

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 317 (2000) 127-141

www.elsevier.com/locate/laa

Numerical range of linear pencils

Panayiotis J. Psarrakos

Department of Mathematics and Statistics, University of Calgary, Calgary, Alta., Canada T2N 1N4 Received 23 October 1999; accepted 20 April 2000

Dedicated to the memory of Thilo Penzl

Submitted by C.-K. Li

Abstract

Consider a linear pencil $A\lambda + B$, where *A* and *B* are $n \times n$ complex matrices. The numerical range of $A\lambda + B$ is defined as

$$W(A\lambda + B) = \left\{ \lambda \in \mathbb{C} \colon x^*(A\lambda + B)x = 0 \text{ for some nonzero } x \in \mathbb{C}^n \right\}$$

In this paper, we study the geometrical properties of $W(A\lambda + B)$, with emphasis to its boundary. An answer to the problem of the numerical approximation of $W(A\lambda + B)$, when one of the coefficients A and B is Hermitian, is presented. The numerical range of a matrix on an indefinite inner product space is also considered. © 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A60; 15A63

Keywords: Linear pencil; Eigenvalue; Numerical range; Boundary

1. Introduction

Let $A\lambda + B$ be a *linear pencil*, where *A* and *B* are $n \times n$ complex matrices and λ is a complex variable. If A = I, then the pencil $A\lambda + B$ is called *monic* and if the matrices *A* and *B* are Hermitian, then it is called *selfadjoint*. The study of linear pencils has a long history [1–3], usually in the context of their spectral analysis.

E-mail addresses: panos@math.ucalgary.ca, panos@math.uregina.ca, ppsarr@math.ntua.gr (P.J. Psarrakos).

^{0024-3795/00/\$ -} see front matter \odot 2000 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 1 4 5 - 2

A complex number λ_0 is said to be an *eigenvalue* of $A\lambda + B$ if the equation

$$(A\lambda_0 + B)x = 0$$

has a nonzero solution $x_0 \in \mathbb{C}^n$. The vector x_0 is known as an *eigenvector* of $A\lambda + B$ corresponding to the eigenvalue λ_0 . The set of all eigenvalues of the linear pencil $A\lambda + B$ is known as the *spectrum* of $A\lambda + B$, namely,

$$\sigma(A\lambda + B) = \{\lambda \in \mathbb{C} : \det(A\lambda + B) = 0\}.$$

The spectrum $\sigma(A\lambda + B)$ coincides with the complex plane \mathbb{C} or it contains no more than *n* points. The multiplicity of λ_0 , as a root of the equation det $(A\lambda + B) = 0$, is called *algebraic multiplicity* of λ_0 . The vectors x_1, x_2, \ldots, x_m are said to be *associated* to the eigenvector x_0 if

$$Ax_{j-1} + (A\lambda_0 + B)x_j = 0, \quad j = 1, 2, \dots, m.$$

The system of vectors $x_0, x_1, x_2, ..., x_m$ is known as a *Jordan chain* (*of length* m + 1) of $A\lambda + B$ corresponding to the eigenvalue λ_0 and it leads to a solution of the differential equation

$$Au'(t) + Bu(t) = 0.$$

The dimension of the kernel Ker($A\lambda_0 + B$) is called *geometric multiplicity* of λ_0 and it is no greater than the algebraic one. If the geometric multiplicity of λ_0 is equal to the algebraic multiplicity, then the eigenvalue λ_0 is called *semisimple*. In this case, all the corresponding *elementary divisors* (see [3,4] for definitions) are linear and all the corresponding Jordan chains have length 1.

The *numerical range* of the pencil $A\lambda + B$ is defined by

$$W(A\lambda + B) = \{\lambda \in \mathbb{C} : x^*(A\lambda + B)x = 0 \text{ for some nonzero } x \in \mathbb{C}^n\}$$
(1)

and it always contains the spectrum $\sigma(A\lambda + B)$. In this paper, we assume that $\sigma(A\lambda + B) \neq \mathbb{C}$, i.e., the linear pencil $A\lambda + B$ is *regular*. The numerical range $W(A\lambda + B)$ in (1) is a generalization of the *classical numerical range (field of values)* of an $n \times n$ complex matrix A,

$$F(A) = \{ x^* A x \in \mathbb{C} \colon x \in \mathbb{C}^n \text{ with } x^* x = 1 \}.$$

Indeed, it is obvious that $W(I\lambda - A) = F(A)$. One can find a complete survey of the properties of F(A) in [5].

In Section 2, we study the boundary of the numerical range $W(A\lambda + B)$ in (1), and we investigate the interplay between the geometrical properties of $W(A\lambda + B)$ and the algebraic and analytic properties of the pencil $A\lambda + B$. Moreover, it is obtained that the eigenvalues of $A\lambda + B$ on the boundary of $W(A\lambda + B)$ are semisimple. In Section 3, we consider selfadjoint linear pencils and the real endpoints of their numerical range. In Section 4, we generate the boundary of $W(A\lambda + H + iS)$, where the matrices A, H and S are Hermitian. Finally, in Section 5, connections are made with the notion of the *Krein space numerical range*.

128

2. Geometry and boundary

Consider an $n \times n$ linear pencil $A\lambda + B$ ($A \neq 0$) and its numerical range $W(A\lambda + B)$ in (1). Then it is easy to verify the following properties of $W(A\lambda + B)$ [6].

Proposition 1. Let $A\lambda + B$ be an $n \times n$ linear pencil, where $A \neq 0$.

- (i) $W(A\lambda + B)$ is a closed subset of \mathbb{C} .
- (ii) For every $\mu \in \mathbb{C}$, $W(A(\lambda + \mu) + B) = W(A\lambda + B) \mu$.
- (iii) $W(A\lambda + B) \setminus \{0\} = \{\lambda^{-1} \in \mathbb{C} : \lambda \in W(B\lambda + A) \setminus \{0\}\}.$
- (iv) For every $n \times r$ matrix Q of rank r, with $r \leq n$, we have that $W(Q^*(A\lambda + B)Q) \subseteq W(A\lambda + B)$. Equality holds if r = n.
- (v) If the matrices A and B have a nonzero common isotropic vector $x_0 \in \mathbb{C}^n$, i.e., $x_0^*Ax_0 = x_0^*Bx_0 = 0$, then $W(A\lambda + B) \equiv \mathbb{C}$.
- (vi) $W(A\lambda + B)$ is bounded if and only if $0 \notin F(A)$.
- (vii) In general, $W(A\lambda + B)$ is connected. Only if A is an indefinite Hermitian matrix, then $W(A\lambda + B)$ may have two unbounded connected components.

Note that $W(A\lambda + B)$ is not always bounded or connected and even if it is bounded and connected it is not always convex.

Proposition 2. Let $A\lambda + B$ be an $n \times n$ linear pencil, where $A \neq 0$.

- (i) $W(A\lambda + B) = \{\lambda_0\}$ if and only if $0 \notin F(A)$ and $B = -\lambda_0 A$.
- (ii) If the matrices A and B are real, then the numerical range $W(A\lambda + B)$ is symmetric with respect to the \mathbb{R} -axis.

Proof. (i) For the complex number λ_0 , we have that $x^*(A\lambda_0 + B)x = 0$ for every $x \in \mathbb{C}^n$ if and only if $A\lambda_0 + B = 0$.

(ii) Consider a point $\lambda_0 \in W(A\lambda + B)$ and a nonzero vector $x_0 \in \mathbb{C}^n$ such that $x_0^*(A\lambda_0 + B)x_0 = 0$. By the conjucate of this equation, it follows that $x_0^T(A\overline{\lambda}_0 + B)\overline{x}_0 = 0$ and consequently, $\overline{\lambda}_0 \in W(A\lambda + B)$. \Box

In [7], Maroulas and Psarrakos investigate the boundary and the sharp points of the numerical range of matrix polynomials of arbitrary degree. A point $\lambda_0 \in \partial W(A\lambda + B)$ is called *sharp point* of $W(A\lambda + B)$ if there exist a disk $S(\lambda_0, r)$ (r > 0) and three angles $\varphi_1, \varphi_2, \psi_0 \in [0, 2\pi]$, with $0 \le \varphi_2 - \varphi_1 \le \psi_0 < \pi$ such that

$$\varphi_1 \leqslant \operatorname{Arg}(z - \lambda_0) \leqslant \varphi_2,$$

for every $z \in W(A\lambda + B) \cap S(\lambda_0, r)$.

Theorem 3 (see Theorem 1.1 in [7]). If λ_0 is a boundary point of $W(A\lambda + B)$, then the origin is a boundary point of $F(A\lambda_0 + B)$.

Theorem 4 (see Theorem 1.3 in [7]). If λ_0 is a sharp point of $W(A\lambda + B)$, then the origin is a sharp point of $F(A\lambda_0 + B)$. In particular, λ_0 is an eigenvalue of the pencil $A\lambda + B$.

If $W(A\lambda + B)$ is bounded, then we can estimate the length of the Jordan chains which correspond to eigenvalues of $A\lambda + B$ on the boundary of $W(A\lambda + B)$ (see also Theorem 1.6.6 in [5]).

Theorem 5. Let $A\lambda + B$ be an $n \times n$ linear pencil and assume that its numerical range $W(A\lambda + B)$ is bounded. If $\lambda_0 \in \sigma(A\lambda + B) \cap \partial W(A\lambda + B)$, then every Jordan chain corresponding to λ_0 has length equal to 1, i.e., λ_0 is a semisimple eigenvalue of $A\lambda + B$.

Proof. Since λ_0 is a boundary point of $W(A\lambda + B)$, there exist an angle φ_0 and a real r > 0 such that

$$\{\lambda_0 + \rho e^{i\varphi_0} \colon \rho \in [0, r]\} \cap W(A\lambda + B) = \{\lambda_0\}.$$

Suppose that for every angle $\varphi \in [0, 2\pi] \setminus \varphi_0$ there exists a real $\rho_{\varphi} > 0$ such that $\lambda_0 + \rho_{\varphi} e^{i\varphi} \in W(A\lambda + B)$. Hence,

$$0 \in F(A\lambda_0 + B) + \rho_{\varphi} e^{i\varphi} F(A) \quad \text{for all } \varphi \in [0, 2\pi] \setminus \varphi_0.$$
(2)

The numerical range $F(A\lambda_0 + B)$ is convex [5] and the origin belongs to its boundary (see Theorem 3). Moreover, F(A) is convex and it does not contain the origin. Consequently, there exist infinitely many angles $\varphi \in [0, 2\pi]$ such that the range $F(A\lambda_0 + B) + \rho_{\varphi} e^{i\varphi} F(A)$ does not contain the origin. Thus, (2) is not true and there exists a cone

$$\mathscr{L} = \{ z \in \mathbb{C} : \varphi_1 \leqslant \operatorname{Arg}(z - \lambda_0) \leqslant \varphi_2, \ 0 < \varphi_2 - \varphi_1 < \pi \}$$

such that

$$\mathscr{L} \cap W(A\lambda + B) = \{\lambda_0\}.$$

By Theorem 2 in [8], every Jordan chain corresponding to λ_0 has length equal to 1. \Box

Moreover, a sufficient condition for the pencil $A\lambda + B$ to be diagonalizable, can be formulated in terms of $W(A\lambda + B)$.

Proposition 6. Let $A\lambda + B$ be an $n \times n$ linear pencil and assume that the numerical range $W(A\lambda + B)$ is bounded. If $\sigma(A\lambda + B) \subset \partial W(A\lambda + B)$, then there exist two $n \times n$ invertible matrices P and Q such that the pencil $P(A\lambda + B)Q$ is diagonal.

Proof. Since the conditions of Theorem 5 hold, all the elementary divisors of $A\lambda + B$ are linear. Hence, by Theorem 1, Section 7.7, in [4], the proof is complete.

Next we prove the converse statement of Theorem 3.

Theorem 7. Let $A\lambda + B$ be an $n \times n$ linear pencil and let the numerical range $W(A\lambda + B)$ in (1) be bounded. If λ_0 is a point of $W(A\lambda + B)$ such that the origin is a boundary point of $F(A\lambda_0 + B)$, then $\lambda_0 \in \partial W(A\lambda + B)$.

Proof. Suppose that λ_0 is an interior point of $W(A\lambda + B)$. Then there exists a real number $\varepsilon > 0$ such that $S(\lambda_0, \varepsilon) \subset W(A\lambda + B)$. Consequently, for every complex number z_0 with $|z_0| < \varepsilon$, there exists a nonzero vector x_0 such that

$$x_0^*(A\lambda_0 + B)x_0 = -z_0(x_0^*Ax_0).$$
(3)

Moreover, $0 \in \partial F(A\lambda_0 + B)$, $0 \notin F(A)$ and the numerical ranges F(A) and $F(A\lambda_0 + B)$ are convex. So, there exist five angles $\varphi_1, \varphi_2, \psi_0, \vartheta_1, \vartheta_2 \in [0, 2\pi)$, with $0 \leq \varphi_2 - \varphi_1 \leq \psi_0 < \pi$ and $0 \leq \vartheta_2 - \vartheta_1 \leq \pi$ such that

 $F(A) \subset \{z \in \mathbb{C} \colon \varphi_1 \leqslant \operatorname{Arg} z \leqslant \varphi_2\}$

and

$$F(A\lambda_0 + B) \subset \{z \in \mathbb{C} \colon \vartheta_1 \leqslant \operatorname{Arg} z \leqslant \vartheta_2\}.$$

By Eq. (3),

$$\operatorname{Arg}[x_0^*(A\lambda_0 + B)x_0] - \operatorname{Arg}(x_0^*Ax_0) = \operatorname{Arg}(-z_0)$$

cannot be true for every $z_0 \in \mathbb{C}$ with $|z_0| \leq \varepsilon$. Thus, λ_0 is a boundary point of $W(A\lambda + B)$. \Box

3. Selfadjoint pencils

In this section, we consider selfadjoint pencils $A\lambda + B$, i.e., the matrices A and B are Hermitian. In this case, the numerical range $W(A\lambda + B)$ in (1) is a subset of \mathbb{R} -axis or it coincides with the complex plane \mathbb{C} . If $W(A\lambda + B) \neq \mathbb{C}$, then an interesting extension of Proposition 6 follows from Theorem 1.7.17 in [5].

Proposition 8. Let $A\lambda + B$ be an $n \times n$ linear selfadjoint pencil with numerical range $W(A\lambda + B) \neq \mathbb{C}$. Then there exists an invertible matrix Q such that the pencil $Q^*(A\lambda + B)Q$ is diagonal.

Note that in the previous proposition, all the elementary divisors of $A\lambda + B$ are linear and $W(Q^*(A\lambda + B)Q) = W(A\lambda + B)$.

The shape of $W(A\lambda + B)$ is described in Theorem 4.1 in [6].

Theorem 9. Let $A\lambda + B$ be an $n \times n$ selfadjoint pencil with $W(A\lambda + B) \neq \mathbb{C}$. Then we have exactly one of the following cases:

- (i) If the matrix A is (positive or negative) definite, then $W(A\lambda + B)$ is a bounded closed interval in \mathbb{R} .
- (ii) If A is semidefinite, then W(Aλ + B) is an unbounded interval of the form [a, +∞) or (-∞, a].
- (iii) If A is indefinite and B is definite, then $W(A\lambda + B)$ is the union of two distinct unbounded intervals in \mathbb{R} such that $0 \notin W(A\lambda + B)$.
- (iv) If A is indefinite and B is semidefinite, then $W(A\lambda + B)$ is the union of two distinct unbounded intervals in \mathbb{R} such that $0 \in W(A\lambda + B)$.
- (v) If A and B are both indefinite, then $W(A\lambda + B) \equiv \mathbb{R}$.

In all cases, the finite endpoints of the intervals are eigenvalues of the pencil $A\lambda + B$.

A question, which arises in a natural way, is what one can say about the *real* boundary of $W(A\lambda + B)$, i.e.,

$$\hat{\partial}_{\mathbb{R}}W(A\lambda + B) = W(A\lambda + B) \cap [\mathbb{R} \setminus W(A\lambda + B)].$$

In fact, if we consider the real boundary of F(A), namely,

 $\partial_{\mathbb{R}}F(A) = F(A) \cap [\overline{\mathbb{R} \setminus F(A)}],$

then a statement similar to Theorems 3 and 7 can be obtained.

Theorem 10. Let $A\lambda + B$ be an $n \times n$ selfadjoint pencil with $W(A\lambda + B) \neq \mathbb{C}$. If λ_0 is a nonzero point of $W(A\lambda + B)$, then $\lambda_0 \in \partial_{\mathbb{R}} W(A\lambda + B)$ if and only if $0 \in \partial_{\mathbb{R}} F(A\lambda_0 + B)$.

Proof. Since $\lambda_0 \in \partial_{\mathbb{R}} W(A\lambda + B)$, there exists a sequence of points $\{\lambda_k\}_{k \in \mathbb{N}} \in \mathbb{R} \setminus W(A\lambda + B)$ converging to λ_0 . Hence, for every $k \in \mathbb{N}$, the origin does not belong to $F(A\lambda_k + B)$ and without lost of generality, we can assume that all the matrices

 $A\lambda_k + B, \quad k \in \mathbb{N},$

are positive definite. The sequence of the numerical ranges $F(A\lambda_k + B) = [a_k, b_k]$ with $0 < a_k < b_k$, $k \in \mathbb{N}$, converges to $F(A\lambda_0 + B)$ and $0 \in F(A\lambda_0 + B)$. So, the matrix $A\lambda_0 + B$ is positive semidefinite, i.e., $0 \in \partial_{\mathbb{R}} F(A\lambda_0 + B)$.

For the converse, suppose that $\lambda_0 \in W(A\lambda + B)$ and $0 \in \partial_{\mathbb{R}}F(A\lambda_0 + B)$. Then without lost of generality, we can assume that the matrix $A\lambda_0 + B$ is positive semidefinite with $F(A\lambda_0 + B) = [0, b]$ and investigate the following cases.

(i) If the matrix *A* is positive definite or positive semidefinite and $x_0 \in \mathbb{C}^n$ is a vector such that $x_0^*Ax_0 \neq 0$ and $\lambda_0 = -(x_0^*Bx_0)/(x_0^*Ax_0)$, then there exists a real number $r_0 > 0$ such that $x^*Ax > 0$ for every $x \in S(x_0, r_0)$. Moreover,

$$\lambda_0 - \left(-\frac{x^*Bx}{x^*Ax}\right) = \frac{x^*(A\lambda_0 + B)x}{x^*Ax} \ge 0,$$

i.e., for every $x \in S(x_0, r_0)$, the root of equation $x^*(A\lambda + B)x = 0$ is not greater than λ_0 . By the continuity of the root $\lambda_0 = -(x^*Bx)/(x^*Ax)$ ($x^*Ax \neq 0$) with respect to *x*, it follows that $\lambda_0 \in \partial_{\mathbb{R}} W(A\lambda + B)$.

132

(ii) Suppose that *A* is indefinite and *B* is positive definite or positive semidefinite. Since $\lambda_0 \neq 0$, for every nonzero vector $x_0 \in \mathbb{C}^n$ such that $x_0^*(A\lambda_0 + B)x_0 = 0$, there exists a real number $r_0 > 0$ such that for every $x \in S(x_0, r_0)$ the ratio $-(x^*Bx)/\lambda_0$ has constant sign. Working exactly as in (i), we obtain that $\lambda_0 \in \partial_{\mathbb{R}} W(A\lambda + B)$.

(iii) If the matrices *A* and *B* are both indefinite, then $W(A\lambda + B) \equiv \mathbb{R}$ and the matrix $A\mu + B$ is indefinite for every $\mu \in \mathbb{R}$.

The rest of the cases are similar to (i) or (ii). \Box

4. Pencils with one Hermitian coefficient

Let $A\lambda + B$ be an $n \times n$ linear pencil and assume that A is a Hermitian matrix. The matrix B is written as

$$B = H + \mathrm{i}S,$$

where the matrices $H = (B + B^*)/2$ and $S = (B - B^*)/(2i)$ are Hermitian. In this section, the numerical range $W(A\lambda + B) \equiv W(A\lambda + H + iS)$ and its boundary are investigated.

It is worth noting that if A is positive definite, then there exists an invertible matrix M such that $A = M^*M$ and

$$W(A\lambda + B) = \left\{ -\frac{x^*Bx}{x^*Ax} \in \mathbb{C}: \ x \in \mathbb{C}^n, \ x \neq 0 \right\}$$
$$= \left\{ -\frac{(x^*M^*)[(M^{-1})^*BM^{-1}](Mx)}{(x^*M^*)(Mx)} \in \mathbb{C}: \ x \in \mathbb{C}^n, \ x \neq 0 \right\}$$
$$= F(-(M^{-1})^*BM^{-1}).$$

Thus, in this case, $W(A\lambda + B)$ coincides with the (compact and convex) numerical range of the matrix $-(M^{-1})^*BM^{-1}$.

In our discussion, we need the joint numerical range

$$JNR(A, H, S) = \{ (x^*Ax, x^*Hx, x^*Sx) \in \mathbb{R}^3 : x \in \mathbb{C}^n \text{ with } x^*x = 1 \}$$
(4)

of the triple (A, H, S). It is well known that JNR(A, H, S) is a compact subset of \mathbb{R}^3 . Moreover, for $n \ge 3$ it is convex and for n = 2 it is either convex or the surface of an ellipsoid [9]. Using this characteristic property of JNR(A, H, S), Li and Rodman describe in [10] an algorithm which illustrates the boundary ∂ JNR(A, H, S).

Consider a point $(u_0, v_0, w_0) \in \mathbb{R}^3$ and the corresponding equation

 $u_0\lambda + v_0 + \mathrm{i}w_0 = 0.$

Obviously, every point of the open halfline

$$\epsilon^{+} = \left\{ t(u_0, v_0, w_0) \in \mathbb{R}^3 : t \in (0, +\infty) \right\}$$

corresponds to a linear equation with the same root $\lambda_0 = -(v_0 + iw_0)/u_0 \ (u_0 \neq 0)$. So, if we define the *supporting cone* of JNR(A, H, S),

$$\mathscr{K} = \bigcup_{t>0} t \operatorname{JNR}(A, H, S), \tag{5}$$

then \mathscr{K} is always convex and

$$W(A\lambda + B) = \{\lambda \in \mathbb{C}: (x^*Ax)\lambda + x^*(H + iS)x = 0, x \in \mathbb{C}^n, x \neq 0\}$$
$$= \{\lambda \in \mathbb{C}: u\lambda + (v + iw) = 0, (u, v, w) \in \text{JNR}(A, H, S)\}$$
$$= \{\lambda \in \mathbb{C}: u\lambda + (v + iw) = 0, (u, v, w) \in \mathscr{H}\}.$$

Consequently, a complex number λ_0 belongs to $W(A\lambda + B)$ if and only if the line $\epsilon = \{t(-1, \text{ Re } \lambda_0, \text{ Im } \lambda_0) \in \mathbb{R}^3 : t \in \mathbb{R}\}$ intersects JNR(*A*, *H*, *S*) in (4). It is also obvious that $(0, 0, 0) \in \text{JNR}(A, H, S)$ if and only if $(0, 0, 0) \in \mathcal{K}$, and then $W(A\lambda + B) \equiv \mathbb{C}$.

Theorem 11. Let $A\lambda + H + iS$ be an $n \times n$ linear pencil (where A, H, S are Hermitian matrices) with $W(A\lambda + H + iS) \neq \mathbb{C}$ and let \mathscr{K} be the cone in (5). Suppose that $\lambda_0 \in W(A\lambda + H + iS)$ and $(u_0, v_0, w_0) \in \mathscr{K}$ such that $\lambda_0 = -(v_0 + iw_0)/u_0$ ($u_0 \neq 0$). Then $\lambda_0 \in \partial W(A\lambda + H + iS)$ if and only if $(u_0, v_0, w_0) \in \partial \mathscr{K}$.

Proof. Since $W(A\lambda + H + iS) \neq \mathbb{C}$, $(0, 0, 0) \notin JNR(A, H, S)$ and if $\lambda_0 \in \partial W(A\lambda + H + iS)$, then there exists a sequence $\{\lambda_k\}_{k \in \mathbb{N}} \in \mathbb{C} \setminus W(A\lambda + H + iS)$ converging to the point λ_0 . Moreover, the sequence of lines

$$\epsilon_k = \{ t(-1, \operatorname{Re} \lambda_k, \operatorname{Im} \lambda_k) \in \mathbb{R}^3 : t \in \mathbb{R} \}, k \in \mathbb{N},$$

converges to the line

 $\epsilon_0 = \left\{ t(u_0, v_0, w_0) \in \mathbb{R}^3 \colon t \in \mathbb{R} \right\} = \left\{ t(-1, \operatorname{Re} \lambda_0, \operatorname{Im} \lambda_0) \in \mathbb{R}^3 \colon t \in \mathbb{R} \right\}.$

Since $\epsilon_k \cap \text{JNR}(A, H, S) = \emptyset$, for every $k \in \mathbb{N}$, the line ϵ_0 is a supporting line of JNR(A, H, S) and consequently, $(u_0, v_0, w_0) \in \partial \mathscr{K}$.

Conversely, assume that $(u_0, v_0, w_0) \in \partial \mathscr{K}$ and consider the line

 $\epsilon_0 = \{ t(u_0, v_0, w_0) \in \mathbb{R} : t \in \mathbb{R} \}.$

Then there exists a sequence of lines

 $\epsilon_k = \{ t(-1, v_k, w_k) \in \mathbb{R}^3 \colon t \in \mathbb{R} \}, \quad k \in \mathbb{N},$

converging to ϵ_0 such that $\epsilon_k \cap JNR(A, H, S) = \emptyset$ for every $k \in \mathbb{N}$. Thus, the sequence

$$\{\lambda_k = v_k + iw_k\}_{k \in \mathbb{N}} \in \mathbb{C} \setminus W(A\lambda + H + iS)$$

converges to λ_0 , and $\lambda_0 \in \partial W(A\lambda + H + iS)$. \Box

Corollary 12. Let $A\lambda + H + iS$ be an $n \times n$ linear pencil, $\lambda_0 \in W(A\lambda + H + iS)$ and $(u_0, v_0, w_0) \in JNR(A, H, S)$ as in Theorem 11. Then $\lambda_0 \in \partial W(A\lambda + H + iS)$ if and only if $(u_0, v_0, w_0) \in \partial JNR(A, H, S) \cap \partial \mathcal{K}$.

134

If A is a scalar matrix of the form $A = \mu_0 I$ ($\mu_0 \in \mathbb{R}$, $\mu_0 \neq 0$), then

$$JNR(A, H, S) = \{(\mu_0, h, s) \in \mathbb{R}^3 : h + is \in F(H + iS)\}.$$

Hence, the curve $\partial JNR(A, H, S) \cap \partial \mathscr{K}$ is just the boundary of $\mu_0^{-1}F(H + iS)$, and Corollary 12 is verified.

Assume that $W(A\lambda + H + iS) \neq \mathbb{C}$. Using the algorithm of Li and Rodman [10], we can compute boundary points (u, v, w) of JNR(A, H, S). The solutions of the equations $u\lambda + v + iw = 0$ ($u \neq 0$) are points of the numerical range $W(A\lambda + H + iS)$ (see Fig. 1). Furthermore, if we choose points (u, v, w) on the boundary of the supporting cone \mathscr{K} , then we approximate $\partial W(A\lambda + H + iS)$.

The algorithm has three steps:

Step 1: Construct a grid on the unit sphere in \mathbb{R}^3 using the spherical coordinates

 $(\sin r \cos t, \sin r \sin t, \cos r),$

with

$$r = \pi/m, 2\pi/m, ..., \pi$$
 and $t = \pi/m, 2\pi/m, ..., 2\pi$

for some positive integer *m*.

Step 2: For each choice of $(\sin r \cos t, \sin r \sin t, \cos r)$, compute the largest eigenvalue *d* of the matrix

$$H(r, t) = (\sin r \cos t)A + (\sin r \sin t)H + (\cos r)S.$$

Step 3: Compute a unitary eigenvector $y \in \mathbb{C}^n$ of H(r, t), corresponding to the eigenvalue *d*. The plane

$$P = \{(u, v, w) \in \mathbb{R}^3 : (\sin r \cos t)u + (\sin r \sin t)v + (\cos r)w = d\}$$

is a supporting plane of JNR(A, H, S) on the point $(y^*Ay, y^*Hy, y^*Sy) \in \partial JNR(A, H, S)$. If $y^*Ay \neq 0$, then plot the point

$$\lambda = -\frac{y^*Hy + iy^*Sy}{y^*Ay} \in W(A\lambda + H + iS).$$

The boundary of the cone \mathscr{K} is constructed by all the supporting planes of JNR(*A*, *H*, *S*), which contain the origin. So, to approximate the boundary of the numerical range $W(A\lambda + H + iS)$, modify Step 3 to the following.

Step 3': If d = 0 (or $d \cong 0$), then compute a unitary eigenvector $y \in \mathbb{C}^n$ of H(r, t) corresponding to d. The plane

$$P = \{(u, v, w) \in \mathbb{R}^3 : (\sin r \cos t)u + (\sin r \sin t)v + (\cos r)w = d\}$$

is a supporting plane of JNR(A, H, S) on the point $(y^*Ay, y^*Hy, y^*Sy) \in \partial JNR(A, H, S) \cap \partial \mathcal{H}$. If $y^*Ay \neq 0$, then plot the point

$$\lambda = -\frac{y^*Hy + iy^*Sy}{y^*Ay} \in \partial W(A\lambda + H + iS).$$

It is worth noting that if A is invertible, then each connected component of $W(A\lambda + H + iS)$ is convex (see Theorem 2.4 in [11]).

Remark 1. If the origin (0, 0, 0) lies in the convex hull of the interior of JNR (A, H, S), then $\mathscr{K} \equiv \mathbb{R}^3$ and $W(A\lambda + H + iS) \equiv \mathbb{C}$. In this case, the picture $W(A\lambda + H + iS)$ generated by the algorithm can be quite chaotic.

Remark 2. Assume that $A\lambda + B$ is an $n \times n$ linear pencil such that A is a non-Hermitian matrix and B is a Hermitian matrix. In this case, the numerical range $W(B\lambda + A)$ is approximated by the previous algorithm and the equation

 $W(A\lambda + B) \setminus \{0\} = \left\{ \lambda^{-1} \in \mathbb{C} : \lambda \in W(B\lambda + A) \setminus \{0\} \right\}$

from Proposition 1(iii). Moreover, Theorem 11 and Corollary 12 are also true for linear pencils of the form $(H + iS)\lambda + A$, where the matrices A, H and S are Hermitian.

Remark 3. Suppose that $\alpha + \beta v + \gamma w = 0$ is the equation of a supporting line of the numerical range F(H + iS) (where v, w are orthogonal coordinates in the (v, w)-plane). Following a method in [5, Section 1.5], it is easy to see that the Hermitian matrix $\alpha I + \beta H + \gamma S$ is semidefinite and

 $\det(\alpha I + \beta H + \gamma S) = 0.$

It follows that the boundary of F(H + iS) can be considered as the set of real points of the algebraic curve whose equation in line coordinates is

 $\det(uI + vH + wS) = 0$

(see [12–14]). Furthermore, consider the linear pencil $A\lambda + H + iS$ with numerical range $W(A\lambda + H + iS) \neq \mathbb{C}$. Let $\lambda_0 \in \partial W(A\lambda + H + iS)$ and assume that $\alpha u + \beta v + \gamma w = 0$ is the equation of a supporting plane of JNR(A, H, S) (where u, v, w are orthogonal coordinates in \mathbb{R}^3), which contains the line $\epsilon = \{t(-1, \text{ Re } \lambda_0, \text{ Im } \lambda_0) \in \mathbb{R}^3 : t \in \mathbb{R}\}$. Then the Hermitian matrix $\alpha A + \beta H + \gamma S$ is also semidefinite and

 $\det(\alpha A + \beta H + \gamma S) = 0.$

Consider the equation $\alpha u + \beta v + \gamma w = 0$ as a homogeneous equation of a line (see [14] for definitions and background). Then the boundary of $W(A\lambda + H + iS)$ may be viewed as the set of real points of the algebraic curve whose equation in line coordinates is

 $\det(uA + vH + wS) = 0.$

Next we generate $W(A\lambda + H + iS)$ for

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad H = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 0 & -2i \\ 2i & 0 \end{bmatrix}.$$

(see Fig. 1.) It is unbounded and the boundary $\partial W(A\lambda + H + iS)$, in Fig. 2, is a branch of hyperbola (see Section 3 in [10]).

5. Krein space numerical range

Suppose that *A* is an $n \times n$ indefinite Hermitian invertible matrix. Then we can define the *indefinite inner product*

$$[x, y] = y^*(Ax), \quad x, y \in \mathbb{C}^n.$$

The indefinite inner product space $(\mathbb{C}^n, [\cdot, \cdot])$ is known as a *finite (complex) Krein space* and for any complex matrix *B*, the *Krein space numerical range* (with respect to $[\cdot, \cdot]$) is defined by

$$W_{A}^{+}(B) = \{ [Bx, x] / [x, x] \in \mathbb{C} : x \in \mathbb{C}^{n} \text{ with } [x, x] > 0 \}.$$

Moreover, the A-numerical range of B is defined by

$$W_A(B) = \{ [Bx, x]/[x, x] \in \mathbb{C} \colon x \in \mathbb{C}^n \text{ with } [x, x] \neq 0 \}$$

and it is easy to verify that

$$W_A(B) = W_A^+(B) \cup W_{(-A)}^+(B).$$

The sets $W_A^+(B)$ and $W_A(B)$ have been studied in [10,11,15], with emphasis on the convexity properties and the geometric shapes of $W_A^+(B)$ and $W_A(B)$. If *B* is not a scalar matrix, then $W_A^+(B)$ and $W_A(B)$ are unbounded (see Proposition 2.1 in [10]). The problem of the numerical approximation of $W_A(B)$ and $W_A^+(B)$ was stated in [11] and it was partially solved in [10]. Using the two versions of the algorithm in Section 4, one can approximate $W_A(B)$, particularly the boundary.

The study of the numerical range of linear pencils, as a special case of the numerical range of matrix polynomials, gives a new approach to numerical ranges in indefinite inner product spaces. Consider the Hermitian matrices

$$H = \frac{AB + (AB)^*}{2}, \qquad S = \frac{AB - (AB)^*}{2i}$$

and the supporting cone \mathcal{K} , in (5), for the joint numerical range JNR(A, H, S). Since \mathcal{K} is convex, it is clear that the sets

$$W_A^+(B) = \{\lambda \in \mathbb{C} : (1, \operatorname{Re} \lambda, \operatorname{Im} \lambda) \in \mathscr{K}\}$$

and

$$W^+_{(-A)}(B) = \{\lambda \in \mathbb{C} : (1, \text{ Re } \lambda, \text{ Im } \lambda) \in -\mathscr{K}\}$$

are also convex. If $(0, 0, 0) \notin \partial JNR(A, H, S)$, then it follows immediately that

$$W_A(B) = W(A\lambda - AB).$$

Note also that the curves $\partial \mathscr{K} \cap \{(u, v, w) \in \mathbb{R}^3 : u = 1\}$ and $\partial \mathscr{K} \cap \{(u, v, w) \in JNR(A, H, S) : u > 0\}$ are homotopic relative to the boundary of the cone \mathscr{K} . As a consequence, we can have a second proof of Theorem 11. If $(0, 0, 0) \in \partial JNR(A, H, S)$, then $W(A\lambda - AB) = \mathbb{C}$, but $W_A(B)$ need not be the entire complex plane (see Section 2 in [10]).

An interesting question is when the spectral containment $\sigma(B) \subset W_A(B)$ holds (see Section 4 in [11]). Since *A* is invertible, it is clear that for any $\mu \in \mathbb{C}$ and $x \in \mathbb{C}^n$,

$$\det(A\mu - AB) = \det A \det(I\mu - B)$$

and

$$(A\mu - AB)x = 0 \Leftrightarrow (I\mu - B)x = 0.$$

Hence, $\sigma(B) = \sigma(A\lambda - AB)$, and every eigenvalue has the same algebraic multiplicity and the same corresponding eigenspace, for the matrix *B* and the linear pencil $A\lambda - AB$. Moreover, $\sigma(A\lambda - AB) \subset W(A\lambda - AB)$ and thus, an eigenvalue $\mu \notin W_A(B)$ if and only if $\mu \in W(A\lambda - AB) \setminus W_A(B)$. So, if $(0, 0, 0) \notin \partial JNR(A, H, S)$, then

$$\sigma(B) \subset W_A(B).$$

Suppose that $(0, 0, 0) \in \partial JNR(A, H, S)$ (this is the case when $W(A\lambda - AB) = \mathbb{C}$ and $W_A(B) \neq \mathbb{C}$). Then it is clear that an eigenvalue $\mu \in \sigma(B)$ does not belong to $W_A(B)$ if and only if for every nonzero $y \in \mathbb{C}^n$ such that $y^*(A\mu - AB)y = 0$, we have that $y^*Ay = y^*Hy = y^*Sy = 0$.

Assume that $W(A\lambda - AB) \neq \mathbb{C}$. Then $(0, 0, 0) \notin JNR(A, H, S)$ and

$$W_A^+(B) \cap W_{(-A)}^+(B) = \emptyset$$

Consequently, λ_0 is a boundary point of $W_A^+(B)$ if and only if it is a boundary point of $W_A(B)$, and λ_0 is a sharp point of $W_A^+(B)$ if and only if it is a sharp point of $W_A(B)$. In connection with the results in Section 2, we obtain the following two theorems.

Theorem 13. Suppose that $W_A(B) \neq \mathbb{C}$ and $\lambda_0 \in W_A^+(B)$. Then λ_0 is a boundary point of $W_A^+(B)$ if and only if the origin is a boundary point of the numerical range $F(A\lambda_0 - AB)$.

Proof. Let λ_0 be a boundary point of $W_A^+(B)$. If $W(A\lambda - AB) \neq \mathbb{C}$, then λ_0 is also a boundary point of $W_A(B) = W(A\lambda - AB)$. Thus, by Theorem 3, the origin is a boundary point of $F(A\lambda_0 - AB)$. If $W(A\lambda - AB) = \mathbb{C}$, then the arguments in the proof of Theorem 1.1 in [7] apply to obtain that $0 \in \partial F(A\lambda_0 - AB)$.

For the converse, assume that $0 \in \partial F(A\lambda_0 - AB)$ and $\lambda_0 \in \text{Int } W_A^+(B)$. Then there is a real $\varepsilon > 0$ such that $S(\lambda_0, \varepsilon) \subset W_A^+(B)$. Hence, for every $\mu \in S(\lambda_0, \varepsilon)$, there exists a nonzero vector $x_\mu \in \mathbb{C}^n$ such that

$$x_{\mu}^*Ax_{\mu} > 0$$
 and $\mu = \frac{x_{\mu}^*ABx_{\mu}}{x_{\mu}^*Ax_{\mu}}$

Thus,

$$\mu - \lambda_0 = -\frac{x_\mu^* (A\lambda_0 - AB) x_\mu}{x_\mu^* A x_\mu}$$

and consequently, for every $\mu \in S(\lambda_0, \varepsilon)$,

$$\operatorname{Arg}(\mu - \lambda_0) = \operatorname{Arg}\left[-x_{\mu}^*(A\lambda_0 - AB)x_{\mu}\right].$$

Since the origin is a boundary point of the convex range $F(A\lambda_0 - AB)$, this is a contradiction and the proof is complete. \Box

Theorem 14. Suppose that $W_A(B) \neq \mathbb{C}$ and $\lambda_0 \in W_A^+(B)$. Then λ_0 is a sharp point of $W_A^+(B)$ if and only if the origin is a sharp point of the numerical range $F(A\lambda_0 - AB)$.

Proof. Let λ_0 be a sharp point of $W_A^+(B)$. If $W(A\lambda - AB) \neq \mathbb{C}$, then λ_0 is also a sharp point of $W_A(B) = W(A\lambda - AB)$. Thus, by Theorem 4, the origin is a sharp point of $F(A\lambda_0 - AB)$. If $W(A\lambda - AB) = \mathbb{C}$, then the proof of Theorem 1.3 in [7] yields that 0 is a sharp point of $F(A\lambda_0 - AB)$.

For the converse, assume that the origin is a sharp point of the convex range $F(A\lambda_0 - AB)$. Then there exist three angles $\varphi_1, \varphi_2, \psi_0 \in [0, 2\pi]$, with $0 \leq \varphi_2 - \varphi_1 \leq \psi_0 < \pi$ and

$$\varphi_1 \leqslant \operatorname{Arg}[x^*(A\lambda_0 - AB)x] \leqslant \varphi_2$$

for every nonzero vector $x \in \mathbb{C}^n$. For every $\mu \in W_A^+(B)$, there is a nonzero vector x_μ such that $x_\mu^*Ax_\mu > 0$ and $x_\mu^*(A\mu - AB)x_\mu = 0$. Since

$$\operatorname{Arg}[x_{\mu}^{*}(A\lambda_{0} - AB)x_{\mu}] = \operatorname{Arg}\{x_{\mu}^{*}[A(\lambda_{0} - \mu + \mu) - AB]x_{\mu}\}$$
$$= \operatorname{Arg}(\lambda_{0} - \mu),$$

it is clear that

 $\varphi_1 \leqslant \operatorname{Arg}(\lambda_0 - \mu) \leqslant \varphi_2.$

Thus, λ_0 is a sharp point of $W_4^+(B)$. \Box

By the previous theorem, we can verify easily a known result (see Theorem 3.1 in [15]).

Corollary 15. Suppose that $\lambda_0 \in W_A^+(B)$ is a sharp point of $W_A^+(B)$. Then λ_0 is an eigenvalue of B and every $x_0 \in \mathbb{C}^n$ such that $\lambda_0 = (x_0^*ABx_0)/(x_0^*Ax_0)$ (where $x_0^*Ax_0 \neq 0$) is a corresponding eigenvector of B.

Proof. By Theorem 14, the origin is a sharp point of $F(A\lambda_0 - AB)$. Thus, $0 \in \sigma(A\lambda_0 - AB)$ and $(A\lambda_0 - AB)x_0 = 0$ (see Theorem 1.6.3 in [5] and its proof).

Acknowledgement

The author wishes to thank Peter Lancaster for several useful discussions.

References

 K. Weierstrass, Zur theorie der bilinearen und quadratischen Formen, Monatsh. Akad. Wiss. Berlin (1867) 310–338.

- [2] L. Kronecker, Algebraische Reduction der Schaaren bilinearen Formen, S.-B. Akad. Berlin (1890) 763–776.
- [3] F. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
- [4] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Academic Press, New York, 1985.
- [5] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [6] C.-K. Li, L. Rodman, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl. 15 (1994) 1256–1265.
- [7] J. Maroulas, P. Psarrakos, The boundary of numerical range of matrix polynomials, Linear Algebra Appl. 267 (1997) 101–111.
- [8] A. Markus, V. Matsaev, Some estimates for the resolvent and for the lengths of Jordan chains of an analytic operator function (preprint).
- [9] Y.-H. Au-Yeung, N.-K. Tsing, An extension of the Hausdorff–Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983) 215–218.
- [10] C.-K. Li, L. Rodman, Shapes and computer generation of numerical ranges of Krein space operators, Electr. J. Linear Algebra 3 (1998) 31–47.
- [11] C.-K. Li, N.-K. Tsing, F. Uhlig, Numerical range of an operator on an indefinite inner product space, Electr. J. Linear Algebra 1 (1996) 1–17.
- [12] M. Fiedler, Geometry of the numerical range of matrices, Linear Algebra Appl. 37 (1981) 81-96.
- [13] R. Kippenhahn, Über den Wertevorrat einer matrix, Math. Nachr. 6 (1951) 193-228.
- [14] H. Shapiro, A conjecture of Kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices II, Linear Algebra Appl. 45 (1982) 97–108.
- [15] C.-K. Li, L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric, Proc. Amer. Math. Soc. 126 (1998) 973–982.