimate yields interesting biological consequences. Notice that the functionP+ is a monotonically increasing
function of the valency. It decreases as the numberNkey of the key genes increases. Moreover, the sharper the
sigmoidal functionσ , the largerP+ is.

The most interesting conclusion is the following. The greater the valency of a node, the stabler the circuit with
respect to perturbations in this node. This is in an accordance with the experimental results of the work [18]. They
show that the most connected proteins in the cell are the most important for its survival.

Moreover, we notice that all circuits are unstable; more precisely, they are stochastically unstable as the timeT
goes to infinity. In fact, assumption (8.4) and estimate (8.11) imply that

P(0, T) → 0 asT → ∞. (8.12)

Then there arises a natural question: how to stabilize the circuits. We shall consider this in the next section.

9. Replicator stability

We show in this section that a periodic renovation (replication) of the circuit parametersP can transform
stochastically unstable systems to stable systems. Wecan consider these transformations as an algorithm of
“evolution”. The key question is about algorithm properties providing the stability.

We consider circuits (4.1) under the assumptions of the previous section. We also suppose thatξi (t) are identical
independent random processes, which, in a certain sense, are homogeneous in time. More precisely, let us assume

Φi (a, T1, T2) = Φi (a, 0, T2 − T1). (9.1)

Consider possible schemes of renovation. These can be described as follows.
EachTr time step, we change the circuit parametersP following some rule. For example, eachTL time step we

can add to the network a new link, and eachTn steps we include a new node (gene). Here,Tn andTL are some positive
integers. We can also use more sophisticated schemes. For example, one can add new nodes with many links. In the
case of graphs, different schemes of graph evolution were studied by numerous works; see the review [39].

Let us calculate the survival probability. LetPn = P(Pn, [nTr , nTr + Tr ]) bethe probability of surviving within
the time interval[nTr , (n + 1)Tr ]. Here,Pn are the circuit parameters in this time interval.

The probability of surviving in the interval(0,∞) is then the infinite product

P(0,∞) = P1P2P3 . . . =
∏
n∈N

Pn.

Consequently, the quantityP(0,∞) is non-zero if the series logP1 + log P2 + · · · + log Pn + . . . converges. We have
thus obtained the following assertion.

Proposition 9.1. The survival probability P(0, T) remains positive as T→ ∞ if and only if the series

log P(P0, [0, Tr ]) + log P(P1, [Tr , 2Tr ]) + · · · + log P(Pn, [nTr , (n + 1)Tr ]) + . . . (9.2)

converges. If this series disverges to−∞, the survival probability tends to zero as time tends to infinity.

Propositions 8.1and9.1yield an elementary consequence that gives us a sufficient condition for stochastic stability
in infinite time. Notice that it is more precise to talk about stochastic stability of the pair (circuit, replication algorithm)
rather than stochastic stability of the circuits.
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Proposition 9.2. The survival probability P(0, T) tends to zero as T → ∞ if the series∑
i∈I

logΨ (V0
i K∗ + b − Ui , 0, Tr ) +

∑
i∈I

logΨ (V1
i K∗ + b − Ui , Tr , 2Tr ) + . . .

+
∑
i∈I

logΨ (Vn
i K∗ + b − Ui , nTr , (n + 1)Tr ) + . . . (9.3)

diverges. Here Vni are the valencies at the n-th renovation step.

To prove it, let us notice that, due toProposition 8.1, − log P(T1, T2) > −∑
i∈I logΨ (Vi K∗ + b − Ui , T1 − 1,

T2 − 1).
Although these results look quite elementary, nonetheless they allow us to analyze the different evolution

algorithms and lead to interesting biologicalconsequences. Consider some examples.

Example 1. Let us suppose that all the genes are key genes.Suppose that their stability is a priori bounded:

inf
i

Ui > Ū > 0. (9.4)

Biologically, this means that the gene stability is a prioribounded during evolution. Let us suppose that the renovation
algorithm is, in a certain sense, simple. This means that the renovation procedure either adds a node (gene) to the
circuit, with a link, or only a link connecting some existing nodes.

Then such evolution is always unstable. To prove it, let us consider series (9.3). First we notice that, if the gene
numberm is bounded asT → ∞, then the valency is bounded bym and is unstable due to (8.4) and (8.10). Thus, we
can assume thatm → ∞ asT → ∞. Then series (9.3) contains infinitely many of the terms that are negative and less
than

µn = logΨ (K∗ + b − Ū , nTr − 1, (n + 1)Tr − 1), (9.5)

since the valency of new genes isV = 1. Due to the time homogeneity hypothesis (9.1), we observe thatµn = µ is
independent ofn. Alsoµ is non zero, according to assumptions (8.4). Thus series (9.3) diverges. We obtain analogous
negative results even if each new gene enters for the circuit with many links but under the condition that the valency
of this new gene stays a priori bounded.

Example 2. Let us suppose that only a part of all the genes are key genes. Suppose that (9.3) holds. Assume that the
renovation procedure adds a node (gene) to the circuit, with a link, and this gene is not the key gene. (Therefore, the
number of key genes is conserved.)

Then such evolution can be stable or unstable, depending on the properties of the processξk. To see this, let us
consider series (9.3). For largen, wecan use the asymptotics

logΨ (Vn
i K∗ + b − Ui , nTr , (n + 1)Tr ) = log(1 − Φ(Vn

i K∗ + b − Ui , nTr , (n + 1)Tr ))

≈ Φ(Vn
i K∗ + b − Ui , nTr , (n + 1)Tr ).

Let us consider the case of gaussian random processes, with a constant deviationκi (t) = κ and zero means. Then, for
example, if Vn

i grows asO(logn) asn → ∞, then this series converges.
Finally, we can perform a stable evolution (i.e., to have limPT > 0 asT → ∞) only if the renovation algorithm is

complicated itself. Namely, the key protein enters the circuit together with many links, and the number of new links
increases in an unbounded way.
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