Quintic Forms over *p*-adic Fields

DAVID B. LEEP

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027

AND

CHARLES C. YEOMANS

809 Cooper Drive, Lexington, Kentucky 40502

Communicated by P. Roquette

View metadata, citation and similar papers at core.ac.uk

We prove that a quintic form in 26 variables defined over a *p*-adic field *K* always has a nontrivial zero over *K* if the residue class field of *K* has at least 47 elements. This is in agreement with the theorem of Ax–Kochen which states that a homogeneous form of degree d in $d^2 + 1$ variables defined over \mathbf{Q}_p has a nontrivial \mathbf{Q}_p -rational zero if *p* is sufficiently large. The Ax–Kochen theorem gives no results on the bound for *p*. For d = 1, 2, 3 it has been known for a long time that there is a nontrivial \mathbf{Q}_p -rational zero for all values of *p*. For d = 4, Terjanian gave an example of a form in 18 variables over \mathbf{Q}_2 having no nontrivial \mathbf{Q}_2 -rational zero. This is the first result which gives an effective bound for the case d = 5. \mathbb{C} 1996 Academic Press, Inc.

1. INTRODUCTION

In the preface to Artin's collected works, the editors discuss several conjectures of Artin including the following: let K be a complete, discretely valued field with finite residue class field k. Then every homogeneous form defined over K of degree d in greater than d^2 variables has a nontrivial zero. When this is true, we say that K has the property $C_2(d)$.

Artin's conjecture is true when K is a power series field, as was shown by Lang in [La]. When K is a p-adic field (i.e. the unequal characteristic case), a counterexample of degree 4 in 18 variables over \mathbf{Q}_2 was given by Terjanian in [T]. Since then many other counterexamples, all of even degree, have been found. See [G] and [Lw] for a summary and further references.

It is still of interest to determine by precisely how much Artin's conjecture fails for *p*-adic fields. Ax and Kochen showed the following in [A-K]:

(1) For a given integer $d \ge 1$, the set of primes for which \mathbf{Q}_p is not $C_2(d)$ is finite.

(2) If $[K: \mathbf{Q}_p] = n$ is finite, there exists a constant M(d, n), depending on d and n, such that K is $C_2(d)$ if p > M(d, n).

It is known that all *p*-adic fields satisfy the properties $C_2(2)$ (Hasse) and $C_2(3)$ (Dem'anov, for $p \neq 3$, and Lewis). Thus we may take M(2, n) = M(3, n) = 1 for all $n \ge 1$. We give short proofs of these results in Section 4.

The Ax-Kochen theorem asserts the existence of a constant M(d, 1) for all d. However, an upper bound for M(d, 1) has never been computed for any $d \ge 4$. The only lower bound estimates known for M(d, 1), $d \ge 4$, come from the known counterexamples to Artin's conjecture and these only occur (so far) for certain even values of d. In particular, Artin's conjecture is still open when d is a prime number. Our main result is the following.

THEOREM. Let K be any p-adic field with residue class field k of cardinality $q \ge 47$. Then K satisfies the property $C_2(5)$.¹

The theorem holds for those fields K satisfying $[K: \mathbf{Q}_p] = n = ef$, where $q = p^f$ and $p > 43^{1/f}$. In particular, $M(5, n) \leq 43$ for all n.

Here is a rough outline of the proof of the theorem. Let F be a quintic form over K in 26 variables. We may assume that F is reduced, in the sense of [Lx-Lw] (see Section 4). By using an enhancement of a lemma of Laxton-Lewis we may assume that, upon passage to the residue class field k, F^* is a quintic form in at least seven variables defined over k. We can then reduce to the case where F^* can be specialized to a curve with at least three singular rational zeros which is either absolutely irreducible or which is reducible. In the former case we apply a version of the Weil estimate to get a nonsingular zero of F^* , if the residue class field has cardinality at least 47. In the latter case we are able to show that F^* has a nonsingular zero, if the residue class field has at least 7 elements. Once F^* is known to have a nonsingular zero, Hensel's lemma gives a nonsingular zero of F.

We thank A. Prestel for a helpful discussion of the Ax-Kochen theorem.

2. NOTATION AND CONVENTIONS

We now summarize various notation, facts, etc. By a form we mean a homogeneous polynomial. Note that a homogeneous polynomial has only homogeneous factors. The x_i -degree of a polynomial is the degree of the

¹ J.-P. Serre has informed the authors that he can lower the bound of the theorem to $q \ge 43$. He improves the result of our Lemma 3.6 by extending the methods of [S1, Section 2] and [S2, Section 3.2].

highest power of the variable x_i occurring in the polynomial. A polynomial over a field k is said to be absolutely irreducible if it is irreducible over the algebraic closure of k.

A point in some affine space is said to be defined over k, or is k-rational, if its coordinates are elements of k; in projective space, a point is said to be defined over k, or is k-rational, if all of the ratios of any set of homogeneous coordinates of the point are in k.

We say that an affine zero of a form is trivial if all of its coordinates are 0; otherwise, we say that the zero is nontrivial. A zero of a polynomial is said to be singular if all of the partial derivatives of the polynomial vanish there. Let f be a polynomial in n variables and let \tilde{f} be the restriction of f to a linear subspace V. If $z \in V$ is a zero of f and a nonsingular zero of \tilde{f} , then z is a nonsingular zero of f.

Let f be a homogeneous polynomial in n variables over the finite field \mathbf{F}_q . By Z(f) we mean the set of \mathbf{F}_q -rational zeros of f. Z(f) may be interpreted as a subset of either $\mathbf{A}^n(\mathbf{F}_q)$ or $\mathbf{P}^n(\mathbf{F}_q)$. We define N(f) to be the number of projective \mathbf{F}_q -rational zeros of f. Note that the number of affine zeros of f is equal to (q-1) N(f) + 1. If X is a set, we write |X| for the cardinality of X.

Let $f \in k[x_1, ..., x_n]$ be a polynomial and let $\gamma(f)$ be the number of variables occurring in the monomials in f with nonzero coefficient. Define the order of f to be $\min\{\gamma(f(Ax)) \mid A \in GL_n(k)\}$. This is the number of variables upon which f actually depends. A polynomial for which $\gamma(f) \neq$ order(f) is said to be degenerate; otherwise it is said to be nondegenerate. By definition every polynomial can be made nondegenerate by a linear change of variables. Many times we will refer to a "polynomial in n variables" in the statement of results; by this we will always mean that the polynomial is nondegenerate. Also we note that any absolutely irreducible homogeneous polynomial of degree greater than 1 has order at least 3.

Let R be a complete discrete valuation ring with quotient field K, local prime π and maximal ideal $M = (\pi)$. Let k denote the residue field R/M. When k is finite, K is said to be a local, or p-adic, field. We denote passage to the residue field by adding a superscript *. A primitive K-vector is one with integral (i.e. in R) coordinates, at least one of which is a unit.

3. Some General Facts

LEMMA 3.1 [Wa]. Let f be a homogeneous form of degree d in n variables over \mathbf{F}_q . If n > d, then f has at least q^{n-d} affine \mathbf{F}_q -rational zeros. The number of projective zeros of f satisfies $N(f) \ge (q^{n-d}-1)/(q-1)$. In particular, if n > d then f has a nontrivial \mathbf{F}_q -rational zero.

LEMMA 3.2. Let Q be a quadratic form and C a cubic form, both defined over \mathbf{F}_q . Assume that Q does not divide C. If Q has order 3, C has order at most 3 and q > 5, then Q has a nonsingular \mathbf{F}_q -rational zero which is not a zero of C.

Proof. Since Q has order 3, it is absolutely irreducible. Thus Q and C have no common factor. By Bezout's theorem ([Fu, p. 112]), we know that Q and C have at most 6 common projective zeros. It is easy to show that Q has exactly q + 1 projective \mathbf{F}_q -rational zeros, all of which are non-singular. Thus if q + 1 > 6, then there is a nonsingular \mathbf{F}_q -rational zero of Q which is not a zero of C.

LEMMA 3.3. Let f be a nondegenerate form of prime degree defined over a perfect field K which has a nontrivial K-rational zero. If f is not absolutely irreducible, then f is reducible over K.

Proof. Let $d = \deg(f)$. We may assume that (1, 0, ..., 0) is a zero of f. Then, since f is assumed to be nondegenerate, $1 \le \deg_{x_0}(f) \le d - 1$.

Let L be a finite Galois extension of K over which f factors into absolutely irreducible elements. Let σ be an element of Gal(L | K). Since $L[x_0, ..., x_n]$ is a UFD, σ induces a permutation on the set of primes dividing f. Let h be a prime properly dividing f such that h(1, 0, ..., 0) = 0. We note that deg $h = \deg \sigma h$, deg_{xi} $(h) = \deg_{xi}(\sigma h)$, for all i, and that deg $h > \deg_{x0}(h)$.

Let *H* equal the product of the *K*-conjugates of *h* and let *r* be the number of *K*-conjugates of *h*. Without loss of generality we may assume that r > 1. We have $d \ge \deg H = r \cdot \deg h$. If $\deg_{x_0}(h) = 0$ then $\deg_{x_0}(H) = 0$; since $\deg_{x_0}(f) \ge 1$, *H* must be a proper factor of *f*. Now we may assume that both *r* and deg *h* are greater than 1 (since deg $h > \deg_{x_0}(h)$). Since *d* is prime and $d \ge r \cdot \deg(h)$ we must in fact have $d > r \cdot \deg(h) = \deg H$. Thus *H* is a proper factor of *f* defined over *K*; it's easy to show that the other factor is also defined over *K*.

When K is not perfect, then Lemma 3.3 is not true. For example, let $K = \mathbf{F}_p(t)$, $L = K(t^{1/p})$ and $f = x_1^p + tx_2^p + (1+t)x_3^p$. Then f(1, 1, -1) = 0 and $f = (x_1 + t^{1/p}x_2 + (1+t)^{1/p}x_3)^p$, but f is irreducible over K.

Lemma 3.3 also fails for forms of composite degree. For example, let K be a field and L an extension of degree 2. Let Q be an isotropic quadratic form of order at least 3 which is defined over L but not K. Assume that (1, 0, ..., 0) is a zero of Q. Then the product of the conjugates of Q is an isotropic form of degree 4 which is irreducible over K, but not absolutely irreducible. It has no K-rational nonsingular zeros. However, Lemma 3.3

extends to forms f of composite degree if we assume that f has a nonsingular K-rational zero. To see this, assume f is irreducible and let L be an extension of K of degree greater than 1 over which f splits into conjugate factors. A rational zero of f is a rational zero of some factor and hence of all of them. It then follows from the product rule for derivatives that this zero is singular.

LEMMA 3.4. Let F be a polynomial over a p-adic field K with K-integral coefficients. Let F^* denote the reduction mod π of F. If F^* has a nontrivial nonsingular F^* -rational zero, then F has a nontrivial K-rational zero.

This is one of the many versions of Hensel's lemma. [G] contains a thorough exposition of Hensel's lemma.

THEOREM 3.5 [L-Y] (See Also [Au, Théorème 3.3 and Section 4]). Let N be the number of \mathbf{F}_q -rational points on an absolutely irreducible projective plane curve C of absolute genus g and degree d, defined over \mathbf{F}_q . Then N satisfies

$$|N - (q+1)| \leqslant 2g \sqrt{q} + \frac{1}{2}(d-1)(d-2) - g.$$

Note that if C is nonsingular then $g = \frac{1}{2}(d-1)(d-2)$ and we recover the usual estimate.

LEMMA 3.6. Let f be an absolutely irreducible homogeneous polynomial of degree 5 in three variables over \mathbf{F}_q . Assume that f has at least three singular zeros over the algebraic closure of \mathbf{F}_q . If $q \ge 47$, then f has a nonsingular \mathbf{F}_q -rational zero.

Proof. Let S be the number of singular zeros defined over the algebraic closure of \mathbf{F}_q on the projective plane curve defined by f. It follows from the genus formula [Fu, p. 201] that $g \leq 6-S$. Then $g \leq 3$ since $S \geq 3$. These inequalities imply

$$\begin{aligned} (2\sqrt{q}-1) g + S &\leq (2\sqrt{q}-1) g + (6-g) = (2\sqrt{q}-2) g + 6 \\ &\leq (2\sqrt{q}-2) 3 + 6 = 6\sqrt{q} < q - 5, \end{aligned}$$

for $q \ge 47$. Thus,

$$S < q - 5 - (2\sqrt{q} - 1) g = q + 1 - 2g\sqrt{q} + g - 6 \leq N,$$

by Theorem 3.5. Therefore, f has a nonsingular \mathbf{F}_q -rational zero.

4. Reduced Forms

Let *F* be a form of degree *d* in *n* variables and let *K* be a *p*-adic field with residue class field \mathbf{F}_q . Define I(F) to be the resultant of the *n* partial derivatives of *F*. We summarize those facts concerning I(F) which are needed here. For more information, the reader is referred to Section 4 of [Lx-Lw] and, for general information on resultants, to [W, Chap. 11].

LEMMA 4.1 [Lx-Lw, Lemma 6]. If F is a form over a p-adic field K such that I(F) = 0 then there exists a sequence of forms $F_1, F_2, ...,$ defined over K, which converges to F and for which $I(F_i) \neq 0$.

COROLLARY 4.2 [Lx-Lw, Cor. to Lemma 6]. In order to prove that any form of degree d over a p-adic field K in $n > d^2$ variables has a nontrivial zero over K it is sufficient to prove this fact for forms F for which $I(F) \neq 0$.

The condition $I(F) \neq 0$ says that the form F is nonsingular over the algebraic closure of K, since the resultant of n forms in n variables is 0 if and only if the polynomials have a common nontrivial zero. If F has K-integral coefficients, then $\operatorname{ord}(I(F)) \ge 0$, where ord is the normalized valuation on K.

If F has K-integral coefficients, we say that F is reduced if

$$I(F) \neq 0$$

and

$$\operatorname{ord}(I(F)) \leq \operatorname{ord}(I(G))$$

for all G which are equivalent to F (i.e. G = aF(Tx) for $a \in K^{\times}$, $T \in GL_n(K)$) and have K-integral coefficients. It is obvious that every F with K-integral coefficients and $I(F) \neq 0$ is equivalent to a reduced form.

If F is a reduced form and T is a unimodular matrix (i.e., an integral matrix which remains an invertible matrix upon passage to the residue class field), then F(Tx) is also a reduced form.

Let F be a reduced form over K and F^* its reduction mod π . Let k be the residue class field of K and m be the order of F^* . The next proposition extends Lemma 7 of [Lx-Lw].

PROPOSITION 4.3. Let F be a reduced form of degree $d \ge 2$ in n variables. Let $s \ge 0$ be an integer such that F^* vanishes on an affine s-dimensional linear plane V. If $s \ge 2$, assume that the cardinality of the residue class field is at least d. Then

order
$$F^* \ge \frac{n}{d} + s$$
.

Proof. Write $F = F_0 + \pi F_1$, where F_0 has *R*-unit coefficients ($F \equiv F_0 \mod \pi$). Let $p_1, ..., p_m$ be the standard basis vectors of $\mathbf{A}^m(k)$. By a unimodular change of variables over *R*, we may assume that F^* involves only $x_1, ..., x_m$ nontrivially and that F^* vanishes on $x_{s+1} = \cdots = x_m = 0$. It follows from the vanishing of F^* on *V* that every monomial occurring non-trivially in F^* is divisible by at least one of $x_{s+1}, ..., x_m$. When $s \ge 2$, we make use of the well-known fact that if $d \le q$, then the only homogeneous polynomial of degree *d* over \mathbf{F}_q which vanishes identically is the zero polynomial.

Let T be the K-integral change of variables given by

$$x_i \to x_i, \quad i = 1, ..., s, m+1, ..., n; \qquad x_i \to \pi x_i, \quad i = s+1, ..., m.$$

The form $G = \pi^{-1}F(Tx)$ has *K*-integral coefficients, so as in Lemma 7 of [Lx-Lw] we have

$$-n + d(m-s) \ge 0,$$
$$m \ge \frac{n}{d} + s.$$

COROLLARY 4.4. If $n > d^2$ and the cardinality of the residue class field is at least d when $s \ge 2$, then $N(F^*) \ge (q^{s+1}-1)/(q-1)$.

Proof. By Proposition 4.3, we have

$$m-d \ge \frac{n}{d}+s-d \ge \frac{d^2+1}{d}+s-d>s.$$

Since m-d is an integer, we have $m-d \ge s+1$. Combining this with Lemma 3.1, we get

$$N(F^*) \ge \frac{q^{m-d} - 1}{q-1} \ge \frac{q^{s+1} - 1}{q-1}.$$

Using the results of this section we can give a quick proof that quadratic forms in at least five variables and cubic forms in at least ten variables over *p*-adic fields are isotropic, as promised in the introduction.

The argument goes as follows. Let F be a form of degree d=2 or 3 in at least d^2+1 variables over a p-adic field K, with residue class field of any cardinality. By Corollary 4.2 we may assume that F is reduced. Then by Proposition 4.3 with s=0 we know that F^* has order at least d+1, d=2, 3. By Lemma 3.1, F^* has a nontrivial rational zero. If F^* is a quadratic form of order at least 3, then it is easy to show that F^* has a nonsingular zero. If F^* is a cubic form, suppose it has a nontrivial singular zero. After changing variables we may write

$$F^* = x_0 A(x_1, ..., x_n) + B(x_1, ..., x_n),$$

where A is a nonzero quadratic form. Choose $z_1, ..., z_n$ such that $A(z_1, ..., z_n) \neq 0$ and set $z_0 = -B(z_1, ..., z_n)/A(z_1, ..., z_n)$. Then $(z_0, ..., z_n)$ is a nonsingular zero of F^* . Hensel's lemma then gives a nontrivial K-rational zero of F, in both cases.

5. The Proof of the Main Theorem

LEMMA 5.1. Let f be a quintic form in at least two variables over a field k. Assume that f has two singular projective k-rational zeros u and v. Let $\langle u, v \rangle \subset \mathbf{P}^n(k)$ denote the projective line through u and v. Then at least one of the following possibilities occurs:

- (1) *u* and *v* are the only zeros of *f* in $\langle u, v \rangle$;
- (2) The restriction of f to $\langle u, v \rangle$ is the zero polynomial;
- (3) $\langle u, v \rangle$ contains a nonsingular k-rational zero of f.

Proof. By a *k*-rational change of variables we may assume u = (1, 0, ..., 0) and v = (0, 1, 0, ..., 0). Then

$$f(x_0, x_1, 0, ..., 0) = ax_0^3 x_1^2 + bx_0^2 x_1^3 = x_0^2 x_1^2 (ax_0 + bx_1).$$

If either a = 0 or b = 0, but not both, we have case 1. If a = b = 0, we have case 2. If $ab \neq 0$, then f has a simple linear factor and (-b, a, 0, ..., 0) is a nonsingular zero of f.

LEMMA 5.2. Let f be a quintic form in at least three variables over \mathbf{F}_q . Assume that f has three singular \mathbf{F}_q -rational zeros v_1 , v_2 , v_3 which span a projective plane. Assume that $\langle v_i, v_j \rangle \cap Z(f) = \{v_i, v_j\}$, for all i, j.

If the restriction of f to $\langle v_1, v_2, v_3 \rangle$ is not absolutely irreducible and q > 5, then f has a nonsingular \mathbf{F}_q -rational zero.

Proof. By a change of variables we may assume that the v_i are the first three basis vectors. Define $g(x_1, x_2, x_3) = f(x_1, x_2, x_3, 0, ..., 0)$. Assume that g is not absolutely irreducible. Then by Lemma 3.3, g is reducible over \mathbf{F}_a .

Let *K* denote the algebraic closure of \mathbf{F}_q . Let $\langle v_i, v_j \rangle \subset \mathbf{P}^2(K)$ be the line spanned by v_i and v_j . From the proof of Lemma 5.1, one sees that v_i and v_j are the only zeros of f on $\langle v_i, v_j \rangle$ over *K*. Assume that g has a linear factor *L* defined over *K*. $\langle v_i, v_j \rangle \cap Z(L)$ consists of exactly one point, for each i, j. As any point on Z(L) is a zero of g, we conclude that $\langle v_1, v_2 \rangle \cap Z(L)$ equals, say, $\{v_1\}$. Then $\langle v_2, v_3 \rangle \cap Z(L)$ equals, say, $\{v_2\}$, from which we conclude that $Z(L) = \langle v_1, v_2 \rangle$. This contradicts the assumption that $\langle v_1, v_2 \rangle$ contains but two zeros of f. Thus g has no linear factor over K.

Since g is reducible and has no linear factor, we conclude that g = hk, where deg h = 2, h is absolutely irreducible and h does not divide k. By Lemma 3.2, h has a nonsingular \mathbf{F}_q -rational zero which is not a zero of k. This gives a nonsingular \mathbf{F}_q -rational zero of g and thus a nonsingular \mathbf{F}_q -rational zero of f.

LEMMA 5.3. Let f be a quintic form in n variables over \mathbf{F}_q ; assume $q \ge 4$. Let $m \ge 1$ and assume that Z(f) contains an m-dimensional projective plane V and two points u, v not in V. Also assume that for every projective plane $W \subset V$ of codimension 1, we have either $\langle W, u \rangle \subset Z(f)$ or $\langle W, v \rangle \subset Z(f)$. If f does not have a nonsingular rational zero, either $\langle V, u \rangle \subset Z(f)$ or $\langle V, v \rangle \subset Z(f)$.

Proof. Let $[x_0:\dots:x_m]$ be homogeneous coordinates for V. Let W_1, \dots, W_{q+1} be the collection of codimension 1 projective planes in V defined by the equations

$$ax_{m-1} + bx_m = 0$$
, for $[a:b] \in \mathbf{P}^1(\mathbf{F}_a)$.

Easily we see that $V = \bigcup_{i=1}^{q+1} W_i$ and $\operatorname{codim}(\bigcap_{i=1}^{q+1} W_i) = 2$.

Since $q \ge 4$, there are at least five W_i . By a pigeonhole argument and appropriate relabeling, we may assume that $\langle W_i, u \rangle \subset Z(f), i = 1, 2, 3$.

Next we show that, for distinct $i, j \ (1 \le i, j \le 3)$,

(*)
$$\langle W_i, u \rangle \cap \langle W_j, u \rangle = \langle W_i \cap W_j, u \rangle$$

(**) $\langle W_i, u \rangle \cap \langle W_j, u \rangle = \bigcap_{i=1}^3 \langle W_i, u \rangle$

Clearly, the inclusion " \supseteq " holds in both statements. Observe that each $\langle W_i, u \rangle$ is an *m*-dimensional projective plane and $\langle W_i \cap W_j, u \rangle$ is an (m-1)-dimensional projective plane. In addition, $\langle W_i, u \rangle \neq \langle W_j, u \rangle$ since $\langle W_i, u \rangle \cap V = W_i$. Now equality in (*) follows easily by counting dimensions.

Since $W_i \cap W_j = \bigcap_{i=1}^3 W_i$, we see

$$\langle W_i, u \rangle \cap \langle W_j, u \rangle = \langle W_i \cap W_j, u \rangle = \left\langle \bigcap_{i=1}^3 W_i, u \right\rangle \subseteq \bigcap_{i=1}^3 \langle W_i, u \rangle,$$

and this proves (**).

Let $x \in \langle V, u \rangle$, $x \notin \bigcup_{i=1}^{3} \langle W_i, u \rangle$. Since $\operatorname{codim}(\bigcap_{i=1}^{3} W_i) = 2$, it follows from (*) and (**) that $\bigcap_{i=1}^{3} \langle W_i, u \rangle$ has codimension 2 in $\langle V, u \rangle$. Thus

there is a projective line L in $\langle V, u \rangle$ through x which does not intersect $\bigcap_{i=1}^{3} \langle W_i, u \rangle$. Since $x \notin \langle W_i, u \rangle$ and $\langle W_i, u \rangle$ has codimension 1 in $\langle V, u \rangle$, it follows that $L \cap \langle W_i, u \rangle$ consists of exactly one point u_i , for each *i*. The u_i are distinct, for if $u_i = u_j$, then from (**) we would have $u_i \in L \cap \langle W_i, u \rangle \cap \langle W_j, u \rangle = L \cap (\bigcap_{i=1}^{3} \langle W_i, u \rangle) = \emptyset$, a contradiction. We have shown that $L \cap Z(f)$ contains at least three points. By

We have shown that $L \cap Z(f)$ contains at least three points. By Lemma 5.1, we know that either L contains a nonsingular point of f or f vanishes identically on L. If $\langle V, u \rangle$ contains no nonsingular zero of f, then $x \in Z(f)$ for each $x \in \langle V, u \rangle$ and hence $\langle V, u \rangle \subseteq Z(f)$.

PROPOSITION 5.4. Let F be a reduced quintic form in at least 26 variables over a p-adic field K. Assume that q > 5. Then either F* satisfies the hypotheses of Lemma 5.2 or F* has a nonsingular zero over the residue class field of K.

Proof. Assume that F^* has no nonsingular zero over the residue class field of K. Let s be the maximum of the affine dimensions of the linear subspaces of $Z(F^*)$. By Lemma 3.1 and Proposition 4.3, $s \ge 1$.

If s = 1, then by Corollary 4.4, F^* has at least q + 1 projective zeros. They cannot all lie on a projective line since s = 1. Choose three, v_1, v_2, v_3 , which span a projective plane. Since s = 1, F^* does not vanish identically on any $\langle v_i, v_j \rangle$. By Lemma 5.1, v_1, v_2, v_3 satisfy the hypotheses of Lemma 5.2.

Assume now that $s \ge 2$. Let $V \subseteq Z(F^*)$ be a projective plane of maximal dimension s-1. It follows from Corollary 4.4 that $Z(F^*)$ contains at least two points not in V. Let $X = Z(F^*) - V$. We will show there exist $w \in V$ and $u, v \in X$ such that $\{u, v, w\}$ satisfies the hypotheses of Lemma 5.2. That is, $Z(F^*) \cap \langle u, v \rangle = \{u, v\}$, and similarly for $\{u, w\}$ and $\{v, w\}$.

Suppose there is no pair $u, v \in X$ such that $Z(F^*) \cap \langle u, v \rangle = \{u, v\}$. Then for all $x, y \in X$ with $x \neq y, \langle x, y \rangle \subseteq Z(F^*)$ by Lemma 5.1. Let W be a projective plane in $Z(F^*)$ of maximal dimension, not contained in V. Such a plane exists because $Z(F^*)$ contains $\langle x, y \rangle$, where $x, y \in X$. We will now show that $X \subseteq W$.

Suppose $w \in X$ and $w \notin W$. Then $W \cap V$ has positive codimension in W, since $W \nsubseteq V$. We have $W - (W \cap V) \subseteq X$ since $W \subseteq Z(F^*)$. Thus F^* vanishes on the complement of $\langle W \cap V, w \rangle$ in $\langle W, w \rangle$ because every element of this complement lies on a line joining two points of X, namely, a point of $W - (W \cap V)$ and w. Let H be a plane in $\langle W, w \rangle$ of codimension 1 containing $\langle W \cap V, w \rangle$ and let H be given by the equation g = 0. Then $gF^* = 0$ for every point of $\langle W, w \rangle$. Since q > 5, we conclude that gF^* is the zero polynomial on $\langle W, w \rangle$. Since g is not the zero polynomial on $\langle W, w \rangle$, it follows F^* is the zero polynomial on $\langle W, w \rangle$. Thus $\langle W, w \rangle$ $\subseteq Z(F^*)$, contradicting the maximality of dim W. Therefore, $X \subseteq W$. We have $Z(F^*) = V \cup W$ and dim $W \leq \dim V = s - 1$. Corollary 4.4 implies

$$N(F^*) = |W \cup V| \le |W| + |V| \le \frac{2(q^s - 1)}{q - 1} < \frac{(q^{s+1} - 1)}{q - 1} \le N(F^*),$$

a contradiction. Thus there must exist $u, v \in X$ such that $\langle u, v \rangle \cap Z(F^*) = \{u, v\}$.

Suppose now that for all $x \in V$, either $\langle u, x \rangle \subseteq Z(F^*)$ or $\langle v, x \rangle \subseteq Z(F^*)$. Then we may apply Lemma 5.3 inductively to conclude $\langle V, u \rangle \subseteq Z(F^*)$ or $\langle V, v \rangle \subseteq Z(F^*)$, each of which contradicts the maximality of dim V. Therefore, there exists $w \in V$ such that $\langle u, w \rangle \cap Z(F^*) = \{u, w\}$ and $\langle v, w \rangle \cap Z(F^*) = \{v, w\}$. We are done since $\{u, v, w\}$ satisfies the hypotheses of Lemma 5.2.

Proof of Theorem. Let F be a quintic form over a p-adic field K in at least 26 variables. By Corollary 4.2, we may assume F is reduced. By Proposition 5.4 we know that either F^* has a nonsingular rational zero or it satisfies the hypotheses of Lemma 5.2, in which case we may assume the restriction of F^* is absolutely irreducible. Then we apply Lemma 3.6 to conclude that F^* has a nonsingular rational zero. It then follows from Lemma 3.4 (Hensel's lemma) that F has a nontrivial rational zero.

References

- [Ar] E. ARTIN, "Collected Papers," Springer-Verlag, Berlin/New York, 1986.
- [Au] Y. AUBRY, Variétés sur un corps fini et codes géométriques algébriques, Dissertation, Université d'Aix-Marseille II. 1993.
- [A-K] J. AX AND S. KOCHEN, Diophantine problems over local fields, I, Am. J. Math. 87 (1965), 605–630.
- [Fu] WILLIAM FULTON, "Algebraic Curves," Addison-Wesley, Reading, MA, 1989.
- [G] M. J. GREENBERG, "Lectures on Forms in Many Variables," Benjamin, New York, 1969.
- [La] S. LANG, On quasi-algebraic closure, Ann. Math. 55 (1952), 373–390.
- [Lx-Lw] R. R. LAXTON AND D. J. LEWIS, Forms of degree 7 and 11 over p-adic fields, in "Proceedings of Symposia in Pure Mathematics," Vol. 7, pp. 16–21, Amer. Math. Soc., Providence, RI, 1965.
- [L-Y] DAVID B. LEEP AND CHARLES C. YEOMANS, The number of points on a singular curve over a finite field, Arch. Math. 63 (1994), 420–426.
- [Lw] D. J. LEWIS, Diophantine problems: Solved and unsolved, in "Number Theory and Applications," pp. 103–121, Kluwer Academic, Dordrecht/Norwell, MA, 1989.
- [S1] J.-P. SERRE, Nombre de points des courbes algébriques sur \mathbf{F}_q , Séminaire de Théorie des Nombres de Bordeaux 1982/83, No. 22. ("Coll. Works," Vol. III, pp. 664–668).
- [S2] J.-P. SERRE, Résumé des cours de 1983-84, "Coll. Works," Vol. III, pp. 701-705.
- [T] G. TERJANIAN, Un contre-exemple à une conjecture d'Artin, C. R. Acad. Sci. Paris 262 (1966), 612.
- [W] B. F. VAN DER WAERDEN, "Modern Algebra II" (3rd ed.), Ungar, New York, 1950.
- [Wa] E. WARNING, Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, *Abh. Math. Sem. Hamburg* 11 (1935), 76–83.