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Recently, a model f (R) theory is proposed (Miranda et al. (2009)) [1] which is cosmologically viable and
distinguishable from �CDM. We use chameleon mechanism to investigate viability of the model in terms
of Solar System experiments.
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1. Introduction

There are strong observational evidences that the expansion of
the universe is accelerating. These observations are based on type
Ia supernova [2], cosmic microwave background radiation [3], large
scale structure formation [4], weak lensing [5], etc. The standard
explanation invokes an unknown component, usually referred to as
dark energy. It contributes to energy density of the universe with
Ωd = 0.7 where Ωd is the corresponding density parameter, see,
e.g., [6] and references therein. The simplest dark energy scenario
which seems to be both natural and consistent with observations
is the �CDM model in which dark energy is identified as a cos-
mological constant [6–8]. However, in order to avoid theoretical
problems [7], other scenarios have been investigated. Among dif-
ferent scenarios there are modified gravity models [9], in which
one modifies the laws of gravity whereby a late time acceleration
is produced without recourse to a dark energy component. One
family of these modified gravity models is obtained by replacing
the Ricci scalar R in the usual Einstein–Hilbert Lagrangian density
for some function f (R). These models are cosmologically accept-
able if they meet some certain conditions. The most important
ones is that they should follow a usual matter-dominated era pre-
ceding a late-time accelerated stage. Several models are proposed
that admit cosmological solutions with accelerated expansion of
the universe at late times [10]. However, among all cosmologically
viable f (R) theories there is still an important issue to be pursued,
they must be probed at Solar System scale. In fact, changing grav-
ity Lagrangian has consequences not only in cosmological scales
but also in galactic and Solar System ones so that it seems to be
necessary to investigate the low energy limit of such f (R) theo-
ries.
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Early works on the weak field limit of f (R) theories led to
negative results. Using the equivalence of f (R) and scalar-tensor
theories [11–13], it is originally suggested that all f (R) theories
should be ruled out [14] since they violate the weak field con-
straints coming from Solar System experiments. This claim was
based on the fact that f (R) theories (in the metric formalism) are
equivalent to Brans–Dicke theory with ω = 0 while observations
set the constraint ω > 40 000 [15]. In this case the post-Newtonian
parameter satisfies γ = 1

2 instead of being equal to unity as re-
quired by observations. Later, it was noted by many authors that
for scalar fields with sufficiently large mass it is possible to drive
γ close to unity even for null Brans–Dicke parameter. In this case
the scalar field becomes short-ranged and has no effect at Solar
System scales. Recently, it is shown that there exists an important
possibility that the effective mass of the scalar field be scale de-
pendent [16]. In this chameleon mechanism, the scalar field may
acquire a large effective mass in Solar System scale so that it hides
local experiments while at cosmological scales it is effectively light
and may provide an appropriate cosmological behavior.

In the present work we intend to use this criterion to inves-
tigate constraints set by local experiments on a cosmologically
viable model recently proposed by Miranda et al. [1]. It is a two
parameter f (R) model which is introduced in the form

f (R) = R − αR1 ln

(
1 + R

R1

)
(1)

where α and R1 are positive parameters. This model is reduced
to general relativity for α = 0. A cosmologically viable f (R) model
must start with a radiation-dominated era and have a saddle point
matter-dominated phase followed by an accelerated epoch as a fi-
nal attractor. This is formally stated by introducing the parameters

m = R d2 f /dR2

dR2 and r = −R df /dR
f [17]. The cosmological dynamics of

f (R) models can then be understood by considering m(r) curves
in the (r,m) plane. Using this criteria, the authors of [1] showed
that the model (1) satisfies all the cosmological requirements for
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α > 1 and regardless of R1.1 Here we will focus on viability of the
model in terms of local gravity experiments. We will show that
these local experiments rule out the model as an explanation for
the current accelerated expansion of the universe.

2. Chameleon mechanism

In this section we offer a brief review of the chameleon mech-
anism. We consider the following action2

S = 1

2

∫
d4x

√−g f (R) + Sm(gμν,ψ) (2)

where g is the determinant of gμν , f (R) is an unknown function
of the scalar curvature R and Sm is the matter action depending
on the metric gμν and some matter field ψ . We may use a new
set of variables

ḡμν = pgμν (3)

φ = 1

2β
ln p (4)

where p ≡ df
dR = f ′(R) and β =

√
1
6 . This is indeed a conformal

transformation which transforms the above action in the Jordan
frame to the Einstein frame [11–13]

S = 1

2

∫
d4x

√−g
{

R̄ − ḡμν∂μφ∂νφ − 2V (φ)
}

+ Sm
(

ḡμνe2βφ,ψ
)

(5)

In the Einstein frame, φ is a scalar field with a self-interacting po-
tential which is given by

V (φ) = 1

2
e−2βφ

{
r
[

p(φ)
] − e−2βφ f

(
r
[

p(φ)
])}

(6)

where r(p) is a solution of the equation f ′[r(p)] − p = 0 [11].
Note that conformal transformation induces the coupling of the
scalar field φ with the matter sector. The strength of this cou-

pling β , is fixed to be
√

1
6 and is the same for all types of matter

fields. In the case of such a strong matter coupling, the role of
the potential of the scalar field is important for consistency with
local gravity experiments. When the potential satisfies certain con-
ditions it is possible to attribute an effective mass to the scalar
field which has a strong dependence on ambient density of mat-
ter. A theory in which such a dependence is realized is said to be
a chameleon theory [16]. In such a theory the scalar field φ can be
heavy enough in the environment of the laboratory tests so that
the local gravity constraints suppressed even if β is of the order of
unity. Meanwhile, it can be light enough in the low-density cos-
mological environment to be considered as a candidate for dark
energy.

Variation of the action (2) with respect to ḡμν and φ, gives the
field equations

Ḡμν = ∂μφ∂νφ − 1

2
ḡμν∂γ φ∂γ φ − V (φ)ḡμν + T̄μν (7)

�̄φ − dV

dφ
= −β T̄ (8)

1 In the model proposed in [1], it is stated that the relation (1) is a special case of
a general parametrization unifying the models of [18] and [19]. In the latter mod-
els there is a parameter with the same dimension of R1 which is taken to be of the
same order of the presently observed cosmological constant. The relation between
this parameter and R1 and also the relevance of R1 with the time of the begin-
ning of the acceleration phase are important issues that are not explicitly addressed
in [1].

2 We use the unit (8πG)−1 = 1.
where

T̄μν = −2√−g

δSm

δ ḡμν
(9)

and T̄ = ḡμν T̄μν . Covariant differentiation of (7) and the Bianchi
identities give

∇̄μ T̄μν = β T̄ ∂νφ (10)

which implies that the matter field is not generally conserved and
feels a new force due to gradient of the scalar field. Let us consider
T̄μν as the stress-tensor of dust with energy density ρ̄ in the Ein-
stein frame. In a static and spherically symmetric spacetime Eq. (8)
gives

d2φ

dr̄2
+ 2

r̄

dφ

dr̄
= dV eff(φ)

dφ
(11)

where r̄ is distance from center of the symmetry in the Einstein
frame and

V eff(φ) = V (φ) − 1

4
ρe−4βφ (12)

Here we have used the relation ρ̄ = e−4βφρ that relates the en-
ergy densities in the Jordan and the Einstein frames. We consider
a spherically symmetric body with a radius r̄c and a constant en-
ergy density ρ̄in (r̄ < r̄c). We also assume that the energy density
outside the body (r̄ > r̄c) is given by ρ̄out. We will denote by ϕin
and ϕout the field values at two minima of the effective poten-
tial V eff(φ) inside and outside the object, respectively. They must
clearly satisfy V ′

eff(ϕin) = 0 and V ′
eff(ϕout) = 0 where prime indi-

cates differentiation of V eff(φ) with respect to the argument. As
usual, masses of small fluctuations about these minima are given

by min = [V ′′
eff(ϕin)] 1

2 and mout = [V ′′
eff(ϕout)] 1

2 which depend on
ambient matter density. A region with large mass density corre-
sponds to a heavy mass field while regions with low mass density
corresponds to a field with lighter mass. In this way it is possible
for the mass field to take sufficiently large values near massive ob-
jects in the Solar System scale and to hide the local tests. For a
spherically symmetric body there is a thin-shell condition

�r̄c

r̄c
= ϕout − ϕin

6βΦc
� 1 (13)

where Φc = Mc/8π r̄c is the Newtonian potential at r̄ = r̄c with
Mc being the mass of the body. In this case, Eq. (11) with some
appropriate boundary conditions gives the field profile outside the
object [16]

φ(r̄) = − β

4π

3�r̄c

r̄c

Mce−mout(r̄−r̄c)

r̄
+ ϕout (14)

3. The model

The function f (R) in the Jordan frame is closely related to the
potential function of the scalar degree of freedom of the theory
in the Einstein frame. Any functional form for the potential func-
tion corresponds to a particular class of f (R) theories. To find a
viable function f (R) passing Solar System tests one can equiva-
lently work with its corresponding potential function in the Ein-
stein frame and put constraints on the relevant parameters via
chameleon mechanism. Taking this as our criterion, we write po-
tential function of the model (1)

V (φ) = 1
R1e−4βφ

{
α ln

(
α

2βφ

)
− e2βφ − (α − 1)

}
(15)
2 1 − e
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Assuming that φ � 1, one can find the solution of V ′
eff(φ) = 0 by

substituting (15) into (12)

ϕ = 1

2A

{−C ±
√

C2 − 4AB
}

(16)

where

A = 2β2 R1(1 − 2α) (17)

B = −1

2
αR1 (18)

C = β
[
ρ + R1(α − 1) − 2αR1 lnα

]
(19)

In the following we shall consider thin-shell condition together
with constraints set by equivalence principle and fifth force ex-
periments.

3.1. Thin-shell condition

In the chameleon mechanism, the chameleon field is trapped
inside large and massive bodies and its influence on the other bod-
ies is only due to a thin-shell near the surface of the body. The
criterion for this thin-shell condition is given by (13). If we com-
bine (13) and (16) we obtain

�r̄c

r̄c
= 1

12Φc A

{
(ρin − ρout) ±

√
(ρout + a)2 − b

∓
√

(ρin + a)2 − b
}

(20)

where ρin and ρout are energy densities inside and outside of the
body in the Jordan frame. Here a = A

β
− ρ and b = 4αR2

1(2α − 1).
In weak field approximation, the spherically symmetric metric in
the Jordan frame is given by

ds2 = −[
1 − 2X(r)

]
dt2 + [

1 + 2Y (r)
]

dr2 + r2 dΩ2 (21)

where X(r) and Y (r) are some functions of r. There is a relation
between r and r̄ so that r̄ = p1/2r. If we consider this relation
under the assumption moutr � 1, namely that the Compton wave-
length m−1

out is much larger than Solar System scales, then we have
r̄ ≈ r. In this case, the chameleon mechanism gives for the post-
Newtonian parameter γ [20]

γ = 3 − �rc
rc

3 + �rc
rc

	 1 − 2

3

�rc

rc
(22)

We can now apply (20) on the Earth and obtain the condition that
the Earth has a thin-shell. To do this, we assume that the Earth
is a solid sphere of radius Re = 6.4 × 108 cm and mean density
ρe ∼ 10 g/cm3. We also assume that the Earth is surrounded by
an atmosphere with homogeneous density ρa ∼ 10−3 g/cm3 and
thickness 100 km. For simplifying equation (20), we proceed under
the assumption ρin,ρout � R1α.3 We will return to this issue later.
In this case, Eq. (20) simplifies to

�Re

Re
≈ 1

4Φe

(ρin − ρout)

R1(1 − 2α)
(23)

where Φe = 6.95 × 10−10 [21] is Newtonian potential on surface of
the Earth. The tightest Solar System constraint on γ comes from
Cassini tracking which gives |γ − 1| < 2.3 × 10−5 [15]. This to-
gether with (22) and (23) yields

(1 − 2α) > 1013
(

ρin

R1

)
(24)

3 It can be easily checked that our main results do not change when ρin,ρout �
R1α.
With ρin = ρe = 7×10−28 cm−2, this is equivalent to R1(1−2α) >

10−15 cm−2.

3.2. Equivalence principle

We now consider constraints coming from possible violation of
weak equivalence principle. We assume that the Earth, together
with its surrounding atmosphere, is an isolated body and ne-
glect the effect of the other compact objects such as the Sun,
the Moon and the other planets. Far away the Earth, matter den-
sity is modeled by a homogeneous gas with energy density ρG ∼
10−24 g/cm3. To proceed further, we first consider the condition
that the atmosphere of the Earth satisfies the thin-shell condi-
tion [16]. If the atmosphere has a thin-shell the thickness of the
shell (�Ra) must be clearly smaller than that of the atmosphere
itself, namely �Ra < Ra , where Ra is the outer radius of the at-
mosphere. If we take thickness of the shell equal to that of the
atmosphere itself �Ra ∼ 102 km we obtain �Ra

Ra
< 1.5 × 10−2. It is

then possible to relate �Re
Re

= ϕa−ϕe
6βΦe

and �Ra
Ra

= ϕG −ϕa
6βΦa

where ϕe ,
ϕa and ϕG are the field values at the local minimum of the effec-
tive potential in the regions r < Re , Ra > r > Re and r > Ra respec-
tively. Using the fact that Newtonian potential inside a spherically
symmetric object with mass density ρ is Φ ∝ ρR2, one can write
Φe = 104Φa where Φe and Φa are Newtonian potentials on the
surface of the Earth and the atmosphere, respectively. This gives
�Re/Re ≈ 10−4�Ra/Ra . With these results, the condition for the
atmosphere to have a thin-shell is

�Re

Re
< 1.5 × 10−6 (25)

The tests of equivalence principle measure the difference of free-
fall acceleration of the Moon and the Earth towards the Sun.
The constraint on the difference of the two acceleration is given
by [15]

|am − ae|
aN

< 10−13 (26)

where am and ae are acceleration of the Moon and the Earth re-
spectively and aN is the Newtonian acceleration. The Sun and the
Moon are all subject to the thin-shell condition [16] and the field
profile outside the spheres are given by (14) with replacement
of corresponding quantities. The accelerations am and ae are then
given by [16]

ae ≈ aN

{
1 + 18β2

(
�Re

Re

)2
Φe

Φs

}
(27)

am ≈ aN

{
1 + 18β2

(
�Re

Re

)2
Φ2

e

ΦsΦm

}
(28)

where Φe = 6.95×10−10, Φm = 3.14×10−11 and Φs = 2.12×10−6

are Newtonian potentials on the surfaces of the Earth, the Moon
and the Sun, respectively [21]. This gives a difference of free-fall
acceleration

|am − ae|
aN

= (0.13)β2
(

�Re

Re

)2

(29)

Combining this with (26) results in

�Re

Re
< 6.74 × 10−6 (30)

which is of the same order of the condition (25) that the atmo-
sphere has a thin-shell. Taking this as the constraint coming from
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violation of equivalence principle and combining with (23), we ob-
tain

(1 − 2α) >
(
1014)(ρin

R1

)
(31)

which is not much different from (24).

3.3. Fifth force

The potential energy associated with a fifth force interaction is
parameterized by a Yukawa potential

U (r) = −ε
m1m2

8π

e−r/λ

r
(32)

where m1 and m2 are masses of the two test bodies separating by
distance r, ε is strength of the interaction and λ is the range. Thus
fifth force experiment constrains regions of (ε,λ) parameter space.
These experiments are usually carried out in a vacuum chamber in
which the range of the interaction inside it is of the order of the
size of the chamber [16], namely λ ∼ Rvac. The tightest bound on
the strength of the interaction is ε < 10−3 [22]. Inside the chamber
we consider two identical bodies with uniform densities ρc , radii
rc and masses mc . If the two bodies satisfy the thin-shell condition,
their field profile outside the bodies are given by

φ(r) = − β

4π

3�rc

rc

mce−r/Rvac

r
+ ϕvac (33)

Then the corresponding potential energy of the interaction is

V (r) = −2β2
(

3�rc

rc

)2 m2
c

8π

e−r/Rvac

r
(34)

The bound on the strength of the interaction translates into

2β2
(

3�rc

rc

)2

< 10−3 (35)

One can write for each of the test bodies

�rc

rc
≈ 1

4Φc

(ρc − ρvac)

R1(1 − 2α)
(36)

where ρvac is energy density of the vacuum inside the chamber.
In the experiment carried out in [22], one used a typical test body
with mass mc ≈ 40 g and radius rc ≈ 1 cm. These correspond to
ρc ≈ 9.5 g/cm3 and Φc ∼ 10−27. Moreover, the pressure in the
vacuum chamber was reported to be 3 × 10−8 Torr which is equiv-
alent to ρvac ≈ 4.8 × 10−14 g/cm3. Substituting these into (36) and
combining the result with (35) gives the bound

(1 − 2α) >
(
1027)( ρc

R1

)
(37)

which is equivalent to R1(1 − 2α) > 10−1 cm−2.

4. Discussion

We have discussed viability of the f (R) model proposed in [1]
in terms of local gravity constraints. We have used the correspon-
dence between a general f (R) theory with scalar field theories. In
general, in the scalar field representation of an f (R) theory there
is a strong coupling of the scalar field with the matter sector. We
have considered the conditions that this coupling is suppressed
by chameleon mechanism. We have found that in order that the
model (1) be consistent both with fifth force and equivalence prin-
ciple experiments, the two parameters α and R1 together should
satisfy the condition R1(1 − 2α) > 10−1 cm−2. To have a bound on
the parameter α, one should attribute a physical meaning to the
dimensional quantity R1. Following the models proposed by Hu
and Sawicki [18] and Starobinski [19], if we take it as the same or-
der of the observed cosmological constant Λobs ∼ 10−58 cm−2 we
obtain |2α − 1| > 1057.

It should be pointed out that this result is obtained under the
assumption ρin,ρout � R1α. To understand the relevance of this
assumption, let us consider the case that ρin,ρout ∼ R1α. Taking
energy density inside the Earth as a typical energy density in the
Solar System, we obtain R1α ∼ 10−28 cm−2. In the model (1), if
the coefficient R1α is so small then it would be hardly distinguish-
able from general relativity. As the point of view of local gravity
experiments, a viable f (R) model should simultaneously satisfy
Solar System bounds as well as exhibit an appropriate devia-
tion from general relativity. This requires that R1α � 10−28 cm−2,
which confirms the assumption that our results are based on.

The last point we wish to remark is that, as reported by the
authors of [1], the condition that the universe pass through a
matter-dominated epoch and finally reach a late-time accelerated
phase is that α > 1 regardless of R1. This seems not to be consis-
tent with our results in the context of the chameleon mechanism.
Although our analysis do not place any experimental bound on the
parameter R1, however for R1 > 0 the relation (37) implies that
α ∈ (−∞, 1

2 ] which is out of the range reported in [1].
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