Quintic Forms over p-adic Fields

David B. Leep
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027

AND

Charles C. Yeomans
809 Cooper Drive, Lexington, Kentucky 40502
Communicated by P. Roquette
View metadata, citation and similar papers at core.ac.uk

We prove that a quintic form in 26 variables defined over a p-adic field K always has a nontrivial zero over K if the residue class field of K has at least 47 elements. This is in agreement with the theorem of Ax-Kochen which states that a homogeneous form of degree d in $d^{2}+1$ variables defined over \mathbf{Q}_{p} has a nontrivial \mathbf{Q}_{p}-rational zero if p is sufficiently large. The $\mathrm{Ax}-$ Kochen theorem gives no results on the bound for p. For $d=1,2,3$ it has been known for a long time that there is a nontrivial \mathbf{Q}_{p}-rational zero for all values of p. For $d=4$, Terjanian gave an example of a form in 18 variables over \mathbf{Q}_{2} having no nontrivial \mathbf{Q}_{2}-rational zero. This is the first result which gives an effective bound for the case $d=5$. © 1996 Academic Press, Inc.

1. Introduction

In the preface to Artin's collected works, the editors discuss several conjectures of Artin including the following: let K be a complete, discretely valued field with finite residue class field k. Then every homogeneous form defined over K of degree d in greater than d^{2} variables has a nontrivial zero. When this is true, we say that K has the property $C_{2}(d)$.

Artin's conjecture is true when K is a power series field, as was shown by Lang in [La]. When K is a p-adic field (i.e. the unequal characteristic case), a counterexample of degree 4 in 18 variables over \mathbf{Q}_{2} was given by Terjanian in [T]. Since then many other counterexamples, all of even degree, have been found. See [G] and [Lw] for a summary and further references.

It is still of interest to determine by precisely how much Artin's conjecture fails for p-adic fields. Ax and Kochen showed the following in [A-K]:
(1) For a given integer $d \geqslant 1$, the set of primes for which \mathbf{Q}_{p} is not $C_{2}(d)$ is finite.
(2) If $\left[K: \mathbf{Q}_{p}\right]=n$ is finite, there exists a constant $M(d, n)$, depending on d and n, such that K is $C_{2}(d)$ if $p>M(d, n)$.

It is known that all p-adic fields satisfy the properties $C_{2}(2)$ (Hasse) and $C_{2}(3)$ (Dem'anov, for $p \neq 3$, and Lewis). Thus we may take $M(2, n)=$ $M(3, n)=1$ for all $n \geqslant 1$. We give short proofs of these results in Section 4.

The Ax-Kochen theorem asserts the existence of a constant $M(d, 1)$ for all d. However, an upper bound for $M(d, 1)$ has never been computed for any $d \geqslant 4$. The only lower bound estimates known for $M(d, 1), d \geqslant 4$, come from the known counterexamples to Artin's conjecture and these only occur (so far) for certain even values of d. In particular, Artin's conjecture is still open when d is a prime number. Our main result is the following.

Theorem. Let K be any p-adic field with residue class field k of cardinality $q \geqslant 47$. Then K satisfies the property $C_{2}(5) .{ }^{1}$

The theorem holds for those fields K satisfying [$K: \mathbf{Q}_{p}$] $=n=e f$, where $q=p^{f}$ and $p>43^{1 / f}$. In particular, $M(5, n) \leqslant 43$ for all n.

Here is a rough outline of the proof of the theorem. Let F be a quintic form over K in 26 variables. We may assume that F is reduced, in the sense of [Lx-Lw] (see Section 4). By using an enhancement of a lemma of Laxton-Lewis we may assume that, upon passage to the residue class field k, F^{*} is a quintic form in at least seven variables defined over k. We can then reduce to the case where F^{*} can be specialized to a curve with at least three singular rational zeros which is either absolutely irreducible or which is reducible. In the former case we apply a version of the Weil estimate to get a nonsingular zero of F^{*}, if the residue class field has cardinality at least 47. In the latter case we are able to show that F^{*} has a nonsingular zero, if the residue class field has at least 7 elements. Once F^{*} is known to have a nonsingular zero, Hensel's lemma gives a nonsingular zero of F.

We thank A. Prestel for a helpful discussion of the Ax-Kochen theorem.

2. Notation and Conventions

We now summarize various notation, facts, etc. By a form we mean a homogeneous polynomial. Note that a homogeneous polynomial has only homogeneous factors. The x_{i}-degree of a polynomial is the degree of the

[^0]highest power of the variable x_{i} occurring in the polynomial. A polynomial over a field k is said to be absolutely irreducible if it is irreducible over the algebraic closure of k.

A point in some affine space is said to be defined over k, or is k-rational, if its coordinates are elements of k; in projective space, a point is said to be defined over k, or is k-rational, if all of the ratios of any set of homogeneous coordinates of the point are in k.

We say that an affine zero of a form is trivial if all of its coordinates are 0 ; otherwise, we say that the zero is nontrivial. A zero of a polynomial is said to be singular if all of the partial derivatives of the polynomial vanish there. Let f be a polynomial in n variables and let \tilde{f} be the restriction of f to a linear subspace V. If $z \in V$ is a zero of f and a nonsingular zero of \tilde{f}, then z is a nonsingular zero of f.

Let f be a homogeneous polynomial in n variables over the finite field \mathbf{F}_{q}. By $Z(f)$ we mean the set of \mathbf{F}_{q}-rational zeros of $f . Z(f)$ may be interpreted as a subset of either $\mathbf{A}^{n}\left(\mathbf{F}_{q}\right)$ or $\mathbf{P}^{n}\left(\mathbf{F}_{q}\right)$. We define $N(f)$ to be the number of projective \mathbf{F}_{q}-rational zeros of f. Note that the number of affine zeros of f is equal to $(q-1) N(f)+1$. If X is a set, we write $|X|$ for the cardinality of X.

Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial and let $\gamma(f)$ be the number of variables occurring in the monomials in f with nonzero coefficient. Define the order of f to be $\min \left\{\gamma(f(A x)) \mid A \in G L_{n}(k)\right\}$. This is the number of variables upon which f actually depends. A polynomial for which $\gamma(f) \neq$ $\operatorname{order}(f)$ is said to be degenerate; otherwise it is said to be nondegenerate. By definition every polynomial can be made nondegenerate by a linear change of variables. Many times we will refer to a "polynomial in n variables" in the statement of results; by this we will always mean that the polynomial is nondegenerate. Also we note that any absolutely irreducible homogeneous polynomial of degree greater than 1 has order at least 3 .

Let R be a complete discrete valuation ring with quotient field K, local prime π and maximal ideal $M=(\pi)$. Let k denote the residue field R / M. When k is finite, K is said to be a local, or p-adic, field. We denote passage to the residue field by adding a superscript *. A primitive K-vector is one with integral (i.e. in R) coordinates, at least one of which is a unit.

3. Some General Facts

Lemma 3.1 [Wa]. Let f be a homogeneous form of degree d in n variables over \mathbf{F}_{q}. If $n>d$, then f has at least q^{n-d} affine \mathbf{F}_{q}-rational zeros. The number of projective zeros of f satisfies $N(f) \geqslant\left(q^{n-d}-1\right) /(q-1)$. In particular, if $n>d$ then f has a nontrivial \mathbf{F}_{q}-rational zero.

Lemma 3.2. Let Q be a quadratic form and C a cubic form, both defined over \mathbf{F}_{q}. Assume that Q does not divide C. If Q has order $3, C$ has order at most 3 and $q>5$, then Q has a nonsingular \mathbf{F}_{q}-rational zero which is not a zero of C.

Proof. Since Q has order 3, it is absolutely irreducible. Thus Q and C have no common factor. By Bezout's theorem ([Fu, p. 112]), we know that Q and C have at most 6 common projective zeros. It is easy to show that Q has exactly $q+1$ projective \mathbf{F}_{q}-rational zeros, all of which are nonsingular. Thus if $q+1>6$, then there is a nonsingular \mathbf{F}_{q}-rational zero of Q which is not a zero of C.

Lemma 3.3. Let f be a nondegenerate form of prime degree defined over a perfect field K which has a nontrivial K-rational zero. If f is not absolutely irreducible, then f is reducible over K.

Proof. Let $d=\operatorname{deg}(f)$. We may assume that $(1,0, \ldots, 0)$ is a zero of f. Then, since f is assumed to be nondegenerate, $1 \leqslant \operatorname{deg}_{x_{0}}(f) \leqslant d-1$.

Let L be a finite Galois extension of K over which f factors into absolutely irreducible elements. Let σ be an element of $\operatorname{Gal}(L \mid K)$. Since $L\left[x_{0}, \ldots, x_{n}\right]$ is a UFD, σ induces a permutation on the set of primes dividing f. Let h be a prime properly dividing f such that $h(1,0, \ldots, 0)=0$. We note that $\operatorname{deg} h=\operatorname{deg} \sigma h, \operatorname{deg}_{x_{i}}(h)=\operatorname{deg}_{x_{i}}(\sigma h)$, for all i, and that $\operatorname{deg} h>\operatorname{deg}_{x_{0}}(h)$.

Let H equal the product of the K-conjugates of h and let r be the number of K-conjugates of h. Without loss of generality we may assume that $r>1$. We have $d \geqslant \operatorname{deg} H=r \cdot \operatorname{deg} h$. If $\operatorname{deg}_{x_{0}}(h)=0$ then $\operatorname{deg}_{x_{0}}(H)=0$; since $\operatorname{deg}_{x_{0}}(f) \geqslant 1, H$ must be a proper factor of f. Now we may assume that both r and $\operatorname{deg} h$ are greater than 1 (since $\operatorname{deg} h>\operatorname{deg}_{x_{0}}(h)$). Since d is prime and $d \geqslant r \cdot \operatorname{deg}(h)$ we must in fact have $d>r \cdot \operatorname{deg}(h)=\operatorname{deg} H$. Thus H is a proper factor of f defined over K; it's easy to show that the other factor is also defined over K.

When K is not perfect, then Lemma 3.3 is not true. For example, let $K=\mathbf{F}_{p}(t), L=K\left(t^{1 / p}\right)$ and $f=x_{1}^{p}+t x_{2}^{p}+(1+t) x_{3}^{p}$. Then $f(1,1,-1)=0$ and $f=\left(x_{1}+t^{1 / p} x_{2}+(1+t)^{1 / p} x_{3}\right)^{p}$, but f is irreducible over K.

Lemma 3.3 also fails for forms of composite degree. For example, let K be a field and L an extension of degree 2. Let Q be an isotropic quadratic form of order at least 3 which is defined over L but not K. Assume that $(1,0, \ldots, 0)$ is a zero of Q. Then the product of the conjugates of Q is an isotropic form of degree 4 which is irreducible over K, but not absolutely irreducible. It has no K-rational nonsingular zeros. However, Lemma 3.3
extends to forms f of composite degree if we assume that f has a nonsingular K-rational zero. To see this, assume f is irreducible and let L be an extension of K of degree greater than 1 over which f splits into conjugate factors. A rational zero of f is a rational zero of some factor and hence of all of them. It then follows from the product rule for derivatives that this zero is singular.

Lemma 3.4. Let F be a polynomial over a p-adic field K with K-integral coefficients. Let F^{*} denote the reduction $\bmod \pi$ of F. If F^{*} has a nontrivial nonsingular F^{*}-rational zero, then F has a nontrivial K-rational zero.

This is one of the many versions of Hensel's lemma. [G] contains a thorough exposition of Hensel's lemma.

Theorem 3.5 [L-Y] (See Also [Au, Théorème 3.3 and Section 4]). Let N be the number of \mathbf{F}_{q}-rational points on an absolutely irreducible projective plane curve C of absolute genus g and degree d, defined over \mathbf{F}_{q}. Then N satisfies

$$
|N-(q+1)| \leqslant 2 g \sqrt{q}+\frac{1}{2}(d-1)(d-2)-g .
$$

Note that if C is nonsingular then $g=\frac{1}{2}(d-1)(d-2)$ and we recover the usual estimate.

Lemma 3.6. Let f be an absolutely irreducible homogeneous polynomial of degree 5 in three variables over \mathbf{F}_{q}. Assume that f has at least three singular zeros over the algebraic closure of \mathbf{F}_{q}. If $q \geqslant 47$, then f has a nonsingular \mathbf{F}_{q}-rational zero.

Proof. Let S be the number of singular zeros defined over the algebraic closure of \mathbf{F}_{q} on the projective plane curve defined by f. It follows from the genus formula [Fu, p. 201] that $g \leqslant 6-S$. Then $g \leqslant 3$ since $S \geqslant 3$. These inequalities imply

$$
\begin{aligned}
(2 \sqrt{q}-1) g+S & \leqslant(2 \sqrt{q}-1) g+(6-g)=(2 \sqrt{q}-2) g+6 \\
& \leqslant(2 \sqrt{q}-2) 3+6=6 \sqrt{q}<q-5,
\end{aligned}
$$

for $q \geqslant 47$. Thus,

$$
S<q-5-(2 \sqrt{q}-1) g=q+1-2 g \sqrt{q}+g-6 \leqslant N,
$$

by Theorem 3.5. Therefore, f has a nonsingular \mathbf{F}_{q}-rational zero.

4. Reduced Forms

Let F be a form of degree d in n variables and let K be a p-adic field with residue class field \mathbf{F}_{q}. Define $I(F)$ to be the resultant of the n partial derivatives of F. We summarize those facts concerning $I(F)$ which are needed here. For more information, the reader is referred to Section 4 of [Lx-Lw] and, for general information on resultants, to [W, Chap. 11].

Lemma 4.1 [Lx-Lw, Lemma 6]. If F is a form over a p-adic field K such that $I(F)=0$ then there exists a sequence of forms F_{1}, F_{2}, \ldots, defined over K, which converges to F and for which $I\left(F_{j}\right) \neq 0$.

Corollary 4.2 [Lx-Lw, Cor. to Lemma 6]. In order to prove that any form of degree d over a p-adic field K in $n>d^{2}$ variables has a nontrivial zero over K it is sufficient to prove this fact for forms F for which $I(F) \neq 0$.

The condition $I(F) \neq 0$ says that the form F is nonsingular over the algebraic closure of K, since the resultant of n forms in n variables is 0 if and only if the polynomials have a common nontrivial zero. If F has K-integral coefficients, then $\operatorname{ord}(I(F)) \geqslant 0$, where ord is the normalized valuation on K.

If F has K-integral coefficients, we say that F is reduced if

$$
I(F) \neq 0
$$

and

$$
\operatorname{ord}(I(F)) \leqslant \operatorname{ord}(I(G))
$$

for all G which are equivalent to F (i.e. $G=a F(T x)$ for $a \in K^{\times}$, $\left.T \in G L_{n}(K)\right)$ and have K-integral coefficients. It is obvious that every F with K-integral coefficients and $I(F) \neq 0$ is equivalent to a reduced form.

If F is a reduced form and T is a unimodular matrix (i.e., an integral matrix which remains an invertible matrix upon passage to the residue class field), then $F(T x)$ is also a reduced form.

Let F be a reduced form over K and F^{*} its reduction $\bmod \pi$. Let k be the residue class field of K and m be the order of F^{*}. The next proposition extends Lemma 7 of [Lx-Lw].

Proposition 4.3. Let F be a reduced form of degree $d \geqslant 2$ in n variables. Let $s \geqslant 0$ be an integer such that F^{*} vanishes on an affine s-dimensional
linear plane V. If $s \geqslant 2$, assume that the cardinality of the residue class field is at least d. Then

$$
\text { order } F^{*} \geqslant \frac{n}{d}+s
$$

Proof. Write $F=F_{0}+\pi F_{1}$, where F_{0} has R-unit coefficients ($F \equiv F_{0}$ $\bmod \pi)$. Let p_{1}, \ldots, p_{m} be the standard basis vectors of $\mathbf{A}^{m}(k)$. By a unimodular change of variables over R, we may assume that F^{*} involves only x_{1}, \ldots, x_{m} nontrivially and that F^{*} vanishes on $x_{s+1}=\cdots=x_{m}=0$. It follows from the vanishing of F^{*} on V that every monomial occurring nontrivially in F^{*} is divisible by at least one of x_{s+1}, \ldots, x_{m}. When $s \geqslant 2$, we make use of the well-known fact that if $d \leqslant q$, then the only homogeneous polynomial of degree d over \mathbf{F}_{q} which vanishes identically is the zero polynomial.

Let T be the K-integral change of variables given by

$$
x_{i} \rightarrow x_{i}, \quad i=1, \ldots, s, m+1, \ldots, n ; \quad x_{i} \rightarrow \pi x_{i}, \quad i=s+1, \ldots, m .
$$

The form $G=\pi^{-1} F(T x)$ has K-integral coefficients, so as in Lemma 7 of [Lx-Lw] we have

$$
\begin{aligned}
-n+d(m-s) & \geqslant 0 \\
m & \geqslant \frac{n}{d}+s
\end{aligned}
$$

Corollary 4.4. If $n>d^{2}$ and the cardinality of the residue class field is at least d when $s \geqslant 2$, then $N\left(F^{*}\right) \geqslant\left(q^{s+1}-1\right) /(q-1)$.

Proof. By Proposition 4.3, we have

$$
m-d \geqslant \frac{n}{d}+s-d \geqslant \frac{d^{2}+1}{d}+s-d>s .
$$

Since $m-d$ is an integer, we have $m-d \geqslant s+1$. Combining this with Lemma 3.1, we get

$$
N\left(F^{*}\right) \geqslant \frac{q^{m-d}-1}{q-1} \geqslant \frac{q^{s+1}-1}{q-1} .
$$

Using the results of this section we can give a quick proof that quadratic forms in at least five variables and cubic forms in at least ten variables over p-adic fields are isotropic, as promised in the introduction.

The argument goes as follows. Let F be a form of degree $d=2$ or 3 in at least $d^{2}+1$ variables over a p-adic field K, with residue class field of any cardinality. By Corollary 4.2 we may assume that F is reduced. Then by Proposition 4.3 with $s=0$ we know that F^{*} has order at least
$d+1, d=2,3$. By Lemma 3.1, F^{*} has a nontrivial rational zero. If F^{*} is a quadratic form of order at least 3 , then it is easy to show that F^{*} has a nonsingular zero. If F^{*} is a cubic form, suppose it has a nontrivial singular zero. After changing variables we may write

$$
F^{*}=x_{0} A\left(x_{1}, \ldots, x_{n}\right)+B\left(x_{1}, \ldots, x_{n}\right),
$$

where A is a nonzero quadratic form. Choose z_{1}, \ldots, z_{n} such that $A\left(z_{1}, \ldots, z_{n}\right) \neq 0$ and set $z_{0}=-B\left(z_{1}, \ldots, z_{n}\right) / A\left(z_{1}, \ldots, z_{n}\right)$. Then $\left(z_{0}, \ldots, z_{n}\right)$ is a nonsingular zero of F^{*}. Hensel's lemma then gives a nontrivial K-rational zero of F, in both cases.

5. The Proof of the Main Theorem

Lemma 5.1. Let f be a quintic form in at least two variables over a field k. Assume that f has two singular projective k-rational zeros u and v. Let $\langle u, v\rangle \subset \mathbf{P}^{n}(k)$ denote the projective line through u and v. Then at least one of the following possibilities occurs:
(1) u and v are the only zeros of f in $\langle u, v\rangle$;
(2) The restriction of f to $\langle u, v\rangle$ is the zero polynomial;
(3) $\langle u, v\rangle$ contains a nonsingular k-rational zero of f.

Proof. By a k-rational change of variables we may assume $u=(1,0, \ldots, 0)$ and $v=(0,1,0, \ldots, 0)$. Then

$$
f\left(x_{0}, x_{1}, 0, \ldots, 0\right)=a x_{0}^{3} x_{1}^{2}+b x_{0}^{2} x_{1}^{3}=x_{0}^{2} x_{1}^{2}\left(a x_{0}+b x_{1}\right) .
$$

If either $a=0$ or $b=0$, but not both, we have case 1 . If $a=b=0$, we have case 2. If $a b \neq 0$, then f has a simple linear factor and $(-b, a, 0, \ldots, 0)$ is a nonsingular zero of f.

Lemma 5.2. Let f be a quintic form in at least three variables over \mathbf{F}_{q}. Assume that f has three singular \mathbf{F}_{q}-rational zeros v_{1}, v_{2}, v_{3} which span a projective plane. Assume that $\left\langle v_{i}, v_{j}\right\rangle \cap Z(f)=\left\{v_{i}, v_{j}\right\}$, for all i, j.

If the restriction of f to $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is not absolutely irreducible and $q>5$, then f has a nonsingular \mathbf{F}_{q}-rational zero.

Proof. By a change of variables we may assume that the v_{i} are the first three basis vectors. Define $g\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{2}, x_{3}, 0, \ldots, 0\right)$. Assume that g is not absolutely irreducible. Then by Lemma 3.3, g is reducible over \mathbf{F}_{q}.

Let K denote the algebraic closure of \mathbf{F}_{q}. Let $\left\langle v_{i}, v_{j}\right\rangle \subset \mathbf{P}^{2}(K)$ be the line spanned by v_{i} and v_{j}. From the proof of Lemma 5.1, one sees that v_{i} and v_{j} are the only zeros of f on $\left\langle v_{i}, v_{j}\right\rangle$ over K. Assume that g has a linear factor L defined over $K .\left\langle v_{i}, v_{j}\right\rangle \cap Z(L)$ consists of exactly one point, for each i, j. As any point on $Z(L)$ is a zero of g, we conclude that $\left\langle v_{1}, v_{2}\right\rangle \cap Z(L)$
equals, say, $\left\{v_{1}\right\}$. Then $\left\langle v_{2}, v_{3}\right\rangle \cap Z(L)$ equals, say, $\left\{v_{2}\right\}$, from which we conclude that $Z(L)=\left\langle v_{1}, v_{2}\right\rangle$. This contradicts the assumption that $\left\langle v_{1}, v_{2}\right\rangle$ contains but two zeros of f. Thus g has no linear factor over K.

Since g is reducible and has no linear factor, we conclude that $g=h k$, where $\operatorname{deg} h=2, h$ is absolutely irreducible and h does not divide k. By Lemma 3.2, h has a nonsingular \mathbf{F}_{q}-rational zero which is not a zero of k. This gives a nonsingular \mathbf{F}_{q}-rational zero of g and thus a nonsingular \mathbf{F}_{q}-rational zero of f.

Lemma 5.3. Let f be a quintic form in n variables over $\mathbf{F}_{q} ;$ assume $q \geqslant 4$. Let $m \geqslant 1$ and assume that $Z(f)$ contains an m-dimensional projective plane V and two points u, v not in V. Also assume that for every projective plane $W \subset V$ of codimension 1, we have either $\langle W, u\rangle \subset Z(f)$ or $\langle W, v\rangle \subset Z(f)$. If f does not have a nonsingular rational zero, either $\langle V, u\rangle \subset Z(f)$ or $\langle V, v\rangle \subset Z(f)$.

Proof. Let $\left[x_{0}: \cdots: x_{m}\right]$ be homogeneous coordinates for V. Let W_{1}, \ldots, W_{q+1} be the collection of codimension 1 projective planes in V defined by the equations

$$
a x_{m-1}+b x_{m}=0, \quad \text { for } \quad[a: b] \in \mathbf{P}^{1}\left(\mathbf{F}_{q}\right) .
$$

Easily we see that $V=\bigcup_{i=1}^{q+1} W_{i}$ and $\operatorname{codim}\left(\bigcap_{i=1}^{q+1} W_{i}\right)=2$.
Since $q \geqslant 4$, there are at least five W_{i}. By a pigeonhole argument and appropriate relabeling, we may assume that $\left\langle W_{i}, u\right\rangle \subset Z(f), i=1,2,3$.

Next we show that, for distinct $i, j(1 \leqslant i, j \leqslant 3)$,

$$
\begin{aligned}
& \text { (*) }\left\langle W_{i}, u\right\rangle \cap\left\langle W_{j}, u\right\rangle=\left\langle W_{i} \cap W_{j}, u\right\rangle \\
& \text { (**) }\left\langle W_{i}, u\right\rangle \cap\left\langle W_{j}, u\right\rangle=\bigcap_{i=1}^{3}\left\langle W_{i}, u\right\rangle
\end{aligned}
$$

Clearly, the inclusion " \supseteq " holds in both statements. Observe that each $\left\langle W_{i}, u\right\rangle$ is an m-dimensional projective plane and $\left\langle W_{i} \cap W_{j}, u\right\rangle$ is an $(m-1)$-dimensional projective plane. In addition, $\left\langle W_{i}, u\right\rangle \neq\left\langle W_{j}, u\right\rangle$ since $\left\langle W_{i}, u\right\rangle \cap V=W_{i}$. Now equality in (*) follows easily by counting dimensions.

Since $W_{i} \cap W_{j}=\bigcap_{i=1}^{3} W_{i}$, we see

$$
\left\langle W_{i}, u\right\rangle \cap\left\langle W_{j}, u\right\rangle=\left\langle W_{i} \cap W_{j}, u\right\rangle=\left\langle\bigcap_{i=1}^{3} W_{i}, u\right\rangle \subseteq \bigcap_{i=1}^{3}\left\langle W_{i}, u\right\rangle,
$$

and this proves $(* *)$.
Let $x \in\langle V, u\rangle, x \notin \bigcup_{i=1}^{3}\left\langle W_{i}, u\right\rangle$. Since $\operatorname{codim}\left(\bigcap_{i=1}^{3} W_{i}\right)=2$, it follows from ($*$) and ($* *$) that $\bigcap_{i=1}^{3}\left\langle W_{i}, u\right\rangle$ has codimension 2 in $\langle V, u\rangle$. Thus
there is a projective line L in $\langle V, u\rangle$ through x which does not intersect $\bigcap_{i=1}^{3}\left\langle W_{i}, u\right\rangle$. Since $x \notin\left\langle W_{i}, u\right\rangle$ and $\left\langle W_{i}, u\right\rangle$ has codimension 1 in $\langle V, u\rangle$, it follows that $L \cap\left\langle W_{i}, u\right\rangle$ consists of exactly one point u_{i}, for each i. The u_{i} are distinct, for if $u_{i}=u_{j}$, then from ($* *$) we would have $u_{i} \in L \cap\left\langle W_{i}, u\right\rangle \cap\left\langle W_{j}, u\right\rangle=L \cap\left(\bigcap_{i=1}^{3}\left\langle W_{i}, u\right\rangle\right)=\varnothing$, a contradiction.

We have shown that $L \cap Z(f)$ contains at least three points. By Lemma 5.1, we know that either L contains a nonsingular point of f or f vanishes identically on L. If $\langle V, u\rangle$ contains no nonsingular zero of f, then $x \in Z(f)$ for each $x \in\langle V, u\rangle$ and hence $\langle V, u\rangle \subseteq Z(f)$.

Proposition 5.4. Let F be a reduced quintic form in at least 26 variables over a p-adic field K. Assume that $q>5$. Then either F^{*} satisfies the hypotheses of Lemma 5.2 or F^{*} has a nonsingular zero over the residue class field of K.

Proof. Assume that F^{*} has no nonsingular zero over the residue class field of K. Let s be the maximum of the affine dimensions of the linear subspaces of $Z\left(F^{*}\right)$. By Lemma 3.1 and Proposition 4.3, $s \geqslant 1$.

If $s=1$, then by Corollary $4.4, F^{*}$ has at least $q+1$ projective zeros. They cannot all lie on a projective line since $s=1$. Choose three, v_{1}, v_{2}, v_{3}, which span a projective plane. Since $s=1, F^{*}$ does not vanish identically on any $\left\langle v_{i}, v_{j}\right\rangle$. By Lemma 5.1, v_{1}, v_{2}, v_{3} satisfy the hypotheses of Lemma 5.2.

Assume now that $s \geqslant 2$. Let $V \subseteq Z\left(F^{*}\right)$ be a projective plane of maximal dimension $s-1$. It follows from Corollary 4.4 that $Z\left(F^{*}\right)$ contains at least two points not in V. Let $X=Z\left(F^{*}\right)-V$. We will show there exist $w \in V$ and $u, v \in X$ such that $\{u, v, w\}$ satisfies the hypotheses of Lemma 5.2. That is, $Z\left(F^{*}\right) \cap\langle u, v\rangle=\{u, v\}$, and similarly for $\{u, w\}$ and $\{v, w\}$.

Suppose there is no pair $u, v \in X$ such that $Z\left(F^{*}\right) \cap\langle u, v\rangle=\{u, v\}$. Then for all $x, y \in X$ with $x \neq y,\langle x, y\rangle \subseteq Z\left(F^{*}\right)$ by Lemma 5.1. Let W be a projective plane in $Z\left(F^{*}\right)$ of maximal dimension, not contained in V. Such a plane exists because $Z\left(F^{*}\right)$ contains $\langle x, y\rangle$, where $x, y \in X$. We will now show that $X \subseteq W$.

Suppose $w \in X$ and $w \notin W$. Then $W \cap V$ has positive codimension in W, since $W \nsubseteq V$. We have $W-(W \cap V) \subseteq X$ since $W \subseteq Z\left(F^{*}\right)$. Thus F^{*} vanishes on the complement of $\langle W \cap V, w\rangle$ in $\langle W, w\rangle$ because every element of this complement lies on a line joining two points of X, namely, a point of $W-(W \cap V)$ and w. Let H be a plane in $\langle W, w\rangle$ of codimension 1 containing $\langle W \cap V, w\rangle$ and let H be given by the equation $g=0$. Then $g F^{*}=0$ for every point of $\langle W, w\rangle$. Since $q>5$, we conclude that $g F^{*}$ is the zero polynomial on $\langle W, w\rangle$. Since g is not the zero polynomial on $\langle W, w\rangle$, it follows F^{*} is the zero polynomial on $\langle W, w\rangle$. Thus $\langle W, w\rangle$ $\subseteq Z\left(F^{*}\right)$, contradicting the maximality of $\operatorname{dim} W$. Therefore, $X \subseteq W$.

We have $Z\left(F^{*}\right)=V \cup W$ and $\operatorname{dim} W \leqslant \operatorname{dim} V=s-1$. Corollary 4.4 implies

$$
N\left(F^{*}\right)=|W \cup V| \leqslant|W|+|V| \leqslant \frac{2\left(q^{s}-1\right)}{q-1}<\frac{\left(q^{s+1}-1\right)}{q-1} \leqslant N\left(F^{*}\right),
$$

a contradiction. Thus there must exist $u, v \in X$ such that $\langle u, v\rangle \cap Z\left(F^{*}\right)=$ $\{u, v\}$.

Suppose now that for all $x \in V$, either $\langle u, x\rangle \subseteq Z\left(F^{*}\right)$ or $\langle v, x\rangle \subseteq Z\left(F^{*}\right)$. Then we may apply Lemma 5.3 inductively to conclude $\langle V, u\rangle \subseteq Z\left(F^{*}\right)$ or $\langle V, v\rangle \subseteq Z\left(F^{*}\right)$, each of which contradicts the maximality of $\operatorname{dim} V$. Therefore, there exists $w \in V$ such that $\langle u, w\rangle \cap Z\left(F^{*}\right)=$ $\{u, w\}$ and $\langle v, w\rangle \cap Z\left(F^{*}\right)=\{v, w\}$. We are done since $\{u, v, w\}$ satisfies the hypotheses of Lemma 5.2.

Proof of Theorem. Let F be a quintic form over a p-adic field K in at least 26 variables. By Corollary 4.2, we may assume F is reduced. By Proposition 5.4 we know that either F^{*} has a nonsingular rational zero or it satisfies the hypotheses of Lemma 5.2, in which case we may assume the restriction of F^{*} is absolutely irreducible. Then we apply Lemma 3.6 to conclude that F^{*} has a nonsingular rational zero. It then follows from Lemma 3.4 (Hensel's lemma) that F has a nontrivial rational zero.

References

[Ar] E. Artin, "Collected Papers," Springer-Verlag, Berlin/New York, 1986.
[Au] Y. Aubry, Variétés sur un corps fini et codes géométriques algébriques, Dissertation, Université d'Aix-Marseille II. 1993.
[A-K] J. Ax and S. Kochen, Diophantine problems over local fields, I, Am. J. Math. 87 (1965), 605-630.
[Fu] William Fulton, "Algebraic Curves," Addison-Wesley, Reading, MA, 1989.
[G] M. J. Greenberg, "Lectures on Forms in Many Variables," Benjamin, New York, 1969.
[La] S. Lang, On quasi-algebraic closure, Ann. Math. 55 (1952), 373-390.
[Lx-Lw] R. R. Laxton and D. J. Lewis, Forms of degree 7 and 11 over p-adic fields, in "Proceedings of Symposia in Pure Mathematics," Vol. 7, pp. 16-21, Amer. Math. Soc., Providence, RI, 1965.
[L-Y] David B. Leep and Charles C. Yeomans, The number of points on a singular curve over a finite field, Arch. Math. 63 (1994), 420-426.
[Lw] D. J. Lewis, Diophantine problems: Solved and unsolved, in "Number Theory and Applications," pp. 103-121, Kluwer Academic, Dordrecht/Norwell, MA, 1989.
[S1] J.-P. Serre, Nombre de points des courbes algébriques sur \mathbf{F}_{q}, Séminaire de Théorie des Nombres de Bordeaux 1982/83, No. 22. ("Coll. Works," Vol. III, pp. 664-668).
[S2] J.-P. Serre, Résumé des cours de 1983-84, "Coll. Works," Vol. III, pp. 701-705.
[T] G. Terjanian, Un contre-exemple à une conjecture d'Artin, C. R. Acad. Sci. Paris 262 (1966), 612.
[W] B. F. van der Waerden, "Modern Algebra II" (3rd ed.), Ungar, New York, 1950.
[Wa] E. Warning, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Hamburg 11 (1935), 76-83.

[^0]: ${ }^{1}$ J.-P. Serre has informed the authors that he can lower the bound of the theorem to $q \geqslant 43$. He improves the result of our Lemma 3.6 by extending the methods of [S1, Section 2] and [S2, Section 3.2].

