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We prove that a quintic form in 26 variables defined over a p-adic field K always
has a nontrivial zero over K if the residue class field of K has at least 47 elements.
This is in agreement with the theorem of Ax-Kochen which states that a
homogeneous form of degree d in d*+ 1 variables defined over Q,, has a nontrivial
Q,-rational zero if p is sufficiently large. The Ax-Kochen theorem gives no results
on the bound for p. For d=1, 2, 3 it has been known for a long time that there is
a nontrivial Q,-rational zero for all values of p. For d=4, Terjanian gave an
example of a form in 18 variables over Q, having no nontrivial Q,-rational zero.
This is the first result which gives an effective bound for the case d=5. © 199

Academic Press, Inc.

1. INTRODUCTION

In the preface to Artin’s collected works, the editors discuss several con-
jectures of Artin including the following: let K be a complete, discretely
valued field with finite residue class field k. Then every homogeneous form
defined over K of degree d in greater than d? variables has a nontrivial
zero. When this is true, we say that K has the property C,(d).

Artin’s conjecture is true when K is a power series field, as was shown
by Lang in [La]. When K is a p-adic field (i.e. the unequal characteristic
case), a counterexample of degree 4 in 18 variables over Q, was given by
Terjanian in [T]. Since then many other counterexamples, all of even
degree, have been found. See [ G] and [Lw] for a summary and further
references.

It is still of interest to determine by precisely how much Artin’s conjec-
ture fails for p-adic fields. Ax and Kochen showed the following in [ A-K]:
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(I) For a given integer d> 1, the set of primes for which Q, is not
C5(d) is finite.

(2) If [K:Q,]=n is finite, there exists a constant M(d, n),
depending on d and n, such that K is C,(d) if p > M(d, n).

It is known that all p-adic fields satisfy the properties C,(2) (Hasse) and
C5(3) (Dem’anov, for p#3, and Lewis). Thus we may take M(2,n)=
M(3,n)=1 for all n>1. We give short proofs of these results in Section 4.
The Ax—Kochen theorem asserts the existence of a constant M(d, 1) for
all d. However, an upper bound for M(d, 1) has never been computed for
any d > 4. The only lower bound estimates known for M(d, 1), d >4, come
from the known counterexamples to Artin’s conjecture and these only
occur (so far) for certain even values of d. In particular, Artin’s conjecture
is still open when d is a prime number. Our main result is the following.

THEOREM. Let K be any p-adic field with residue class field k of
cardinality q=47. Then K satisfies the property C,(5).!

The theorem holds for those fields K satisfying [ K : Q,] =n = ef, where
g=p’ and p> 43"/ In particular, M(5, n) <43 for all n.

Here is a rough outline of the proof of the theorem. Let F be a quintic
form over K in 26 variables. We may assume that F is reduced, in the
sense of [ Lx-Lw] (see Section 4). By using an enhancement of a lemma of
Laxton—Lewis we may assume that, upon passage to the residue class field
k, F* is a quintic form in at least seven variables defined over k. We can
then reduce to the case where F'* can be specialized to a curve with at least
three singular rational zeros which is either absolutely irreducible or which
is reducible. In the former case we apply a version of the Weil estimate to
get a nonsingular zero of F*, if the residue class field has cardinality at
least 47. In the latter case we are able to show that F* has a nonsingular
zero, if the residue class field has at least 7 elements. Once F* is known to
have a nonsingular zero, Hensel’s lemma gives a nonsingular zero of F.

We thank A. Prestel for a helpful discussion of the Ax—Kochen theorem.

2. NOTATION AND CONVENTIONS

We now summarize various notation, facts, etc. By a form we mean a
homogeneous polynomial. Note that a homogeneous polynomial has only
homogeneous factors. The x,-degree of a polynomial is the degree of the

!'J.-P. Serre has informed the authors that he can lower the bound of the theorem to ¢ > 43.
He improves the result of our Lemma 3.6 by extending the methods of [ S1, Section 2] and
[S2, Section 3.2].



QUINTIC FORMS OVER p-ADIC FIELDS 233

highest power of the variable x; occurring in the polynomial. A polynomial
over a field & is said to be absolutely irreducible if it is irreducible over the
algebraic closure of k.

A point in some affine space is said to be defined over k, or is k-rational,
if its coordinates are elements of k; in projective space, a point is said to
be defined over k, or is k-rational, if all of the ratios of any set of
homogeneous coordinates of the point are in k.

We say that an affine zero of a form is trivial if all of its coordinates are
0; otherwise, we say that the zero is nontrivial. A zero of a polynomial is
said to be singular if all of the partial derivatives of the polynomial vanish
there. Let f be a polynomial in n variables and let  be the restriction of f
to a linear subspace V. If ze V' is a zero of f and a nonsingular zero of f,
then z is a nonsingular zero of f.

Let f be a homogeneous polynomial in n variables over the finite field F,.
By Z(f) we mean the set of F -rational zeros of f. Z(f) may be interpreted
as a subset of either A"(F,) or P"(F,). We define N(f) to be the number
of projective F -rational zeros of f. Note that the number of affine zeros of
fisequal to (¢—1) N(f)+ 1. If X is a set, we write | X| for the cardinality
of X.

Let fek[x,,.. x,] be a polynomial and let y(f) be the number of
variables occurring in the monomials in f with nonzero coefficient. Define
the order of f to be min{y(f(A4x))|AeGL,(k)}. This is the number of
variables upon which f actually depends. A polynomial for which y(f) #
order( /') is said to be degenerate; otherwise it is said to be nondegenerate.
By definition every polynomial can be made nondegenerate by a linear
change of variables. Many times we will refer to a “polynomial in n
variables” in the statement of results; by this we will always mean that the
polynomial is nondegenerate. Also we note that any absolutely irreducible
homogeneous polynomial of degree greater than 1 has order at least 3.

Let R be a complete discrete valuation ring with quotient field K, local
prime 7 and maximal ideal M =(x). Let k denote the residue field R/M.
When £k is finite, K is said to be a local, or p-adic, field. We denote passage
to the residue field by adding a superscript *. A primitive K-vector is one
with integral (i.e. in R) coordinates, at least one of which is a unit.

3. SoME GENERAL FACTS

Lemma 3.1 [Wa]. Let f be a homogeneous form of degree d in n
variables over ¥ . If n>d, then f has at least q" ¢ affine F -rational zeros.
The number of projective zeros of f satisfies N(f)=(q""“—1)/(g—1). In
particular, if n>d then f has a nontrivial F ~rational zero.
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LemMmA 3.2. Let Q be a quadratic form and C a cubic form, both defined
over F,,. Assume that Q does not divide C. If Q has order 3, C has order at
most 3 and q >3, then Q has a nonsingular ¥ rational zero which is not a
zero of C.

Proof. Since Q has order 3, it is absolutely irreducible. Thus Q and C
have no common factor. By Bezout’s theorem ([ Fu, p. 112]), we know
that Q and C have at most 6 common projective zeros. It is easy to show
that Q has exactly ¢ + 1 projective F -rational zeros, all of which are non-
singular. Thus if ¢+ 1 > 6, then there is a nonsingular F -rational zero of
Q which is not a zero of C. |

Lemma 3.3. Let f be a nondegenerate form of prime degree defined over
a perfect field K which has a nontrivial K-rational zero. If f is not absolutely
irreducible, then f is reducible over K.

Proof. Let d=deg(f). We may assume that (1,0, .., 0) is a zero of f.
Then, since f'is assumed to be nondegenerate, 1 <deg, (f)<d—1.

Let L be a finite Galois extension of K over which f factors into
absolutely irreducible elements. Let o be an element of Gal(L | K). Since
L[xgy,..,x,] i1s a UFD, ¢ induces a permutation on the set of primes
dividing f. Let /1 be a prime properly dividing f such that A(1,0, .., 0)=0.
We note that deg/=degoh, deg,(h)=deg, (ch), for all i, and that
deg h>deg, (h).

Let H equal the product of the K-conjugates of /1 and let r be the number
of K-conjugates of 4. Without loss of generality we may assume that r > 1.
We have d>deg H=r-degh. If deg,(#)=0 then deg,(H)=0; since
deg.(f)=1, H must be a proper factor of /. Now we may assume that
both r and degh are greater than 1 (since deg/>deg,(h)). Since d is
prime and d > r - deg(h) we must in fact have d > r-deg(h) =deg H. Thus H
is a proper factor of f defined over K; it’s easy to show that the other factor
is also defined over K. |i

When K is not perfect, then Lemma 3.3 is not true. For example, let
K=F,(t), L=K(¢"7) and f=x}+ x5+ (1 +1¢)x%. Then f(1,1, =1)=0
and f=(x;+1"7x,+ (1 +1)"7 x5)”, but fis irreducible over K.

Lemma 3.3 also fails for forms of composite degree. For example, let K
be a field and L an extension of degree 2. Let Q be an isotropic quadratic
form of order at least 3 which is defined over L but not K. Assume that
(1,0,..,0) is a zero of Q. Then the product of the conjugates of Q is an
isotropic form of degree 4 which is irreducible over K, but not absolutely
irreducible. It has no K-rational nonsingular zeros. However, Lemma 3.3
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extends to forms f of composite degree if we assume that f has a non-
singular K-rational zero. To see this, assume f is irreducible and let L be
an extension of K of degree greater than 1 over which f splits into con-
jugate factors. A rational zero of f is a rational zero of some factor and
hence of all of them. It then follows from the product rule for derivatives
that this zero is singular.

LemmA 3.4. Let F be a polynomial over a p-adic field K with K-integral
coefficients. Let F* denote the reduction mod = of F. If F* has a nontrivial
nonsingular F*-rational zero, then F has a nontrivial K-rational zero.

This is one of the many versions of Hensel’s lemma. [ G] contains a

thorough exposition of Hensel’s lemma.

THEOREM 3.5 [L-Y] (See Also [ Au, Théoréme 3.3 and Section 4]). Let
N be the number of ¥ jrational points on an absolutely irreducible projective
plane curve C of absolute genus g and degree d, defined over ¥,. Then N
satisfies

IN—(q+ 1) <2g/q+1d—1)(d—2)—g.

Note that if C is nonsingular then g =1(d —1)(d —2) and we recover the
usual estimate.

LeEmMA 3.6. Let f be an absolutely irreducible homogeneous polynomial
of degree 5 in three variables over F,. Assume that f has at least three
singular zeros over the algebraic closure of ¥,. If q =47, then f has a non-
singular F -rational zero.

Proof. Let S be the number of singular zeros defined over the algebraic
closure of F, on the projective plane curve defined by f. It follows from the
genus formula [ Fu, p. 201] that g<6—S. Then g< 3 since S> 3. These
inequalities imply

2Vg—1)g+S<2/q—-1)g+(6—-g) =2 /q-2)g+6
<(2/q-2)3+6=6./g<q-5,
for ¢ =>47. Thus,
S<q—5—(12/q—1)g=q+1-2g/q+g—6<N,

by Theorem 3.5. Therefore, f has a nonsingular F-rational zero. |
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4. REDUCED FORMS

Let F be a form of degree d in n variables and let K be a p-adic field with
residue class field F,. Define I(F) to be the resultant of the n partial
derivatives of F. We summarize those facts concerning I/(F) which are
needed here. For more information, the reader is referred to Section 4 of
[Lx-Lw] and, for general information on resultants, to [ W, Chap. 11].

Lemma 4.1 [Lx-Lw, Lemma 6]. If F is a form over a p-adic field K
such that I(F)=0 then there exists a sequence of forms F,, F,, ..., defined
over K, which converges to F and for which I(F;) #0.

COROLLARY 4.2 [Lx-Lw, Cor. to Lemma 6]. In order to prove that
any form of degree d over a p-adic field K in n>d?* variables has a non-
trivial zero over K it is sufficient to prove this fact for forms F for which
I(F) #0.

The condition I(F)#0 says that the form F is nonsingular over the
algebraic closure of K, since the resultant of n forms in n variables is 0
if and only if the polynomials have a common nontrivial zero. If F has
K-integral coefficients, then ord(/(F))>0, where ord is the normalized
valuation on K.

If F has K-integral coefficients, we say that F is reduced if

I(F)#0
and
ord(/(F)) <ord(1(G))

for all G which are equivalent to F (ie. G=aF(Tx) for aeK™,
TeGL,(K)) and have K-integral coefficients. It is obvious that every F
with K-integral coefficients and I(F) #0 is equivalent to a reduced form.

If Fis a reduced form and 7 is a unimodular matrix (i.c., an integral
matrix which remains an invertible matrix upon passage to the residue
class field), then F(Tx) is also a reduced form.

Let F be a reduced form over K and F* its reduction mod 7. Let k be
the residue class field of K and m be the order of F*. The next proposition
extends Lemma 7 of [ Lx-Lw].

PROPOSITION 4.3. Let F be a reduced form of degree d =2 in n variables.
Let s=0 be an integer such that F* vanishes on an affine s-dimensional
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linear plane V. If s =2, assume that the cardinality of the residue class field
is at least d. Then

n
orderF*}E—i-s.

Proof. Write F=F,+nF,, where F, has R-unit coefficients (F=F,
mod ). Let p,,..,p, be the standard basis vectors of A™(k). By a
unimodular change of variables over R, we may assume that F* involves
only x,, ..., x,, nontrivially and that F* vanishes on x,, ;= --- =x,,=0. It
follows from the vanishing of F* on V that every monomial occurring non-
trivially in F* is divisible by at least one of x,, ,, .., x,,. When s>2, we
make use of the well-known fact that if d <g¢, then the only homogeneous
polynomial of degree d over F, which vanishes identically is the zero poly-
nomial.

Let T be the K-integral change of variables given by

xX;—>x;, i=1,.,s,m+1,..,n X, —>nx;, i=s+1,.,m.

The form G=z"'F(Tx) has K-integral coefficients, so as in Lemma 7 of
[Lx-Lw] we have

—n+dm—s) =0,

n
m>E+s. ]

COROLLARY 4.4. If n>d? and the cardinality of the residue class field is
at least d when s =2, then N(F*)>(¢**'—1)/(qg—1).

Proof. By Proposition 4.3, we have

2

n
m—dz—+s—d> +s—d>s.

d d

Since m—d is an integer, we have m —d>s+ 1. Combining this with
Lemma 3.1, we get

mfd_l

N(F*) =1 >
qg—1 qg—1

Using the results of this section we can give a quick proof that quadratic
forms in at least five variables and cubic forms in at least ten variables over
p-adic fields are isotropic, as promised in the introduction.

The argument goes as follows. Let F be a form of degree d=2 or 3
in at least d?+ 1 variables over a p-adic field K, with residue class field
of any cardinality. By Corollary 4.2 we may assume that F is reduced.
Then by Proposition 4.3 with s=0 we know that F* has order at least
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d+1,d=2,3. By Lemma 3.1, F* has a nontrivial rational zero. If F* is a
quadratic form of order at least 3, then it is easy to show that F* has a
nonsingular zero. If F* is a cubic form, suppose it has a nontrivial singular
zero. After changing variables we may write

F*=x,A(xq, .., x,)+ B(x,, .., x,,),

where A is a nonzero quadratic form. Choose z,..,z, such that
A(zy, ., z,) #0 and set zy= — B(z,, ..., z,,)/A(z,, ..., z,,). Then (z, ..., z,) iIs a
nonsingular zero of F*. Hensel’s lemma then gives a nontrivial K-rational
zero of F, in both cases.

5. THE PROOF OF THE MAIN THEOREM

Lemma 5.1.  Let f be a quintic form in at least two variables over a field
k. Assume that f has two singular projective k-rational zeros u and v. Let
{u, vy < P"(k) denote the projective line through u and v. Then at least one
of the following possibilities occurs:

(1) u and v are the only zeros of fin {u,v);
(2) The restriction of f to {u,v) is the zero polynomial;
(3) <wu,v) contains a nonsingular k-rational zero of f.

Proof. By a k-rational change of variables we may assume u=(1, 0, ..., 0)
and v=(0, 1, 0, .., 0). Then

f(x0, X1, 0, ..., 0) = axjxi + bxjx; =x3x7(ax, + bx,).

If either a =0 or b =0, but not both, we have case 1. If a=b =0, we have
case 2. If ab #0, then f has a simple linear factor and (—b, «, 0, ..., 0) is a
nonsingular zero of /. ||

LeMMA 5.2, Let f be a quintic form in at least three variables over F,,.
Assume that [ has three singular F -rational zeros v, v,, vy which span a
projective plane. Assume that {v,,v;> N Z(f)={v,, v;}, for all i,}].

If the restriction of f to {v,, vy, V3 is not absolutely irreducible and q > 5,
then f has a nonsingular ¥ ,-rational zero.

Proof. By a change of variables we may assume that the v, are the first
three basis vectors. Define g(x,, x,, x3) =f(x,, X5, X3, 0, ..., 0). Assume that
g is not absolutely irreducible. Then by Lemma 3.3, g is reducible over F .

Let K denote the algebraic closure of F,. Let {v;, v,> = P*(K) be the line
spanned by v; and v;. From the proof of Lemma 5.1, one sees that v; and
v, are the only zeros of f'on {v;, v;> over K. Assume that g has a linear factor
L defined over K. {v;, v;> n Z(L) consists of exactly one point, for each i, ;.
As any point on Z(L) is a zero of g, we conclude that {(v,,v,> nZ(L)
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equals, say, {v,}. Then <{v,, v3) N Z(L) equals, say, {v,}, from which we
conclude that Z(L)=<wv,,v,». This contradicts the assumption that
{v,, v,y contains but two zeros of f. Thus g has no linear factor over K.

Since g is reducible and has no linear factor, we conclude that g =hk,
where deg h=2, h is absolutely irreducible and /% does not divide k. By
Lemma 3.2, & has a nonsingular F -rational zero which is not a zero of k.
This gives a nonsingular F -rational zero of g and thus a nonsingular
F -rational zero of /. |

LemmA 5.3.  Let f be a quintic form in n variables over F ,; assume q > 4.
Let m>=1 and assume that Z(f) contains an m-dimensional projective plane
V and two points u, v not in V. Also assume that for every projective plane
W< V of codimension 1, we have either { W,u)y < Z(f) or K W, vy < Z(f).
If f does not have a nonsingular rational zero, either {V,uy < Z(f) or

Vo) e Z(f).

Proof. Let [x,:---:x,] be homogeneous coordinates for V. Let
Wi, ... W, be the collection of codimension 1 projective planes in V'
defined by the equations

ax, ,+bx,=0, for [a:b]eP'(F,).

Easily we see that V=) W, and codim(N9* W,)=2.
Since ¢ >4, there are at least five ;. By a pigeonhole argument and
appropriate relabeling, we may assume that { W, u) c Z(f), i=1, 2, 3.

Next we show that, for distinct 7, (1 <i, j<3),

(%) Wi uy m<I/Vja uy =<{W;n W/a“>

(x5) <Wouy n Wy ud = () W ud

i=1

Clearly, the inclusion “2” holds in both statements. Observe that each
(W, uy is an m-dimensional projective plane and {W,n W, u) is an
(m —1)-dimensional projective plane. In addition, {W,, u) #{W,, u)
since (W, u) n V=MW, Now equality in (x) follows easily by counting
dimensions.

Since W,n W,=(\;_, W,, we see

<W,,u>ﬂ<VVj,u>=<W,mVVj,u>=<ﬁ Wi3u>gﬁ <W,;,1/l>,

i=1 i=1

and this proves ().
Let xe{V,u), x¢\J?_, (W, u). Since codim((\;_, W,) =2, it follows

i=1

from (*) and (**) that (\;_, < W,, u) has codimension 2 in { ¥, u). Thus
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there is a projective line L in { V, u) through x which does not intersect

3_ (W, uy. Since x¢<{W;, uy and (W, u) has codimension 1 in
{V,u)y, it follows that L n{ W, u) consists of exactly one point u;, for
each i. The u; are distinct, for if u;=u;, then from (**) we would have
we Lo Wyuy ndW,uy=Ln (N3_, {W;,ud>)=, a contradiction.

We have shown that LN Z(f) contains at least three points. By
Lemma 5.1, we know that either L contains a nonsingular point of f or f
vanishes identically on L. If { ¥, u) contains no nonsingular zero of f, then
xeZ(f) for each xe {(V,u) and hence <V, u) < Z(f). 1

PrOPOSITION 5.4. Let F be a reduced quintic form in at least 26 variables
over a p-adic field K. Assume that q>5. Then either F* satisfies the
hypotheses of Lemma 5.2 or F* has a nonsingular zero over the residue class

field of K.

Proof. Assume that F* has no nonsingular zero over the residue class
field of K. Let s be the maximum of the affine dimensions of the linear sub-
spaces of Z(F*). By Lemma 3.1 and Proposition 4.3, s > 1.

If s=1, then by Corollary 4.4, F* has at least ¢+ 1 projective zeros.
They cannot all lic on a projective line since s = 1. Choose three, v, v,, vs,
which span a projective plane. Since s =1, F* does not vanish identically
on any (v, v;>. By Lemma3.l, v,, v,, v; satisfy the hypotheses of
Lemma 5.2.

Assume now that s >2. Let V< Z(F*) be a projective plane of maximal
dimension s — 1. It follows from Corollary 4.4 that Z(F*) contains at least
two points not in V. Let X=Z(F*)— V. We will show there exist we V'
and u, ve X such that {u, v, w} satisfies the hypotheses of Lemma 5.2. That
is, Z(F*)n<u, v) = {u, v}, and similarly for {u, w} and {v, w}.

Suppose there is no pair u, ve X such that Z(F*) n {u, vy = {u, v}. Then
for all x,yeX with x#y, {x,y) € Z(F*) by Lemma 5.1. Let W be a
projective plane in Z(F*) of maximal dimension, not contained in V. Such
a plane exists because Z(F*) contains <{x, y», where x, y € X. We will now
show that X< W.

Suppose we X and wé¢ W. Then W V has positive codimension in W,
since W& V. We have W—(WnV)cX since W< Z(F*). Thus F*
vanishes on the complement of < WnV,w) in {(W,w) because every
element of this complement lies on a line joining two points of X, namely,
a point of W— (W n V) and w. Let H be a plane in { W, w) of codimen-
sion 1 containing { WV, w) and let H be given by the equation g=0.
Then gF* =0 for every point of {( W, w). Since ¢ >S5, we conclude that
gF* is the zero polynomial on { W, w). Since g is not the zero polynomial
on { W, w), it follows F* is the zero polynomial on ( W, w). Thus { W, w)
S Z(F*), contradicting the maximality of dim W. Therefore, X = W.
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We have Z(F*)=V u W and dim W< dim VV=s— 1. Corollary 4.4 implies

2 S s+1 _
(g 1)<(q 1)
—1 q—1

N(F*)=|WOV|<|W|+|V|< < N(F*),

a contradiction. Thus there must exist u, v € X such that {u, v) N Z(F*)=
{u, v}.

Suppose now that for all xeV, either <u,x)<Z(F*) or
{v,x) = Z(F*). Then we may apply Lemma 5.3 inductively to conclude
{Vouy S Z(F*) or {(V,vy = Z(F*), each of which contradicts the maxi-
mality of dim V. Therefore, there exists we V such that <u, w) N Z(F*)=
{u,w} and (v, w) " Z(F*)={v, w}. We are done since {u, v, w} satisfies
the hypotheses of Lemma 5.2. ||

Proof of Theorem. Let F be a quintic form over a p-adic field K in at
least 26 variables. By Corollary 4.2, we may assume F is reduced. By
Proposition 5.4 we know that either F'* has a nonsingular rational zero or
it satisfies the hypotheses of Lemma 5.2, in which case we may assume the
restriction of F'* is absolutely irreducible. Then we apply Lemma 3.6 to
conclude that F* has a nonsingular rational zero. It then follows from
Lemma 3.4 (Hensel’s lemma) that F has a nontrivial rational zero.
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