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G1 interpolation with a single Cornu spiral segment
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Abstract

Cornu spiral segments are used in applications such as the geometric design of highways and railways, robot path planning, and
shape completion. For some applications, e.g. shape completion in computer vision, it is important to use a single visually pleasing
curve segment to smoothly fill a gap, even though the gap may not be filled in a curvature continuous manner. An improved method
for doing so using a Cornu spiral segment is discussed. The method is generally suitable for any application where it is required to
smoothly fit a curve between two given points when the corresponding tangent directions, but not the curvatures, are also given or
known.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Spiral segments are used in the design of highway and railway routes, trajectories of mobile robots and other similar
applications. A special spiral, known as Euler’s spiral, Cornu’s spiral, or the clothoid, is popular for such applications
mainly because its curvature is a linear function of its arclength [2,3,5,7,15].

Fitting a planar curve between two given points such that it matches the unit tangent vectors at the points, is called
two point G1 Hermite interpolation. If given curvatures at the two points are also matched, then it is called two point
G2 Hermite interpolation.

A Cornu spiral segment has six degrees of freedom which are insufficient for G2 Hermite interpolation. Several
techniques have thus been developed that use a pair of Cornu spiral segments to provide more degrees of freedom.
These include methods for blending or transition curves which are suitable for applications such as the geometric
design of highway and railway routes, or the design of trajectories for mobile robots [11,17–19]. For such applications
the positions of the points are not fixed; the points are allowed to move on the circumference of a circle, or along a
straight line. There are also methods which use a circular arc in conjunction with a pair of Cornu spiral segments for
G2 Hermite interpolation where the points are fixed [12].
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For some applications certain properties of segments of special curves are more desirable than a G2 match, or the
cost-effectiveness of a G1 match is preferable. Two such curves are the Pythagorean Hodograph (PH) curve and the
Cornu spiral. In [4] a shape-preserving G2 PH quintic spline is constructed by applying Newton–Raphson iterations to
a system of non-linear equations. However, the same article also introduces a simpler shape-preserving G1 PH quintic
spline which can be constructed locally.

Kimia et al. [8] discuss details of the shape completion problem as an application to computer vision, and also
mention other applications, including computerised typography. They formulate the problem as:

“Given a pair of points with associated unit tangent vectors, find the most ‘pleasing’ curve which passes through both
points at their respective tangents.”

With references to Knuth [9] and Ullman [16], they list the following properties of the most ‘pleasing’ curve:
invariance under translation, rotation and scaling; symmetry; extensibility; locality; smoothness; and roundedness.
Their analyses and additional references within [8] lead them to the conclusion that the most ‘pleasing’ curve is the
Cornu (a.k.a. Euler) spiral. The extensibility requirement rules out using a pair of spirals, so G1 interpolation with a
single Cornu spiral segment is proposed.

To solve this problem, Kimia, et al. [8] formulate it mathematically as a system of two non-linear equations in two
unknown variables. The system, as formulated, has no direct analytic solution, so they use a gradient descent based
numerical optimization technique to obtain a Cornu spiral segment that best matches the given G1 Hermite data. This
approach has the following disadvantages.

• It is not clear whether a solution to the system of equations actually exists and is found, or whether the optimization
finds a Cornu spiral segment which is an approximation to the desired curve segment.
• The convergence of the optimization procedure depends on using good starting values for the unknown variables.
• In order to find good starting values, a pre-processing phase is introduced. In this phase the problem is reformulated

as a biarc fitting problem which is solved prior to applying the numerical optimization.
• A biarc has seven degrees of freedom, so the biarc which matches given G1 Hermite data is not unique. This

dilemma is resolved by constraining the biarc so that its total squared curvature is minimised.

The purpose of this article is to propose a method for G1 interpolation with a single Cornu spiral segment which
does not suffer from the above disadvantages. This new method considers the C- and S-shaped cases separately. For
each case a single non-linear equation in one unknown is derived. Furthermore, for each case, an interval in which the
solution occurs, is provided. The solution can be found by a bracketting technique which is guaranteed to provide the
solution, or by a combination of bracketting with the Newton–Raphson method for improved performance.

The proposed method is suitable for any given non-degenerate G1 Hermite data. A circle is actually a special case
of the Cornu spiral; it is the limiting case as the arclength of the spiral tends to infinity. Because of precision limitations
in a computer, it is advisable to check for “near circularity” at some point in the algorithm and fit a circular arc rather
than computing the corresponding Cornu spiral segment, as explained in Section 2.1 below.

It will be shown that the problem is naturally partitioned into three mutually exclusive cases, namely

• a C-shaped case (the beginning and ending tangent vectors point in directions which are on opposite sides of the
chord joining the beginning and ending points),
• an S-shaped case where the beginning and ending tangent vectors point in directions which are on opposite sides

of the chord joining the beginning and ending points, and
• an S-shaped case where the beginning and ending tangent vectors point in directions which are on the same side of

the chord joining the beginning and ending points.

The remainder of this paper is organised as follows. The next section establishes the notation and conventions
used; it is followed by a section with background information on the Cornu spiral. The C- and S-shaped cases are then
discussed in two separate sections, followed by a section of examples and a section with concluding remarks.

2. Notation and conventions

The usual Cartesian coordinate system with x- and y-axes is presumed. Positive angles are measured counter-
clockwise. Boldface is used for points and vectors. Points and vectors may also be indicated using the ordered pair
notation, e.g. (x, y). In particular, the components of a vector V may be denoted as (Vx , Vy). The norm or length of a
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vector V is denoted as ‖V‖. The derivative of a function (scalar or vector valued), is denoted with a prime, e.g. X ′(t)
or Q′(t). A planar parametric curve is defined by the set of points Q(t) = (X (t), Y (t)) for real t .

Define the rotation matrix

R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
.

It rotates a row vector counter-clockwise by an angle of ϕ.

2.1. G1 Hermite interpolation

Given two distinct points P1, P2 with corresponding unit tangent vectors T1, T2 respectively where T1, T2, and the
line segment joining P1 to P2, are not all parallel. It is desirable to find a segment of the Cornu spiral which joins P1
to P2 such that its unit tangent vectors at those points match T1 and T2 respectively. Let D = P2 − P1, φ1 the angle
from T1 to D, and φ2 the angle from D to T2. Assume, without loss of generality, that

• |φ1| 6= |φ2|

• P1 and P2 are labelled such that |φ1| < |φ2|.
• The data are (or have been reflected about D if necessary) such that 0 < φ2 < π .

These assumptions avoid the following degenerate and ambiguous cases.

• φ1 = φ2 = 0: This is a straight line segment which joins P1 to P2.
• φ1 = φ2 6= 0: This is a circular arc of radius r = 1

2‖D‖/ sinφ1, centred at P1 + rT1 R( 1
2π)

• φ1 = ±π, φ2 = ±π or φ1 = ±π, φ2 = 0 or φ1 = 0, φ2 = ±π : Two Cornu spiral segments satisfy each of these
sets of data; they lie on opposite sides of D.

The ordering also ensures that φ1 + φ2 > 0

3. Background

The Cornu spiral has a single inflection point. A Cornu spiral whose inflection point occurs at P0 with a unit tangent
vector of T0 at P0, is defined in terms of the Fresnel integrals as [19]

Q(θ) =
{

P0 + aC(θ)T0 + aS(θ)N0, θ ≥ 0,
P0 − aC(−θ)T0 − aS(−θ)N0, θ < 0,

(1)

where N0 = T0 R( 1
2π), the scaling factor a is positive, θ is the tangent angle deviation from T0 for θ ≥ 0, −θ is the

tangent angle deviation from T0 for θ < 0 and the Fresnel integrals are [1]

C(θ) =
1
√

2π

∫ θ

0

cos u
√

u
du, S(θ) =

1
√

2π

∫ θ

0

sin u
√

u
du. (2)

The following theorem provides a necessary condition for the curve to which a chord is drawn, to be part of a Cornu
spiral with positive curvature.

Theorem 1. Let D = Q(θ+δ)−Q(θ) be the chord of the Cornu spiral (1) from Q(θ) to Q(θ+δ), θ > 0, 0 < δ ≤ 2π .
If T1 and T2 are the unit tangent vectors to (1) at Q(θ) and Q(θ + δ) respectively, then δ = φ1 + φ2 and
0 < φ1 < φ2 < π where φ1 is the angle from T1 to D and φ2 is the angle from D to T2 as illustrated in
Fig. 1.

Proof. The ordering φ1 < φ2 follows immediately from a theorem by Vogt [6] (page 49). The rest follows by simple
geometry. �

The following corollary, due to Ostrowski [6] (page 52), provides a necessary and sufficient condition for the
existence of a spiral segment of positive curvature to match given G1 Hermite data.
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Fig. 1. C-shaped Cornu spiral chord.

Corollary 1. Consider two points P1, P2 and corresponding unit tangent vectors T1 and T2. Let φ1 > 0 be the angle
from T1 to D = P2 − P1 and φ2 > 0 the angle from D to T2. P1 and P2 may be joined by a convex spiral arc with
curvature increasing from P1 to P2 if and only if φ2 > φ1.

Note that Corollary 1 does not guarantee that the spiral arc is a Cornu spiral segment. This is further explored in
the section on a C-shaped Cornu spiral segment. If φ1 > 0, then a C-shaped segment is sought; if φ1 ≤ 0, or if a
C-shaped segment does not exist for φ1 > 0, then an S-shaped segment is sought.

For convenience the function h(φ1, φ2), which is used in subsequent proofs, is now defined as

h(φ1, φ2) = S(φ1 + φ2) cosφ1 − C(φ1 + φ2) sinφ1. (3)

Note that φ1 + φ2 > 0 ensures that S(φ1 + φ2),C(φ1 + φ2) > 0.
Although Theorem 1 is used for the analysis of the C-shaped case and not for the S-shaped cases, it also aids in the

decision of when the C-shaped formulation, or the S-shaped formulation, should be applied when the data are such
that the beginning and ending tangent vectors point in directions which are on opposite sides of the chord joining the
beginning and ending points.

4. A C-shaped Cornu spiral segment

Consider the point P1 on the Cornu spiral (1) for some θ ≥ 0, i.e. Q(θ) = P1. The angle from T0 to D is θ + φ1.
The tangent angle deviation from P1 to P2 is φ1 + φ2, hence Q(θ + φ1 + φ2) = P2 as shown in Fig. 1. Now from (1),

D = Q(θ + φ1 + φ2)−Q(θ)

= a[C(θ + φ1 + φ2)− C(θ)]T0 + a[S(θ + φ1 + φ2)− S(θ)]N0. (4)

The dot products of (4) with T0 and N0 yield, after some algebraic manipulation, the following two equations in the
two unknowns θ and a:

‖D‖ = a[S(θ + φ1 + φ2)− S(θ)] sin(θ + φ1)+ a[C(θ + φ1 + φ2)− C(θ)] cos(θ + φ1) (5)

and

f (θ) = 0 (6)

where

f (θ) =
√

2π{[S(θ + φ1 + φ2)− S(θ)] cos(θ + φ1)− [C(θ + φ1 + φ2)− C(θ)] sin(θ + φ1)}. (7)
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Once (6) is solved for θ , a can be found directly from (5). By (2) and some trigonometric manipulation, (7) can be
re-written as

f (θ) =
∫ θ+φ1+φ2

θ

sin(u − θ − φ1)
√

u
du =

∫ φ2

−φ1

sin u
√

u + θ + φ1
du. (8)

By Leibniz Rule for differentiation of a definite integral,

f ′(θ) = −
1
2

∫ θ+φ1+φ2

θ

sin(u − θ − φ1)

u3/2 du = −
1
2

∫ φ2

−φ1

sin u

(u + θ + φ1)3/2
du.

The following theorem determines when a unique C-shaped Cornu spiral segment, which matches the given G1

Hermite data, can be found.

Theorem 2. Let 0 < φ1 < φ2 < π . If h(φ1, φ2) > 0 where h(φ1, φ2) is defined by (3), then (6) has no solution for
θ ≥ 0, and if h(φ1, φ2) ≤ 0 then (6) has exactly one solution for θ ≥ 0; the solution occurs in the interval [0, θ0]

where

θ0 =
λ2

1− λ2 (φ1 + φ2) > 0 (9)

and

0 < λ =
1−cosφ1
1−cosφ2

< 1 (10)

as shown in Fig. 4 (b).

Proof. By introducing a change of integration variable, partitioning the interval of integration, and re-grouping, (8)
can be re-written as

f (θ) =
1

√
θ + φ1

[I2(θ)− I1(θ)] (11)

where

I1(θ) =

∫ φ1

0

sin u(
1− u

θ+φ1

)1/2 du (12)

and

I2(θ) =

∫ φ2

0

sin u(
1+ u

θ+φ1

)1/2 du. (13)

By differentiation,

I ′1(θ) = −
1

2(θ + φ1)2

∫ φ1

0

u sin u(
1− u

θ+φ1

)3/2 du

and

I ′2(θ) =
1

2(θ + φ1)2

∫ φ2

0

u sin u(
1+ u

θ+φ1

)3/2 du.

It is clear that I ′1(θ) < 0 and I ′2(θ) > 0 on the interval [0,∞), so I1(θ) is monotone decreasing, and I2(θ) is
monotone increasing on this interval. Furthermore, limθ→∞ I1(θ) = 1 − cosφ1 and limθ→∞ I2(θ) = 1 − cosφ2,
hence limθ→∞ I2(θ) > limθ→∞ I1(θ) for 0 < φ1 < φ2 < π .

Observe that f (0) =
√

2πh(φ1, φ2). So from (11), if h(φ1, φ2) > 0 then I2(0) > I1(0), and if h(φ1, φ2) ≤ 0 then
I2(0) ≤ I1(0). It thus follows that if h(φ1, φ2) > 0 then I1(θ) and I2(θ) are never equal, in which case (6) does not
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have a solution, and if h(φ1, φ2) ≤ 0 then they are equal exactly once, in which case (6) has exactly one solution, in
[0,∞).

To establish that the solution (when I1(θ) and I2(θ) are equal exactly once) occurs in [0, θ0], it remains to show
that I2(θ0) ≥ I1(θ0). From (12) and (13)

I1(θ) ≤

∫ φ1

0

sin u(
1− φ1

θ+φ1

)1/2 du =
1− cosφ1(

1− φ1
θ+φ1

)1/2

and

I2(θ) ≥

∫ φ2

0

sin u(
1+ φ2

θ+φ1

)1/2 du =
1− cosφ2(

1+ φ2
θ+φ1

)1/2 .

Hence

I2(θ0)− I1(θ0) ≥
1− cosφ2(

1+ φ2
θ0+φ1

)1/2

[
1−

1− cosφ1

1− cosφ2

(
1+

φ1 + φ2

θ0

)1/2
]
,

using θ0 as given in (9) and (10), this becomes

I2(θ0)− I1(θ0) ≥ 0. �

Corollary 2. If 1
2π ≤ φ1 < φ2 < π then (6) has exactly one solution in the interval [0, θ0].

Proof. It follows immediately since h(φ1, φ2) < 0 in this case. �

Theorem 2 thus determines when a C-shaped segment of a Cornu spiral, that matches the given G1 data described
in Section 2.1, can be found. If it exists, then it is determined by finding the unique value of θ in the interval [0, θ0]

which satisfies Eq. (6); a bracketing method, e.g. Bolzano bisection, or Newton–Raphson’s method combined with
bracketing, can be used to find θ . Once θ is known, a is determined by (5), T0 is determined by rotating the unit vector
D/‖D‖ an angle θ + φ1 clockwise about P1. Eq. (1) then determines P0.

5. An S-shaped Cornu spiral segment

Let ω = −θ . Consider the point P1 on the Cornu spiral (1) for some ω > 0, i.e. −Q(ω) = P1. The angle from T0
to D is ω + φ1. The net change in the tangent angle from P1 to P2 is φ1 + φ2, hence Q(ω + φ1 + φ2) = P2 as shown
in Fig. 2. Now from (1),

D = Q(ω + φ1 + φ2)−Q(ω)

= a[C(ω + φ1 + φ2)+ C(ω)]T0 + a[S(ω + φ1 + φ2)+ S(ω)]N0. (14)

The dot products of (14) with T0 and N0 yield, after some algebraic manipulation, the following two equations in the
two unknowns ω and a:

‖D‖ = a[S(ω + φ1 + φ2)+ S(ω)] sin(ω + φ1)+ a[C(ω + φ1 + φ2)+ C(ω)] cos(ω + φ1) (15)

and

g(ω) = 0 (16)

where

g(ω) =
√

2π{[S(ω + φ1 + φ2)+ S(ω)] cos(ω + φ1)− [C(ω + φ1 + φ2)+ C(ω)] sin(ω + φ1)} (17)

=

∫ ω+φ1+φ2

0

sin(u − ω − φ1)
√

u
du +

∫ ω

0

sin(u − ω − φ1)
√

u
du, (18)
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Fig. 2. S-shaped Cornu spiral chord.

or, by introducing a change of integration variable, partitioning the interval of integration, and re-grouping,

g(ω) = 2
∫ ω+φ1

0

sin(u − ω − φ1)
√

u
du +

∫ φ2

0

sin u
√
ω + φ1 + u

du +
∫ φ1

0

sin u
√
ω + φ1 − u

du. (19)

Applying Leibniz rule for differentiation of a definite integral to (19) yields

g′(ω) = −2
∫ ω+φ1

0

cos(u − ω − φ1)
√

u
du −

1
2

∫ φ2

0

sin u

(ω + φ1 + u)3/2
du −

1
2

∫ φ1

0

sin u

(ω + φ1 − u)3/2
du. (20)

There are two cases to be considered for the S-shaped segment:

• 0 < φ1 < φ2 < π, h(φ1, φ2) > 0 where h(φ1, φ2) is defined by (3), and
• −π < φ1 ≤ 0 < φ2 ≤ π .

The following two theorems show that a unique S-shaped Cornu spiral segment, which matches the given G1

Hermite data, can always be found in each of the above two cases.

Theorem 3. Let 0 < φ1 < φ2 < π . If h(φ1, φ2) > 0 where h(φ1, φ2) is defined by (3), then (16) has exactly one
solution in the interval [0, 1

2π − φ1].

Proof. It follows from (3) that h(φ1, φ2) ≤ 0 for 1
2π ≤ φ1 < π , so 0 < φ1 < 1

2π . All the integrals in (20)
are positive for 0 ≤ ω + φ1 ≤

1
2π , so g(ω) is monotone decreasing on [0, 1

2π − φ1]. Furthermore, from (17),
g(0) =

√
2πh(φ1, φ2) > 0 and g( 1

2π − φ1) < 0. Hence, g(ω) decreases monotonically from a positive value to a
negative value on the interval [0, 1

2π − φ1]. �

Theorem 4. If −π < φ1 ≤ 0 < φ2 ≤ π , then (16) has exactly one solution for 0 ≤ ω ≤ 1
2π − φ1. The solution

occurs in the interval [−φ1,
1
2π − φ1].

Proof. By a change of integration variable, the third integral of (20) is∫ φ1

0

sin u

(ω + φ1 − u)3/2
du =

∫
−φ1

0

sin u

(ω + φ1 + u)3/2
du ≥ 0.
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Fig. 3. Example 1. φ1 = 115◦, φ2 = 122◦.

It thus follows that g′(ω) ≤ 0 for ω ∈ [−φ1,
1
2π − φ1]. Furthermore, from (17), g(−φ1) > 0 and g( 1

2π − φ1) < 0.
Hence, g(ω) decreases monotonically from a positive value to a negative value on the interval [−φ1,

1
2π − φ1]. It

remains to show that g(ω) > 0 on the interval [0,−φ1].
Observe that if 0 ≤ ω ≤ −φ1 and −π ≤ φ1 ≤ 0, then −π ≤ φ1 ≤ ω + φ1 ≤ 0. Consider now the integrands and

integration intervals for (18). For the first integral

0 ≤ −ω − φ1 ≤ u − ω − φ1 ≤ φ2 < π,

and for the second integral

0 ≤ −ω − φ1 ≤ u − ω − φ1 ≤ −φ1 < π.

Hence g(ω) > 0 on the interval [0,−φ1]. �

If a C-shaped segment of a Cornu spiral does not match the given G1 data described in Section 2.1, then an S-shaped
Cornu spiral segment does. It is determined by finding the unique value of ω in the interval (max(0,−φ1),

1
2π − φ1),

which satisfies Eq. (16); a bracketing method, e.g. Bolzano bisection, or Newton–Raphson’s method combined with
bracketing, can be used to find ω. Now a is determined by (15), T0 is determined by rotating the unit vector D/‖D‖
an angle ω + φ1 clockwise about P1, and θ = −ω, so P0 is determined by Eq. (1).

6. Examples

The methods described above were implemented in Java and tested on many examples of which the five listed
below are representative. The G1 Hermite data for the examples are shown graphically as dots and arrows in Figs.
3(a), 4(a), 5(a), 6(a) and 7(a). The interpolating Cornu spiral segments are drawn with solid black lines. Gray lines
are used to illustrate extensions of the Cornu spiral, including its inflection point, to its interpolating segment. Plots of
the relevant parts of the functions f (θ) and g(ω) as well as their derivatives are shown in Figs. 3(b), 4(b), 5(b), 6(b)
and 7(b).
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Fig. 4. Example 2. φ1 = 10◦, φ2 = 15◦.

Fig. 5. Example 3. φ1 = 7◦, φ2 = 73◦.

6.1. Example 1

For this example, φ1 = 115◦ and φ2 = 122◦. It illustrates a solution to (6) for a value of θ ≈ 4.9π > 2π .
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Fig. 6. Example 4. φ1 = −105◦, φ2 = 165◦.

Fig. 7. Example 5. φ1 = −1◦, φ2 = 180◦.

6.2. Example 2

For this example, φ1 = 10◦ and φ2 = 15◦. It illustrates a solution to (6) for a value of θ ≈ 0.009π .

6.3. Example 3

For this example, φ1 = 7◦ and φ2 = 73◦. It illustrates an S-shaped solution when a C-shaped solution does not
exist for both φ1 and φ2 greater than zero.

6.4. Example 4

For this example, φ1 = −105◦ and φ2 = 165◦. It illustrates an S-shaped solution for φ1 < 0 and φ2 > 0.
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6.5. Example 5

For this example, φ1 = −1◦ and φ2 = 180◦. It illustrates an S-shaped solution for which the net change in the
tangent angle is 179◦. The net change in the other two S-shaped examples is smaller than 90◦.

7. Conclusion

The new proposed method is based on simple bisection or Newton–Raphson iteration which is simpler than
numerical optimization. The problem is formulated and solved as a G1 Hermite interpolation problem for a Cornu
spiral segment without pre-processing. Unlike a biarc, the Cornu spiral segment naturally has exactly the correct
number of degrees of freedom for the G1 match, so the solution need not be constrained. The solution is guaranteed.
For the C-shaped case the solution is unique. For the S-shaped case, an interval arises naturally which guarantees that
the angle of tangent deviation will not exceed 2π . It is thus not necessary to consider a critical constraint to assure
this, as is done for the biarc fit in [8].

It can be observed that the G1 data are naturally partitioned into three mutually exclusive sets, namely
• 0 < φ1 < φ2 < π, h(φ1, φ2) ≤ 0,
• 0 < φ1 < φ2 < π, h(φ1, φ2) > 0, and
• −π < −φ2 < φ1 ≤ 0 ≤ φ2 ≤ π .

The first set gives rise to a C-shaped segment, whereas the other two sets give rise to S-shaped segments.
The method is a suitable alternative for any problem in which biarcs are typically used, e.g. filling in gaps of

spiral curves [13], and toolpaths for CNC machining [20]. In the latter reference, biarcs were used to accommodate
machines whose controllers only allowed toolpaths consisting of straight line segments and circular arcs. However,
there is currently progress which will enable spiral arcs to be used in CNC machine toolpaths [14,10].
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