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Abstract

Consider a linear pencid1 + B, whereA andB aren x n complex matrices. The numer-
ical range ofAx + B is defined as

W(AL+ B) = {A € C: x*(Ax + B)x = 0 for some nonzere ¢ C"].

In this paper, we study the geometrical propertie®@fA 1 + B), with emphasis to its bound-

ary. An answer to the problem of the numerical approximatiofwafAx + B), when one

of the coefficientsA and B is Hermitian, is presented. The numerical range of a matrix on
an indefinite inner product space is also considered. © 2000 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Let AL + B be alinear pencil whereA andB aren x n complex matrices and
A is a complex variable. 1A = I, then the pencidi + B is calledmonicand if
the matriceA andB are Hermitian, then it is calleselfadjoint The study of linear
pencils has a long history [1-3], usually in the context of their spectral analysis.
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A complex numbeig is said to be arigenvaluef Ax + B if the equation
(Axo+ B)x =0

has a nonzero solutiory € C". The vectorg is known as aeigenvectoof AL + B
corresponding to the eigenvalig. The set of all eigenvalues of the linear pencil
AM + B is known as thepectrunof Ax + B, hamely,

o (AL + B) = {» € C: det(Ax + B) = O}.

The spectrunw (AL + B) coincides with the complex plarie or it contains no
more tham points. The multiplicity ofrg, as a root of the equation détx + B) =
0, is calledalgebraic multiplicityof 1g. The vectorsyy, x2, ..., x, are said to be
associatedo the eigenvectary if

ij,l—i—(Ako—i—B)xj:O, j=12...,m.

The system of vectorsy, x1, x2, . . ., x;, is known as alordan chain(of lengthm +
1) of AL + B corresponding to the eigenvalag and it leads to a solution of the
differential equation

Au'(t) + Bu(t) = 0.

The dimension of the kernel Ketio + B) is calledgeometric multiplicityof Ag
and it is no greater than the algebraic one. If the geometric multiplicity & equal
to the algebraic multiplicity, then the eigenvalugis calledsemisimpleln this case,
all the correspondinglementary divisorésee [3,4] for definitions) are linear and all
the corresponding Jordan chains have length 1.

Thenumerical rangeof the pencilAx + B is defined by

W(AL + B) = {A e C: x*(AX + B)x = 0 for some nonzero e (C”} (1)

and it always contains the spectrumAx + B). In this paper, we assume thatAx
+ B) # C, i.e., the linear penciix + B is regular. The numerical rang® (AA +
B) in (1) is a generalization of thelassical numerical rangéield of valuey of an
n X n .complex matrixA,

F(A) = {x*Ax € C: x e C"withx*x = 1}.

Indeed, it is obvious tha (1. — A) = F(A). One can find a complete survey of
the properties of' (A) in [5].

In Section 2, we study the boundary of the numerical rawgd » + B) in (1),
and we investigate the interplay between the geometrical properti&s 6 + B)
and the algebraic and analytic properties of the pea&il- B. Moreover, it is ob-
tained that the eigenvalues df. + B on the boundary oW (AA + B) are semi-
simple. In Section 3, we consider selfadjoint linear pencils and the real endpoints of
their numerical range. In Section 4, we generate the bounddi(af. + H +1i5),
where the matriced, H andSare Hermitian. Finally, in Section 5, connections are
made with the notion of thKrein space numerical range
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2. Geometry and boundary

Consideram x n linear pencilAx + B (A # 0) and its numerical rang&' (AA +
B) in (1). Then it is easy to verify the following propertiesWf(Ax + B) [6].

Proposition 1. Let AL + B be ann x n linear pencil whereA + 0.
(i) W(AA + B) is a closed subset @f.
(i) Foreveryu € C, W(A(L + ) + B) = W(ArL+ B) — .
(i) W(AL+ B)\{0} = (A1 e C: » € W(BA + A)\{0}}.

(iv) For everyn x r matrix Q of rank r with » < n, we have thatV (Q* (A1 +
B)Q) € W(AA + B). Equality holds ifr = n.
(v) If the matrices A and B have a honzero common isotropic vegtarC”, i.e.,
xgAxo = x5 Bxo = 0, thenW (AL + B) = C.
(vi) W(AX + B) isboundedifandonly i® ¢ F(A).
(vii) In genera] W(AA + B) is connected. Only if A is an indefinite Hermitian
matrix, thenW (A1 + B) may have two unbounded connected components.

Note thatW(AA + B) is not always bounded or connected and even if it is
bounded and connected it is not always convex.

Proposition 2. Let AA 4+ B be ann x n linear pencil whereA # 0.
(i) WAL+ B) = {ro}ifand only if0 ¢ F(A) andB = —AgA.

(i) If the matrices A and B are reghen the numerical rang® (A1 + B) is sym-
metric with respect to th-axis.

Proof. (i) For the complex numbexg, we have thak*(Aig + B)x = O for every
x e C"ifand only if AAg + B = 0.

(if) Consider a point.g € W(AX + B) and a nonzero vectorp € C" such that
xg(Aro + B)xo = 0. By the conjucate of this equation, it follows thaag(AXo +
B)xo = 0 and consequentlyg € W(Ax+ B). O

In [7], Maroulas and Psarrakos investigate the boundary and the sharp points of
the numerical range of matrix polynomials of arbitary degree. A pgjird OW (AL +
B) is calledsharp pointof W(AX + B) if there exista disi§ (Lo, r) (r > 0) and three
anglespi, @2, Yo € [0, 2rt], with 0 < @2 — 91 < Yo < © such that
1 < Arg(z — 2o) < g2,
foreveryz € W(AX + B) N S(Xo, 1).

Theorem 3(see Theorem 1.1 in [7])If 1g is a boundary point oW (AA + B), then
the origin is a boundary point of (Axg + B).
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Theorem 4 (see Theorem 1.3 in [7])f Ao is a sharp point ofW (A + B), then
the origin is a sharp point of (Axg + B). In particular, 1 is an eigenvalue of the
pencilAx + B.

If W(AX + B) is bounded, then we can estimate the length of the Jordan chains
which correspond to eigenvalues #i + B on the boundary oV (A + B) (see
also Theorem 1.6.6in [5]).

Theorem 5. Let AL+ B be ann x n linear pencil and assume that its numeri-
cal rangeW (AA + B) is bounded. If.g € 6 (AL + B) NOW(AA + B), then every
Jordan chain corresponding tdp has length equal td, i.e.,, Ao is a semisimple
eigenvalue ofAX + B.

Proof. Sinceig is a boundary point o (AA + B), there exist an anglgg and a
realr > 0 such that
[ho+p €%:p € [0,7]} N W(AL+ B) = {Ao).

Suppose that for every angiec [0, 2n]\go there exists a reab, > 0 such that
ro+ py, €9 € W(AL + B). Hence,

0€ F(Aro+ B) + p, €YF(A) forallg € [0, 2r]\go. 2)

The numerical rangé (Ao + B) is convex [5] and the origin belongs to its
boundary (see Theorem 3). Moreover,A) is convex and it does not contain the
origin. Consequently, there exist infinitely many angjes [0, 2r] such that the
rangeF (Axo + B) + p, €¥F(A) does not contain the origin. Thus, (2) is not true
and there exists a cone

L ={zeCip1 <Argz —20) <92, 0<g2—g1 <7}
such that

LN WAL+ B) = {Ao}.
By Theorem 2 in [8], every Jordan chain corresponding.gohas length equal
tol. O

Moreover, a sufficient condition for the pendik 4+ B to be diagonalizable, can
be formulated in terms oV (AA + B).

Proposition 6. LetAA + B be ann x n linear pencil and assume that the numerical
range W (AA + B) is bounded. I (AL + B) C OW(AX + B), then there exist two
n x n invertible matrices P and Q such that the peni{lAx + B)Q is diagonal.

Proof. Since the conditions of Theorem 5 hold, all the elementary divisoss.of
B are linear. Hence, by Theorem 1, Section 7.7, in [4], the proof is compléie.
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Next we prove the converse statement of Theorem 3.

Theorem 7. Let AL + B be ann x n linear pencil and let the numerical range
W(AM + B) in (1) be bounded. Ifg is a point of W(AA + B) such that the origin is
a boundary point of*(Axg + B), thenig € OW(AA + B).

Proof. Suppose thatg is an interior point ofW (AA + B). Then there exists a real
numbere > 0 such thatS(ro, €) € W(AX + B). Consequently, for every complex
numberzg with |zp| < ¢, there exists a nonzero vectagy such that

x3(Ako + B)xo = —zo(x§ Axo). 3)

Moreover,0c 0F (Alg + B), 0 ¢ F(A) and the numerical rangd¥ A) andF (AXxg
+ B) are convex. So, there exist five angl@s ¢2, Yo, 91, 92 € [0, 2r), with 0 <
w2 — @1 < Yo < mand 0< 92 — 91 < wsuch that

F(A) C{zeC g1 <Argz < ¢}
and
F(Al+ B) C{z € C: 91 <Argz < o).
By Eq. (3),
Arg[xg(Ako + B)xo] — Arg(xgAxo) = Arg(—zo)

cannot be true for everyp € C with |zo| < &. Thus, A is a boundary point of
W(AL+B). O

3. Selfadjoint pencils

In this section, we consider selfadjoint pencdls + B, i.e., the matriceé\ and
B are Hermitian. In this case, the numerical rarigéAxr + B) in (1) is a subset
of R-axis or it coincides with the complex plarie If W(AX + B) # C, then an
interesting extension of Proposition 6 follows from Theorem 1.7.17 in [5].

Proposition 8. Let AL + B be ann x n linear selfadjoint pencil with humerical
rangeW (Ax + B) # C. Thenthere exists an invertible matrix Q such that the pencil
O*(AA + B)Q is diagonal.

Note that in the previous proposition, all the elementary divisorsof- B are
linear andW (Q*(AA + B)Q) = W(AX + B).
The shape oW (AX + B) is described in Theorem 4.1 in [6].

Theorem 9. Let AL + B be ann x n selfadjoint pencil withW (Ax + B) #+ C.
Then we have exactly one of the following cases
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() If the matrix A ig(positive or negativedefinite thenW (AA + B) is a bounded
closed interval inR.

(i) If A is semidefinitethen W(AA + B) is an unbounded interval of the form
[a, +00) or (—o0, a].

(i) If Aisindefinite and B is definiteghenW (AL + B) is the union of two distinct
unbounded intervals if such thald ¢ W(AXx + B).

(iv) If A is indefinite and B is semidefinitthen W (AXx + B) is the union of two
distinct unbounded intervals iR such thalD € W(AX + B).

(v) If A and B are both indefinitehenW(Ax + B) = R.
In all casesthe finite endpoints of the intervals are eigenvalues of the pancit B.

A question, which arises in a natural way, is what one can say abougedhe
boundaryof W(AXx + B), i.e.,

OrW (AL + B) = W(AL+ B) N [R\W(AL + B)].
In fact, if we consider the real boundary BfA), namely,
OrF(A) = F(A) N[R\F(A)],
then a statement similar to Theorems 3 and 7 can be obtained.

Theorem 10. Let Ax + B be ann x n selfadjoint pencil withW (A1 + B) + C. If
Ao is @ nonzero point oW (AX + B), thenig € OgW (AL + B) if and only if0 e
OrF (AAo + B).

Proof. Since Ao € 0gW(AA + B), there exists a sequence of poiris jien €
R\W(AA + B) convergingto.g. Hence, for every € N, the origin does not belong
to F(AAr + B) and without lost of generality, we can assume that all the matrices

Al + B, keN,

are positive definite. The sequence of the numerical ralgds.y + B) = [ak, bk]
with 0 < a; < by, k € N, converges ta#(Aio + B) and O F(AXlg + B). So, the
matrix Ao + B is positive semidefinite, i.e., @ Og F (Ao + B).

For the converse, suppose thate W(AX + B) and Oc 0gF(AXo+ B). Then
without lost of generality, we can assume that the matriy + B is positive semi-
definite with F (AAg + B) = [0, b] and investigate the following cases.

(i) If the matrix A is positive definite or positive semidefinite ang € C" is a
vector such thatjAxo # 0 andio = —(xgBxo)/(xjAxo), then there exists a real
numberg > 0 such that*Ax > O for everyx € S(xo, ro). Moreover,

< x*Bx) x*(Alo + B)x
)\.0 — — =

>0,

X*Ax xX*Ax
i.e., for everyx € S(xo, ro), the root of equation*(AA + B)x = 0 is not greater
thanig. By the continuity of the rookg = —(x*Bx)/(x*Ax) (x*Ax # 0) with re-
spect tox, it follows thatig € Og W (AL + B).
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(ii) Suppose thad is indefinite andB is positive definite or positive semidefinite.
Sinceio # 0, for every nonzero vectap € C" such thateg(Aio + B)xo = 0, there
exists a real numbep > 0 such that for every € S(xo, ro) the ratio—(x*Bx) /1o
has constant sign. Working exactly as in (i), we obtain thyat 0p W (AL + B).

(iii) If the matricesA andB are both indefinite, them/ (AL + B) = R and the
matrix Au + B is indefinite for everyu € R.

The rest of the cases are similar to (i) or (ii)J

4. Pencils with one Hermitian coefficient

Let Ax + B be ann x n linear pencil and assume thatis a Hermitian matrix.
The matrixB is written as
B=H+i8S,

where the matrice®l = (B + B*)/2 andS = (B — B*)/(2i) are Hermitian. In this
section, the numerical rangé(Ax + B) = W(AX + H +1iS) and its boundary are
investigated.

Itis worth noting that ifAis positive definite, then there exists an invertible matrix
M such thatA = M*M and
x*Bx
x*Ax

(x*M*)[(M~1)* BM ] (Mx)
(x*M*)(Mx)

=F(— (MY BM™).

W(AA+B):{— eC:xeC",xq&O}

eC:xeC", x+#0

Thus, in this caseV (A 4+ B) coincides with the (compact and convex) numerical
range of the matrix-(M ~1)*BM 1.
In our discussion, we need tf@nt numerical range

INR(A, H, S) = {(x*Ax,x*Hx, x*Sx) € R¥:x e C"withx*x =1} (4)

of the triple(A, H, S). Itis well known that INRA, H, S) is a compact subset &e.
Moreover, forn > 3 it is convex and fon = 2 it is either convex or the surface of
an ellipsoid [9]. Using this characteristic property of IMR H, S), Li and Rodman
describe in [10] an algorithm which illustrates the boundaifR(A, H, S).
Consider a pointuo, vo, wo) € R3 and the corresponding equation
uoh + vo +iwg = 0.
Obviously, every point of the open halfline

€™ = {t(uo, vo, wo) € R* 1 € (0, +00)}
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corresponds to a linear equation with the same xget —(vg + iwg) /ug (ug # 0).
So, if we define thasupporting conef INR(A, H, S),
A =|_JtINRA, H. ), (5)
t>0
then7" is always convex and

W(AL+ B)={i € C: (x*Ax)A +x*(H +iS)x =0, x € C", x # 0}
={reCiur+ w+iw) =0, (u,v,w) € INRA, H, S)}
=L eCiur+@w+iw) =0, (u,v,w) € A}

Consequently, a complex numbkey belongs toW (A + B) if and only if the line
e = {t(—1, Rexo, Im xg) € R%: s € R} intersects JNRA4, H, S) in (4). It is also
obvious that(0, 0, 0) € INR(A, H, S) if and only if (0, 0, 0) € .#", and thenW (Ax
+ B) =C.

Theorem 11. Let AL+ H +iS be ann x n linear pencil (where A, H, S are
Hermitian matrice} with W(AL + H +iS) #+ C and let #" be the cone in5).
Suppose thatg € W(AA + H +15) and (uo, v, wo) € A4 such thathg = —(vo +
iwo) /uo (uo # 0). Thenig € OW (AL + H +iS) if and only if (1o, vo, wo) € 04".

Proof. Since W(AL+ H +iS) £ C, (0,0,0) ¢ INR(A, H,S) and if i€
OW (AL + H +i9), then there exists a sequenfg}ien € C\W(AA + H +iS)
converging to the poimtg. Moreover, the sequence of lines

e = {t(=1, Rer, Ima) e R%: 1 e R}, keN,
converges to the line
€0 = {t(uo, vo, wo) € R* 1 € R} = {t(—1, Rerg, Im o) € R*:1 € R}.

Sinceex NINR(A, H, S) = ¢, for everyk € N, the lineeg is a supporting line of
IJNR(A, H, S) and consequentlyig, vo, wo) € 04",
Conversely, assume thatp, vo, wo) € 0.#" and consider the line

eo = {t(up, vo, wo) € R: 1 € R}.
Then there exists a sequence of lines
e ={t(-L v, wp) eR:reR}), keN,
converging toeg such thate; N INR(A, H, S) = ¢ for every k € N. Thus, the
sequence
{M = v +iwgtreny € C\W(AL + H +1i5)
converges tép, andig € OW (AL + H +iS). O

Corollary 12. LetA) + H +iS be ann x n linear pencil Ao € W(AA + H +iS)
and (ug, vo, wo) € JNR(A, H, S) as in Theorenl1l. Thenig € OW (AL + H +iS)
if and only if (1o, vo, wo) € 0OINR(A, H, S) N 0.4".
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If Ais a scalar matrix of the forld = ol (1o € R, ro # 0), then
INR(A, H, S) = {(1o, h,s) € R%:h +is € F(H +i5)}.

Hence, the curv@INR(A, H, ) N 04 is just the boundary qfcalF(H +1iS5), and
Corollary 12 is verified.

Assume thatV (AL + H +iS) # C. Using the algorithm of Li and Rodman [10],
we can compute boundary points, v, w) of INR(A, H, S). The solutions of the
equationsid + v + iw = 0 (u # 0) are points of the numerical ran§e(Ax + H +
iS) (see Fig. 1). Furthermore, if we choose poifitsv, w) on the boundary of the
supporting coner’, then we approximateW (Ax + H +i5).

The algorithm has three steps:

Stepl: Construct a grid on the unit spherefd using the spherical coordinates
(sinr cost, sinr sint, COSr),
with
r=n/m,2x/m,...,n and t=mn/m,2n/m,...,2m,

for some positive integen.
Step2: For each choice ofsin r cost, sinr sint, cosr), compute the largest
eigenvalue/ of the matrix

H(r,t) = (sinr cost)A + (sinr sint)H + (cosr)S.

Step3: Compute a unitary eigenvectore C* of H(r, t), corresponding to the
eigenvaluel. The plane

P={(,v,w) e R3: (sin r cost)u + (sinr sin t)v + (COSr)w = d}

is a supporting plane of JNR, H, S) on the point (y*Ay, y*Hy, y*Sy) €
0INR(A, H, S). If y*Ay # 0, then plot the point

Y*Hy +iy*Sy

y*Ay

The boundary of the cones” is constructed by all the supporting planes of
JNR(A, H, S), which contain the origin. So, to approximate the boundary of the
numerical rangéV (Ax + H + iS), modify Step 3 to the following.

Stepd’: If d = 0 (ord = 0), then compute a unitary eigenvectoe C" of H(r, 1)
corresponding ta. The plane

A= e W(AL+ H +i5).

P = {(u, v, w) € R3: (sin r cost)u + (sin r sin t)v + (CoSr)w = d}

is a supporting plane of JNR, H, S) on the point (y*Ay, y*Hy, y*Sy) €
0INR(A, H, S)nox". If y*Ay + 0, then plot the point

_Y'Hy +iy*Sy
y*Ay

A= c OW(AL + H +1i9).
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It is worth noting that ifA is invertible, then each connected componerivgfA o
+ H +18) is convex (see Theorem 2.4 in [11]).

Remark 1. If the origin (0, 0, 0) lies in the convex hull of the interior of JNR
(A, H, S), then# = R®andW (AL + H +iS) = C. In this case, the picturd (A
+ H +i8S) generated by the algorithm can be quite chaotic.

Remark 2. Assume thatdx 4+ B is ann x n linear pencil such thaf is a non-
Hermitian matrix andB is a Hermitian matrix. In this case, the numerical range
W(BXA + A) is approximated by the previous algorithm and the equation

W (AL + B\(0} =[x e C:x e W(BA + A)\{0}}
from Proposition 1(iii). Moreover, Theorem 11 and Corollary 12 are also true

for linear pencils of the form{H +iS)A + A, where the matriced, H and S are
Hermitian.

Remark 3. Suppose that + v + yw = 0 is the equation of a supporting line of
the numerical rangeF(H +iS) (where v, w are orthogonal coordinates in
the (v, w)-plane). Following a method in [5, Section 1.5], it is easy to see that the
Hermitian matrixa I + BH + y S is semidefinite and

detal + BH +yS) =0.
It follows that the boundary of (H + iS) can be considered as the set of real points
of the algebraic curve whose equation in line coordinates is

detul +vH +wS) =0
(see [12—14]). Furthermore, consider the linear peagit- H + iS with numerical
rangeW(Ar + H +iS) #+ C. Let Ao € OW (AL + H +iS) and assume thatu +
Bv + yw = 0 is the equation of a supporting plane of IMRH, S) (whereu, v, w

are orthogonal coordinatesit), which contains the line = {t(—1, Reio, Im ig)
€ R3:1 € R}. Then the Hermitian matrixA + SH + y S is also semidefinite and

deteA + BH +yS) =0.
Consider the equatiam: + Sv 4+ yw = 0 as a homogeneous equation of a line (see
[14] for definitions and background). Then the boundaryafAx + H + iS) may

be viewed as the set of real points of the algebraic curve whose equation in line
coordinates is

detuA + vH + wS) = 0.
Next we generat® (Ax + H +iS) for

1 O 1 2 0 -2i
R I R )

(see Fig. 1.) It is unbounded and the boundaWw(AA + H +iS), in Fig. 2, is a
branch of hyperbola (see Section 3 in [10]).
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5. Krein space numerical range

Suppose thah is ann x n indefinite Hermitian invertible matrix. Then we can
define thandefinite inner product

[x,y] = y"(Ax), x,yeC"



138 P.J. Psarrakos / Linear Algebra and its Applications 317 (2000) 127-141

The indefinite inner product spac€”, [-, -]) is known as dinite (compleX Krein
spaceand for any complex matriB, theKrein space numerical rang@vith respect
to[:, -]) is defined by

W, (B) = {[Bx,x]/[x,x] € C: x € C" with [x, x] > 0}.
Moreover, theA-numerical rangef B is defined by

Wa(B) = {[Bx,x]/[x,x] € C: x € C" with [x, x] # 0}
and it is easy to verify that

Wa(B) = Wi (B)U W(tA)(B).

The setst(B) and Wy (B) have been studied in [10,11,15], with emphasis on
the convexity properties and the geometric shape® ptB) andW (B). If Bis not
a scalar matrix, the; (B) andW, (B) are unbounded (see Proposition 2.1 in [10]).
The problem of the numerical approximationwf (B) and Wj{(B) was stated in
[11] and it was patrtially solved in [10]. Using the two versions of the algorithm in
Section 4, one can approximaté& (B), particularly the boundary.

The study of the numerical range of linear pencils, as a special case of the nu-
merical range of matrix polynomials, gives a new approach to numerical ranges in
indefinite inner product spaces. Consider the Hermitian matrices

. AB + (AB)* _ AB—(AB)*
2 ’ 2i
and the supporting cong’, in (5), for the joint numerical range JNR, H, S). Since
A is convey, it is clear that the sets

Wi(B)={reC:(1, Rer, Imxr)e X}

and
W(+_A)(B) ={1eC: (1 Rex, Imr) e -4}

are also convex. If0, 0, 0) ¢ 0IJNR(A, H, S), then it follows immediately that
Wa(B) = W(AL — AB).

Note also that the curved&# N {(u,v, w) € R%u =1} and 34 N {(u, v, w) €
JNR(A, H, S):u > 0} are homotopic relative to the boundary of the caone
As a consequence, we can have a second proof of Theorem 1@, df0) €
0INR(A, H, S), thenW (AL — AB) = C, butW, (B) need not be the entire complex
plane (see Section 2 in [10]).

An interesting question is when the spectral containmemt) c W4 (B) holds
(see Section 4 in [11]). Sinckis invertible, itis clear that forany € C andx € C",

detAu — AB) = detA det(/u — B)
and
(Au—AB)x=0< (Iu— B)x =0.
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Hence,o (B) = 0 (AL — AB), and every eigenvalue has the same algebraic multi-
plicity and the same corresponding eigenspace, for the natnd the linear pencil

AX — AB. Moreover,c (AL — AB) C W(AL — AB) and thus, an eigenvalye ¢
Wa(B) ifand only if u € W(AL — AB)\W4(B). S0, if(0,0,0) ¢ 0INR(A, H, S),
then

o(B) C Wa(B).

Suppose that0, 0, 0) € 0INR(A, H, S) (this is the case wheW (AL — AB) =C
andW4(B) #+ C). Then it is clear that an eigenvaluec o (B) does not belong to
W4 (B) if and only if for every nonzergy € C" such thaty*(Au — AB)y = 0, we
have thaty*Ay = y*Hy = y*Sy = 0.

Assume thaWW (Ax — AB) #+ C. Then(0, 0, 0) ¢ JNR(A, H, S) and

Wi (B)N W(tA)(B) =0.

Consequentlyio is a boundary point oW;{(B) if and only if it is a boundary point

of Wa(B), andig is a sharp point oWj{(B) if and only if it is a sharp point of
W4 (B). In connection with the results in Section 2, we obtain the following two
theorems.

Theorem 13. Suppose thaW4(B) #+ C andig € W;{(B). Thenjg is a boundary
point of W (B) if and only if the origin is a boundary point of the numerical range
F(Alo — AB).

Proof. Letig be a boundary point CWX(B). If WAL — AB) # C, thenig is also
a boundary point oW, (B) = W(AX — AB). Thus, by Theorem 3, the origin is a
boundary point ofF (Axg — AB). If W(AL — AB) = C, then the arguments in the
proof of Theorem 1.1 in [7] apply to obtain that€00F (Aig — AB).

For the converse, assume that @F (Alg — AB) and Ag € Int W;((B). Then
there is a reak > 0 such thatS(1g, &) C WX(B). Hence, for everyr € S(ro, ¢),
there exists a nonzero vectgr € C" such that

. x, ABxy
x, Axy >0 and p=——F—.
xMAxM
Thus,
x*(Aro — AB)x
p—ro=—-+ -

x;Axu
and consequently, for evepy € S(Xo, ¢),
Arg(i — ro) = Arg[ — x7; (Ako — AB)x,].

Since the origin is a boundary point of the convex rafg&irg — AB), this is a
contradiction and the proof is completel]
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Theorem 14. Supposethat/4(B) + C andig € WX(B). Thenig is a sharp point
of W;{(B) if and only if the origin is a sharp point of the numerical rangeAxo —
AB).

Proof. Let Ao be a sharp point oWj{(B). If WAL — AB) # C, thenig is also a
sharp point ofW4(B) = W(AA — AB). Thus, by Theorem 4, the origin is a sharp
point of F(Axg — AB). If W(AL — AB) = C, then the proof of Theorem 1.3 in [7]
yields that O is a sharp point ¢f(Axlg — AB).

For the converse, assume that the origin is a sharp point of the convex range
F(A)p — AB). Then there exist three angles, g2, Yo € [0, 2x], with 0 < @2 —
91 < Yo < mand

91 < Arg[x*(Ako — AB)x] < 2

for every nonzero vector € C". For everyu € WX(B), there is a nonzero vector
x, suchthatc) Ax,, > 0 andx;;(Au — AB)x, = 0. Since

Arg[x (Ao — AB)x, | =Arg{x;[AGho — u + p) — AB]x, }

it is clear that

1 < Arg(ho — 1) < @2.
Thus,\q is a sharp point o¥{ (B). O

By the previous theorem, we can verify easily a known result (see Theorem 3.1
in [15]).

Corollary 15. Suppose thatg € WZ(B) is a sharp point oij(B). Theng is
an eigenvalue of B and evexry € C" such thatho = (x5A Bxo)/(xjAxo) (Where
xgAxo # 0) is a corresponding eigenvector of B.

Proof. By Theorem 14, the origin is a sharp point B{Alo — AB). Thus, Oe
o(Aro — AB) and(Aio — AB)xp = 0 (see Theorem 1.6.3 in [5] and its proof)]
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