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Abstract

Consider a linear pencilAλ+ B, whereA andB aren× n complex matrices. The numer-
ical range ofAλ+ B is defined as

W(Aλ+ B) =
{
λ ∈ C: x∗(Aλ+ B)x = 0 for some nonzerox ∈ Cn

}
.

In this paper, we study the geometrical properties ofW(Aλ+ B), with emphasis to its bound-
ary. An answer to the problem of the numerical approximation ofW(Aλ+ B), when one
of the coefficientsA andB is Hermitian, is presented. The numerical range of a matrix on
an indefinite inner product space is also considered. © 2000 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let Aλ+ B be alinear pencil, whereA andB aren× n complex matrices and
λ is a complex variable. IfA = I , then the pencilAλ+ B is calledmonicand if
the matricesA andB are Hermitian, then it is calledselfadjoint. The study of linear
pencils has a long history [1–3], usually in the context of their spectral analysis.
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A complex numberλ0 is said to be aneigenvalueof Aλ+ B if the equation

(Aλ0 + B)x = 0

has a nonzero solutionx0 ∈ Cn. The vectorx0 is known as aneigenvectorofAλ+ B

corresponding to the eigenvalueλ0. The set of all eigenvalues of the linear pencil
Aλ+ B is known as thespectrumof Aλ+ B, namely,

σ(Aλ+ B) = {λ ∈ C: det(Aλ+ B) = 0}.
The spectrumσ(Aλ+ B) coincides with the complex planeC or it contains no

more thann points. The multiplicity ofλ0, as a root of the equation det(Aλ+ B) =
0, is calledalgebraic multiplicityof λ0. The vectorsx1, x2, . . . , xm are said to be
associatedto the eigenvectorx0 if

Axj−1 + (Aλ0 + B)xj = 0, j = 1,2, . . . ,m.

The system of vectorsx0, x1, x2, . . . , xm is known as aJordan chain(of lengthm+
1) of Aλ+ B corresponding to the eigenvalueλ0 and it leads to a solution of the
differential equation

Au′(t)+ Bu(t) = 0.

The dimension of the kernel Ker(Aλ0 + B) is calledgeometric multiplicityof λ0
and it is no greater than the algebraic one. If the geometric multiplicity ofλ0 is equal
to the algebraic multiplicity, then the eigenvalueλ0 is calledsemisimple. In this case,
all the correspondingelementary divisors(see [3,4] for definitions) are linear and all
the corresponding Jordan chains have length 1.

Thenumerical rangeof the pencilAλ+ B is defined by

W(Aλ+ B) = {
λ ∈ C: x∗(Aλ+ B)x = 0 for some nonzerox ∈ Cn

}
(1)

and it always contains the spectrumσ(Aλ+ B). In this paper, we assume thatσ(Aλ
+ B) /= C, i.e., the linear pencilAλ+ B is regular. The numerical rangeW(Aλ+
B) in (1) is a generalization of theclassical numerical range(field of values) of an
n× n complex matrixA,

F(A) = {
x∗Ax ∈ C: x ∈ Cn with x∗x = 1

}
.

Indeed, it is obvious thatW(Iλ − A) = F(A). One can find a complete survey of
the properties ofF(A) in [5].

In Section 2, we study the boundary of the numerical rangeW(Aλ+ B) in (1),
and we investigate the interplay between the geometrical properties ofW(Aλ + B)

and the algebraic and analytic properties of the pencilAλ+ B. Moreover, it is ob-
tained that the eigenvalues ofAλ+ B on the boundary ofW(Aλ+ B) are semi-
simple. In Section 3, we consider selfadjoint linear pencils and the real endpoints of
their numerical range. In Section 4, we generate the boundary ofW(Aλ +H + iS),
where the matricesA, H andSare Hermitian. Finally, in Section 5, connections are
made with the notion of theKrein space numerical range.
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2. Geometry and boundary

Consider ann× n linear pencilAλ+ B (A /= 0) and its numerical rangeW(Aλ+
B) in (1). Then it is easy to verify the following properties ofW(Aλ+ B) [6].

Proposition 1. LetAλ+ B be ann× n linear pencil, whereA /= 0.

(i) W(Aλ+ B) is a closed subset ofC.

(ii) For everyµ ∈ C, W(A(λ+ µ)+ B) = W(Aλ+ B)− µ.

(iii) W(Aλ+ B)\{0} = {λ−1 ∈ C: λ ∈ W(Bλ + A)\{0}}.
(iv) For everyn× r matrix Q of rank r, with r 6 n, we have thatW(Q∗(Aλ+

B)Q) ⊆ W(Aλ + B). Equality holds ifr = n.

(v) If the matrices A and B have a nonzero common isotropic vectorx0 ∈ Cn, i.e.,
x∗

0Ax0 = x∗
0Bx0 = 0, thenW(Aλ + B) ≡ C.

(vi) W(Aλ+ B) is bounded if and only if0 /∈ F(A).
(vii) In general, W(Aλ+ B) is connected. Only if A is an indefinite Hermitian

matrix, thenW(Aλ+ B) may have two unbounded connected components.

Note thatW(Aλ+ B) is not always bounded or connected and even if it is
bounded and connected it is not always convex.

Proposition 2. LetAλ+ B be ann× n linear pencil, whereA /= 0.

(i) W(Aλ + B) = {λ0} if and only if0 /∈ F(A) andB = −λ0A.

(ii) If the matrices A and B are real, then the numerical rangeW(Aλ+ B) is sym-
metric with respect to theR-axis.

Proof. (i) For the complex numberλ0, we have thatx∗(Aλ0 + B)x = 0 for every
x ∈ Cn if and only ifAλ0 + B = 0.

(ii) Consider a pointλ0 ∈ W(Aλ + B) and a nonzero vectorx0 ∈ Cn such that
x∗

0(Aλ0 + B)x0 = 0. By the conjucate of this equation, it follows thatxT
0 (Aλ0 +

B)x0 = 0 and consequently,λ0 ∈ W(Aλ+ B). �

In [7], Maroulas and Psarrakos investigate the boundary and the sharp points of
the numerical range of matrix polynomials of arbitary degree. A pointλ0 ∈ oW(Aλ +
B) is calledsharp pointofW(Aλ+ B) if there exist a diskS(λ0, r) (r > 0) and three
anglesϕ1, ϕ2, ψ0 ∈ [0,2p], with 0 6 ϕ2 − ϕ1 6 ψ0 < p such that

ϕ1 6 Arg(z− λ0) 6 ϕ2,

for everyz ∈ W(Aλ + B) ∩ S(λ0, r).

Theorem 3(see Theorem 1.1 in [7]).If λ0 is a boundary point ofW(Aλ+ B), then
the origin is a boundary point ofF(Aλ0 + B).
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Theorem 4 (see Theorem 1.3 in [7]).If λ0 is a sharp point ofW(Aλ+ B), then
the origin is a sharp point ofF(Aλ0 + B). In particular, λ0 is an eigenvalue of the
pencilAλ+ B.

If W(Aλ+ B) is bounded, then we can estimate the length of the Jordan chains
which correspond to eigenvalues ofAλ+ B on the boundary ofW(Aλ+ B) (see
also Theorem 1.6.6 in [5]).

Theorem 5. Let Aλ+ B be ann× n linear pencil and assume that its numeri-
cal rangeW(Aλ+ B) is bounded. Ifλ0 ∈ σ(Aλ+ B) ∩ oW(Aλ+ B), then every
Jordan chain corresponding toλ0 has length equal to1, i.e., λ0 is a semisimple
eigenvalue ofAλ+ B.

Proof. Sinceλ0 is a boundary point ofW(Aλ+ B), there exist an angleϕ0 and a
realr > 0 such that{

λ0 + ρ eiϕ0: ρ ∈ [0, r]} ∩W(Aλ+ B) = {λ0}.
Suppose that for every angleϕ ∈ [0,2p]\ϕ0 there exists a realρϕ > 0 such that
λ0 + ρϕ eiϕ ∈ W(Aλ+ B). Hence,

0 ∈ F(Aλ0 + B)+ ρϕ eiϕF (A) for all ϕ ∈ [0,2p]\ϕ0. (2)

The numerical rangeF(Aλ0 + B) is convex [5] and the origin belongs to its
boundary (see Theorem 3). Moreover,F(A) is convex and it does not contain the
origin. Consequently, there exist infinitely many anglesϕ ∈ [0,2p] such that the
rangeF(Aλ0 + B)+ ρϕ eiϕF (A) does not contain the origin. Thus, (2) is not true
and there exists a cone

L = {z ∈ C:ϕ1 6 Arg(z− λ0) 6 ϕ2, 0< ϕ2 − ϕ1 < p}
such that

L ∩W(Aλ + B) = {λ0}.
By Theorem 2 in [8], every Jordan chain corresponding toλ0 has length equal
to 1. �

Moreover, a sufficient condition for the pencilAλ+ B to be diagonalizable, can
be formulated in terms ofW(Aλ + B).

Proposition 6. LetAλ+ B be ann× n linear pencil and assume that the numerical
rangeW(Aλ + B) is bounded. Ifσ(Aλ+ B) ⊂ oW(Aλ+ B), then there exist two
n× n invertible matrices P and Q such that the pencilP(Aλ+ B)Q is diagonal.

Proof. Since the conditions of Theorem 5 hold, all the elementary divisors ofAλ+
B are linear. Hence, by Theorem 1, Section 7.7, in [4], the proof is complete.�
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Next we prove the converse statement of Theorem 3.

Theorem 7. Let Aλ+ B be ann× n linear pencil and let the numerical range
W(Aλ+ B) in (1) be bounded. Ifλ0 is a point ofW(Aλ+ B) such that the origin is
a boundary point ofF(Aλ0 + B), thenλ0 ∈ oW(Aλ + B).

Proof. Suppose thatλ0 is an interior point ofW(Aλ+ B). Then there exists a real
numberε > 0 such thatS(λ0, ε) ⊂ W(Aλ+ B). Consequently, for every complex
numberz0 with |z0| < ε, there exists a nonzero vectorx0 such that

x∗
0(Aλ0 + B)x0 = −z0

(
x∗

0Ax0
)
. (3)

Moreover, 0∈ oF(Aλ0 + B), 0 /∈ F(A) and the numerical rangesF(A) andF(Aλ0
+ B) are convex. So, there exist five anglesϕ1, ϕ2, ψ0, ϑ1, ϑ2 ∈ [0,2p), with 0 6
ϕ2 − ϕ1 6 ψ0 < p and 06 ϑ2 − ϑ1 6 p such that

F(A) ⊂ {z ∈ C: ϕ1 6 Arg z 6 ϕ2}
and

F(Aλ0 + B) ⊂ {z ∈ C: ϑ1 6 Arg z 6 ϑ2}.
By Eq. (3),

Arg
[
x∗

0(Aλ0 + B)x0
] − Arg

(
x∗

0Ax0
) = Arg(−z0)

cannot be true for everyz0 ∈ C with |z0| 6 ε. Thus,λ0 is a boundary point of
W(Aλ+ B). �

3. Selfadjoint pencils

In this section, we consider selfadjoint pencilsAλ+ B, i.e., the matricesA and
B are Hermitian. In this case, the numerical rangeW(Aλ+ B) in (1) is a subset
of R-axis or it coincides with the complex planeC. If W(Aλ + B) /= C, then an
interesting extension of Proposition 6 follows from Theorem 1.7.17 in [5].

Proposition 8. Let Aλ+ B be ann× n linear selfadjoint pencil with numerical
rangeW(Aλ+ B) /= C. Then there exists an invertible matrix Q such that the pencil
Q∗(Aλ+ B)Q is diagonal.

Note that in the previous proposition, all the elementary divisors ofAλ+ B are
linear andW(Q∗(Aλ+ B)Q) = W(Aλ + B).

The shape ofW(Aλ+ B) is described in Theorem 4.1 in [6].

Theorem 9. Let Aλ+ B be ann× n selfadjoint pencil withW(Aλ+ B) /= C.
Then we have exactly one of the following cases:
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(i) If the matrix A is(positive or negative) definite, thenW(Aλ+ B) is a bounded
closed interval inR.

(ii) If A is semidefinite, thenW(Aλ + B) is an unbounded interval of the form
[a,+∞) or (−∞, a].

(iii) If A is indefinite and B is definite, thenW(Aλ+ B) is the union of two distinct
unbounded intervals inR such that0 /∈ W(Aλ+ B).

(iv) If A is indefinite and B is semidefinite, thenW(Aλ+ B) is the union of two
distinct unbounded intervals inR such that0 ∈ W(Aλ + B).

(v) If A and B are both indefinite, thenW(Aλ+ B) ≡ R.
In all cases, the finite endpoints of the intervals are eigenvalues of the pencilAλ+ B.

A question, which arises in a natural way, is what one can say about thereal
boundaryofW(Aλ+ B), i.e.,

oRW(Aλ + B) = W(Aλ+ B) ∩ [R\W(Aλ + B)].
In fact, if we consider the real boundary ofF(A), namely,

oRF(A) = F(A) ∩ [R\F(A)],
then a statement similar to Theorems 3 and 7 can be obtained.

Theorem 10. LetAλ+ B be ann× n selfadjoint pencil withW(Aλ+ B) /= C. If
λ0 is a nonzero point ofW(Aλ+ B), thenλ0 ∈ oRW(Aλ+ B) if and only if 0 ∈
oRF(Aλ0 + B).

Proof. Since λ0 ∈ oRW(Aλ+ B), there exists a sequence of points{λk}k∈N ∈
R\W(Aλ + B) converging toλ0. Hence, for everyk ∈ N, the origin does not belong
to F(Aλk + B) and without lost of generality, we can assume that all the matrices

Aλk + B, k ∈ N,

are positive definite. The sequence of the numerical rangesF(Aλk + B) = [ak, bk]
with 0< ak < bk, k ∈ N, converges toF(Aλ0 + B) and 0∈ F(Aλ0 + B). So, the
matrixAλ0 + B is positive semidefinite, i.e., 0∈ oRF(Aλ0 + B).

For the converse, suppose thatλ0 ∈ W(Aλ + B) and 0∈ oRF(Aλ0 + B). Then
without lost of generality, we can assume that the matrixAλ0 + B is positive semi-
definite withF(Aλ0 + B) = [0, b] and investigate the following cases.

(i) If the matrix A is positive definite or positive semidefinite andx0 ∈ Cn is a
vector such thatx∗

0Ax0 /= 0 andλ0 = −(x∗
0Bx0)/(x

∗
0Ax0), then there exists a real

numberr0 > 0 such thatx∗Ax > 0 for everyx ∈ S(x0, r0). Moreover,

λ0 −
(

−x
∗Bx
x∗Ax

)
= x∗(Aλ0 + B)x

x∗Ax
> 0,

i.e., for everyx ∈ S(x0, r0), the root of equationx∗(Aλ+ B)x = 0 is not greater
thanλ0. By the continuity of the rootλ0 = −(x∗Bx)/(x∗Ax) (x∗Ax /= 0) with re-
spect tox, it follows thatλ0 ∈ oRW(Aλ+ B).
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(ii) Suppose thatA is indefinite andB is positive definite or positive semidefinite.
Sinceλ0 /= 0, for every nonzero vectorx0 ∈ Cn such thatx∗

0(Aλ0 + B)x0 = 0, there
exists a real numberr0 > 0 such that for everyx ∈ S(x0, r0) the ratio−(x∗Bx)/λ0
has constant sign. Working exactly as in (i), we obtain thatλ0 ∈ oRW(Aλ+ B).

(iii) If the matricesA andB are both indefinite, thenW(Aλ+ B) ≡ R and the
matrixAµ+ B is indefinite for everyµ ∈ R.

The rest of the cases are similar to (i) or (ii).�

4. Pencils with one Hermitian coefficient

Let Aλ+ B be ann× n linear pencil and assume thatA is a Hermitian matrix.
The matrixB is written as

B = H + iS,

where the matricesH = (B + B∗)/2 andS = (B − B∗)/(2i) are Hermitian. In this
section, the numerical rangeW(Aλ+ B) ≡ W(Aλ +H + iS) and its boundary are
investigated.

It is worth noting that ifA is positive definite, then there exists an invertible matrix
M such thatA = M∗M and

W(Aλ+ B)=
{
−x

∗Bx
x∗Ax

∈ C: x ∈ Cn, x /= 0

}

=
{

−
(
x∗M∗)[(M−1

)∗
BM−1

]
(Mx)(

x∗M∗)(Mx) ∈ C: x ∈ Cn, x /= 0

}

=F ( − (
M−1)∗

BM−1).
Thus, in this case,W(Aλ+ B) coincides with the (compact and convex) numerical
range of the matrix−(M−1)∗BM−1.

In our discussion, we need thejoint numerical range

JNR(A,H, S) = {(
x∗Ax, x∗Hx, x∗Sx

) ∈ R3: x ∈ Cn with x∗x = 1} (4)

of the triple(A,H, S). It is well known that JNR(A,H, S) is a compact subset ofR3.
Moreover, forn > 3 it is convex and forn = 2 it is either convex or the surface of
an ellipsoid [9]. Using this characteristic property of JNR(A,H, S), Li and Rodman
describe in [10] an algorithm which illustrates the boundaryoJNR(A,H, S).

Consider a point(u0, v0, w0) ∈ R3 and the corresponding equation

u0λ+ v0 + iw0 = 0.

Obviously, every point of the open halfline

ε+ = {
t (u0, v0, w0) ∈ R3: t ∈ (0,+∞)

}
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corresponds to a linear equation with the same rootλ0 = −(v0 + iw0)/u0 (u0 /= 0).
So, if we define thesupporting coneof JNR(A,H, S),

K =
⋃
t>0

tJNR(A,H, S), (5)

thenK is always convex and

W(Aλ+ B)={
λ ∈ C:

(
x∗Ax

)
λ+ x∗(H + iS)x = 0, x ∈ Cn, x /= 0

}
={λ ∈ C: uλ+ (v + iw) = 0, (u, v,w) ∈ JNR(A,H, S)}
={λ ∈ C: uλ+ (v + iw) = 0, (u, v,w) ∈ K}.

Consequently, a complex numberλ0 belongs toW(Aλ+ B) if and only if the line
ε = {t (−1, Reλ0, Im λ0) ∈ R3: t ∈ R} intersects JNR(A,H, S) in (4). It is also
obvious that(0,0,0) ∈ JNR(A,H, S) if and only if (0,0,0) ∈ K, and thenW(Aλ
+ B) ≡ C.

Theorem 11. Let Aλ+H + iS be an n× n linear pencil (whereA,H, S are
Hermitian matrices) with W(Aλ+H + iS) /= C and let K be the cone in(5).
Suppose thatλ0 ∈ W(Aλ+H + iS) and(u0, v0, w0) ∈ K such thatλ0 = −(v0 +
iw0)/u0 (u0 /= 0). Thenλ0 ∈ oW(Aλ+H + iS) if and only if(u0, v0, w0) ∈ oK.

Proof. Since W(Aλ+H + iS) /= C, (0,0,0) /∈ JNR(A,H, S) and if λ0 ∈
oW(Aλ+H + iS), then there exists a sequence{λk}k∈N ∈ C\W(Aλ+H + iS)
converging to the pointλ0. Moreover, the sequence of lines

εk = {
t (−1, Reλk, Im λk) ∈ R3: t ∈ R

}
, k ∈ N,

converges to the line

ε0 = {
t (u0, v0, w0) ∈ R3: t ∈ R

} = {
t (−1, Reλ0, Im λ0) ∈ R3: t ∈ R

}
.

Sinceεk ∩ JNR(A,H, S) = ∅, for everyk ∈ N, the lineε0 is a supporting line of
JNR(A,H, S) and consequently,(u0, v0, w0) ∈ oK.

Conversely, assume that(u0, v0, w0) ∈ oK and consider the line

ε0 = {t (u0, v0, w0) ∈ R: t ∈ R}.
Then there exists a sequence of lines

εk = {
t (−1, vk,wk) ∈ R3: t ∈ R

}
, k ∈ N,

converging toε0 such thatεk ∩ JNR(A,H, S) = ∅ for every k ∈ N. Thus, the
sequence

{λk = vk + iwk}k∈N ∈ C\W(Aλ +H + iS)

converges toλ0, andλ0 ∈ oW(Aλ+H + iS). �

Corollary 12. LetAλ+H + iS be ann× n linear pencil, λ0 ∈ W(Aλ+H + iS)
and(u0, v0, w0) ∈ JNR(A,H, S) as in Theorem11. Thenλ0 ∈ oW(Aλ+H + iS)
if and only if(u0, v0, w0) ∈ oJNR(A,H, S) ∩ oK.
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If A is a scalar matrix of the formA = µ0I (µ0 ∈ R, µ0 /= 0), then

JNR(A,H, S) = {
(µ0, h, s) ∈ R3: h+ is ∈ F(H + iS)

}
.

Hence, the curveoJNR(A,H, S) ∩ oK is just the boundary ofµ−1
0 F(H + iS), and

Corollary 12 is verified.
Assume thatW(Aλ+H + iS) /= C. Using the algorithm of Li and Rodman [10],

we can compute boundary points(u, v,w) of JNR(A,H, S). The solutions of the
equationsuλ+ v + iw = 0 (u /= 0) are points of the numerical rangeW(Aλ+H +
iS) (see Fig. 1). Furthermore, if we choose points(u, v,w) on the boundary of the
supporting coneK, then we approximateoW(Aλ+H + iS).

The algorithm has three steps:

Step1: Construct a grid on the unit sphere inR3 using the spherical coordinates

(sin r cos t, sin r sin t, cosr),

with

r = p/m,2p/m, . . . ,p and t = p/m,2p/m, . . . ,2p,

for some positive integerm.
Step2: For each choice of(sin r cos t, sin r sin t, cosr), compute the largest

eigenvalued of the matrix

H(r, t) = (sin r cos t)A+ (sin r sin t)H + (cosr)S.

Step3: Compute a unitary eigenvectory ∈ Cn of H(r, t), corresponding to the
eigenvalued. The plane

P = {
(u, v,w) ∈ R3: (sin r cos t)u+ (sin r sin t)v + (cosr)w = d

}
is a supporting plane of JNR(A,H, S) on the point (y∗Ay, y∗Hy, y∗Sy) ∈
oJNR(A,H, S). If y∗Ay /= 0, then plot the point

λ = −y
∗Hy + iy∗Sy
y∗Ay

∈ W(Aλ+H + iS).

The boundary of the coneK is constructed by all the supporting planes of
JNR(A,H, S), which contain the origin. So, to approximate the boundary of the
numerical rangeW(Aλ+H + iS), modify Step 3 to the following.

Step3′: If d = 0 (ord ∼= 0), then compute a unitary eigenvectory ∈ Cn ofH(r, t)
corresponding tod. The plane

P = {
(u, v,w) ∈ R3: (sin r cost)u+ (sin r sin t)v + (cosr)w = d}

is a supporting plane of JNR(A,H, S) on the point (y∗Ay, y∗Hy, y∗Sy) ∈
oJNR(A,H, S) ∩ oK. If y∗Ay /= 0, then plot the point

λ = −y
∗Hy + iy∗Sy
y∗Ay

∈ oW(Aλ+H + iS).
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It is worth noting that ifA is invertible, then each connected component ofW(Aλ

+H + iS) is convex (see Theorem 2.4 in [11]).

Remark 1. If the origin (0,0,0) lies in the convex hull of the interior of JNR
(A,H, S), thenK ≡ R3 andW(Aλ+H + iS) ≡ C. In this case, the pictureW(Aλ
+H + iS) generated by the algorithm can be quite chaotic.

Remark 2. Assume thatAλ+ B is ann× n linear pencil such thatA is a non-
Hermitian matrix andB is a Hermitian matrix. In this case, the numerical range
W(Bλ + A) is approximated by the previous algorithm and the equation

W(Aλ+ B)\{0} = {
λ−1 ∈ C: λ ∈ W(Bλ + A)\{0}}

from Proposition 1(iii). Moreover, Theorem 11 and Corollary 12 are also true
for linear pencils of the form(H + iS)λ + A, where the matricesA, H andS are
Hermitian.

Remark 3. Suppose thatα + βv + γw = 0 is the equation of a supporting line of
the numerical rangeF(H + iS) (where v,w are orthogonal coordinates in
the (v,w)-plane). Following a method in [5, Section 1.5], it is easy to see that the
Hermitian matrixαI + βH + γ S is semidefinite and

det(αI + βH + γ S) = 0.

It follows that the boundary ofF(H + iS) can be considered as the set of real points
of the algebraic curve whose equation in line coordinates is

det(uI + vH +wS) = 0

(see [12–14]). Furthermore, consider the linear pencilAλ+H + iS with numerical
rangeW(Aλ+H + iS) /= C. Let λ0 ∈ oW(Aλ+H + iS) and assume thatαu+
βv + γw = 0 is the equation of a supporting plane of JNR(A,H, S) (whereu, v,w
are orthogonal coordinates inR3), which contains the lineε = {t (−1, Reλ0, Im λ0)

∈ R3: t ∈ R}. Then the Hermitian matrixαA+ βH + γ S is also semidefinite and

det(αA+ βH + γ S) = 0.

Consider the equationαu+ βv + γw = 0 as a homogeneous equation of a line (see
[14] for definitions and background). Then the boundary ofW(Aλ +H + iS) may
be viewed as the set of real points of the algebraic curve whose equation in line
coordinates is

det(uA+ vH +wS) = 0.

Next we generateW(Aλ+H + iS) for

A =
[
1 0
0 0

]
, H =

[
1 2
2 3

]
and S =

[
0 −2i
2i 0

]
.

(see Fig. 1.) It is unbounded and the boundaryoW(Aλ+H + iS), in Fig. 2, is a
branch of hyperbola (see Section 3 in [10]).
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Fig. 1. The numerical rangeW(Aλ +H + iS).
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Fig. 2. The boundaryoW(Aλ +H + iS).

5. Krein space numerical range

Suppose thatA is ann× n indefinite Hermitian invertible matrix. Then we can
define theindefinite inner product

[x, y] = y∗(Ax), x, y ∈ Cn.
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The indefinite inner product space(Cn, [·, ·]) is known as afinite (complex) Krein
spaceand for any complex matrixB, theKrein space numerical range(with respect
to [·, ·]) is defined by

W+
A (B) = {[Bx, x]/[x, x] ∈ C: x ∈ Cn with [x, x] > 0

}
.

Moreover, theA-numerical rangeof B is defined by

WA(B) = {[Bx, x]/[x, x] ∈ C: x ∈ Cn with [x, x] /= 0}
and it is easy to verify that

WA(B) = W+
A (B) ∪W+

(−A)(B).

The setsW+
A (B) andWA(B) have been studied in [10,11,15], with emphasis on

the convexity properties and the geometric shapes ofW+
A (B) andWA(B). If B is not

a scalar matrix, thenW+
A (B) andWA(B) are unbounded (see Proposition 2.1 in [10]).

The problem of the numerical approximation ofWA(B) andW+
A (B) was stated in

[11] and it was partially solved in [10]. Using the two versions of the algorithm in
Section 4, one can approximateWA(B), particularly the boundary.

The study of the numerical range of linear pencils, as a special case of the nu-
merical range of matrix polynomials, gives a new approach to numerical ranges in
indefinite inner product spaces. Consider the Hermitian matrices

H = AB + (AB)∗

2
, S = AB − (AB)∗

2i
and the supporting coneK, in (5), for the joint numerical range JNR(A,H, S). Since
K is convex, it is clear that the sets

W+
A (B) = {λ ∈ C: (1, Reλ, Im λ) ∈ K}

and

W+
(−A)(B) = {λ ∈ C: (1, Reλ, Im λ) ∈ −K}

are also convex. If(0,0,0) /∈ oJNR(A,H, S), then it follows immediately that

WA(B) = W(Aλ− AB).

Note also that the curvesoK ∩ {(u, v,w) ∈ R3: u = 1} and oK ∩ {(u, v,w) ∈
JNR(A,H, S): u > 0} are homotopic relative to the boundary of the coneK.
As a consequence, we can have a second proof of Theorem 11. If(0,0,0) ∈
oJNR(A,H, S), thenW(Aλ− AB) = C, butWA(B) need not be the entire complex
plane (see Section 2 in [10]).

An interesting question is when the spectral containmentσ(B) ⊂ WA(B) holds
(see Section 4 in [11]). SinceA is invertible, it is clear that for anyµ ∈ C andx ∈ Cn,

det(Aµ− AB) = detA det(Iµ− B)

and

(Aµ− AB)x = 0 ⇔ (Iµ− B)x = 0.
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Hence,σ(B) = σ(Aλ− AB), and every eigenvalue has the same algebraic multi-
plicity and the same corresponding eigenspace, for the matrixB and the linear pencil
Aλ− AB. Moreover,σ(Aλ− AB) ⊂ W(Aλ− AB) and thus, an eigenvalueµ /∈
WA(B) if and only ifµ ∈ W(Aλ − AB)\WA(B). So, if (0,0,0) /∈ oJNR(A,H, S),
then

σ(B) ⊂ WA(B).

Suppose that(0,0,0) ∈ oJNR(A,H, S) (this is the case whenW(Aλ− AB) = C

andWA(B) /= C). Then it is clear that an eigenvalueµ ∈ σ(B) does not belong to
WA(B) if and only if for every nonzeroy ∈ Cn such thaty∗(Aµ− AB)y = 0, we
have thaty∗Ay = y∗Hy = y∗Sy = 0.

Assume thatW(Aλ− AB) /= C. Then(0,0,0) /∈ JNR(A,H, S) and

W+
A (B) ∩W+

(−A)(B) = ∅.
Consequently,λ0 is a boundary point ofW+

A (B) if and only if it is a boundary point
of WA(B), andλ0 is a sharp point ofW+

A (B) if and only if it is a sharp point of
WA(B). In connection with the results in Section 2, we obtain the following two
theorems.

Theorem 13. Suppose thatWA(B) /= C andλ0 ∈ W+
A (B). Thenλ0 is a boundary

point ofW+
A (B) if and only if the origin is a boundary point of the numerical range

F(Aλ0 − AB).

Proof. Letλ0 be a boundary point ofW+
A (B). If W(Aλ − AB) /= C, thenλ0 is also

a boundary point ofWA(B) = W(Aλ− AB). Thus, by Theorem 3, the origin is a
boundary point ofF(Aλ0 − AB). If W(Aλ − AB) = C, then the arguments in the
proof of Theorem 1.1 in [7] apply to obtain that 0∈ oF(Aλ0 − AB).

For the converse, assume that 0∈ oF(Aλ0 − AB) andλ0 ∈ Int W+
A (B). Then

there is a realε > 0 such thatS(λ0, ε) ⊂ W+
A (B). Hence, for everyµ ∈ S(λ0, ε),

there exists a nonzero vectorxµ ∈ Cn such that

x∗
µAxµ > 0 and µ = x∗

µABxµ

x∗
µAxµ

.

Thus,

µ− λ0 = −x
∗
µ(Aλ0 − AB)xµ

x∗
µAxµ

and consequently, for everyµ ∈ S(λ0, ε),

Arg(µ− λ0) = Arg
[ − x∗

µ(Aλ0 − AB)xµ
]
.

Since the origin is a boundary point of the convex rangeF(Aλ0 − AB), this is a
contradiction and the proof is complete.�
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Theorem 14. Suppose thatWA(B) /= C andλ0 ∈ W+
A (B). Thenλ0 is a sharp point

ofW+
A (B) if and only if the origin is a sharp point of the numerical rangeF(Aλ0 −

AB).

Proof. Let λ0 be a sharp point ofW+
A (B). If W(Aλ− AB) /= C, thenλ0 is also a

sharp point ofWA(B) = W(Aλ− AB). Thus, by Theorem 4, the origin is a sharp
point ofF(Aλ0 − AB). If W(Aλ− AB) = C, then the proof of Theorem 1.3 in [7]
yields that 0 is a sharp point ofF(Aλ0 − AB).

For the converse, assume that the origin is a sharp point of the convex range
F(Aλ0 − AB). Then there exist three anglesϕ1, ϕ2, ψ0 ∈ [0,2p], with 0 6 ϕ2 −
ϕ1 6 ψ0 < p and

ϕ1 6 Arg
[
x∗(Aλ0 − AB)x

]
6 ϕ2

for every nonzero vectorx ∈ Cn. For everyµ ∈ W+
A (B), there is a nonzero vector

xµ such thatx∗
µAxµ > 0 andx∗

µ(Aµ− AB)xµ = 0. Since

Arg
[
x∗
µ(Aλ0 − AB)xµ

]=Arg
{
x∗
µ[A(λ0 − µ+ µ)− AB

]
xµ

}
=Arg(λ0 − µ),

it is clear that

ϕ1 6 Arg(λ0 − µ) 6 ϕ2.

Thus,λ0 is a sharp point ofW+
A (B). �

By the previous theorem, we can verify easily a known result (see Theorem 3.1
in [15]).

Corollary 15. Suppose thatλ0 ∈ W+
A (B) is a sharp point ofW+

A (B). Thenλ0 is
an eigenvalue of B and everyx0 ∈ Cn such thatλ0 = (x∗

0ABx0)/(x
∗
0Ax0) (where

x∗
0Ax0 /= 0) is a corresponding eigenvector of B.

Proof. By Theorem 14, the origin is a sharp point ofF(Aλ0 − AB). Thus, 0∈
σ(Aλ0 − AB) and(Aλ0 − AB)x0 = 0 (see Theorem 1.6.3 in [5] and its proof).�
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