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Abstract

Motivated by articles by Stewart (Defend the Roman Empire!, Sci. Amer. (December 1999)
136–138) and ReVelle and Rosing (Defendens imperium Romanum:2 A classical problem in
military strategy, Amer. Math. Monthly 107 (7) (2000) 585–594), we explore a strategy of
defending the Roman Empire from multiple attacks by stationing as few legions as possible.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Motivated by articles in Scienti(c American by Stewart entitled “Defend the Roman
Empire!” [13] and in American Mathematical Monthly by ReVelle and Rosing entitled
“Defendens imperium Romanum: A classical problem in military strategy” [12], we
present a graph theoretic approach to defending the Roman Empire from multiple
attacks by stationing as few legions as possible. Graph theoretic models to defend the
Roman Empire from single attacks have been studied, for example, in [3,4,6,10,11]
and elsewhere.
Faced with reductions in the size of the Roman armies due to economic constraints,

Emperor Constantine the Great, in the fourth century A.D., switched from a “forward
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defense” strategy to a “defense-in-depth” strategy. This strategy divided the Roman
army into the comitatensis, the mobile Cghting forces who could arrive at any location
within 2–3 weeks, and the limitanei, or frontier troops stationed permanently on the
borders of the empire. The limitanei were considered second class soldiers (usually
recruited from the landless peasants and barbarians who had entered Rome to settle on
land in exchange for imperial service) and were looked down on by the elite troops
of the comitatensis who were paid regularly and were much better equipped.
Our mathematical model is a graph G = (V; E) with vertex set V and edge set E.

Each vertex in our graph represents a location in the Roman Empire, and two vertices
are joined by an edge if the corresponding locations are adjacent. Let k be a positive
integer and let f be a function f :V → {0; 1; : : : ; k + 1}. A location (vertex v) is
considered unsecured if no legions are stationed there (i.e., f(v) = 0) and secured
otherwise (i.e., if f(v)∈{1; 2; : : : ; k + 1}). For i = 0; 1; : : : ; k + 1, let Vi be the set of
vertices assigned the values i under f. Note that there is a 1–1 correspondence between
the functions f :V → {0; 1; : : : ; k + 1} and the ordered partitions (V0; V1; : : : ; Vk+1) of
V . Thus we will write f = (V0; V1; : : : ; Vk+1).
We say that a vertex in V0 is undefended with respect to f, or simply undefended

if the function f is clear from the context, if it is not adjacent to a vertex in Vi for
any i¿ 1. We say that f has no undefended vertex if no vertex in V0 is undefended
with respect to f.
If a vertex u∈V0 is adjacent to a vertex v∈Vi for some i; 16 i6 k + 1, then we

say that the function g :V → {0; 1; : : : ; k + 1}, deCned by g(u) = 1, g(v) = f(v) − 1
and g(w)=f(w) if w∈V −{u; v}, is obtained from f by one movement from v to u,
or simply that g is obtained from f by one movement if the vertices v and u is clear
from context.
We call the function f a k-Roman dominating function (kRDF) if f has no un-

defended vertex and for any sequence v1; : : : ; vk of (not necessarily distinct) vertices,
there exists a sequence of functions f = f0; f1; : : : ; fk such that for i = 1; : : : ; k, (i)
either fi−1(vi)¿ 0, in which case fi = fi−1, or fi−1(vi) = 0, in which case fi is
obtained from fi−1 by one movement to vi, and (ii) fi has no undefended vertex.
If fi is obtained from fi−1 by one movement for each i = 1; : : : ; k, then we say that
fk is obtained from f by k movements. We may assume in what follows that fk

is obtained from f by k movements. When k = 1, a kRDF is a Roman dominating
function which has been studied, for example, in [3,4,6,10,11].
We deCne the weight of f to be w(f) =

∑
v∈V f(v), and for S ⊆ V we deCne

f(S) =
∑

v∈S f(v), so w(f) = f(V ) =
∑k

i=1 i|Vi|. The k-Roman domination number,
denoted �k

R(G), is the minimum weight of a kRDF in G; that is, �k
R(G)=min{w(f) |f

is a kRDF in G}. A kRDF of weight �k
R(G) we call a �k

R(G)-function.
This deCnition of a kRDF is motivated as follows. Using notation introduced earlier,

we deCne a location to be undefended if the location and every location adjacent to
it is unsecured (i.e., have no legion stationed there). Since an undefended location
is vulnerable to an attack, we require that every unsecure location be adjacent to a
secure location in such a way that the movement of a legion from the secure location
to the unsecure location does not create an undefended location. Hence every unse-
cure location can be defended without creating an undefended location. We make the
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assumption that multiple attacks, if any, are consecutive (and do not occur simulta-
neously). Further, we make the assumption that a secure location can defend against
an attack. Hence in our model we may assume that any attacked location is an unse-
cure location. Thus in the event of k consecutive attacks, we require that there exist
k (consecutive) movements of a legion(s) from secure locations to unsecure locations
so that each movement does not create an undefended location. In this way Emperor
Constantine the Great can save substantial costs of maintaining legions while still de-
fending the Roman Empire from k consecutive attacks. Such a placement of legions
corresponds to a kRDF and a minimum such placement of legions corresponds to a
minimum kRDF.
This graph–theoretic model of defending the Roman Empire from multiple attacks

has applications in, among others, facility location problems. For example, this model
can be used to deploy Cre-engines in a cost eLective manner while guaranteeing
a rapid response should there be an outbreak of any k consecutive Cres in the
region.

2. Notation

For notation and graph theory terminology we in general follow [8]. SpeciCcally,
let G = (V; E) be a graph with vertex set V of order n and edge set E, and let v be
a vertex in V . The open neighborhood of v is N (v) = {u∈V | uv∈E} and the closed
neighborhood of v is N [v] = {v} ∪ N (v). For a set S ⊆ V , its open neighborhood
N (S) =

⋃
v∈S N (v) and its closed neighborhood N [S] =N (S)∪ S. A vertex u is called

a private neighbor of v with respect to S, or simply an S-pn of v, if N [u] ∩ S = {v}.
The set pn(v; S)=N [v]−N [S−{v}] of all S-pns of v is called the private neighbor set
of v with respect to S. We deCne the external private neighbor set of v with respect
to S by epn(v; S) = pn(v; S) − {v}. Hence the set epn(v; S) consists of all S-pns of v
that belong to V − S.
For ease of presentation, we mostly consider rooted trees. If a vertex v in a rooted

tree T is adjacent to u and u lies in the level below v, then u is called a child of v,
and v is the parent of u. We let C(v) denote the set of children of v in T . A leaf of
T is a vertex of degree 1, while a support vertex of T is a vertex adjacent to a leaf.
We call a support vertex adjacent to at least r leaves a r-support vertex. In this paper,
we denote the set of all r-support vertices of T by Sr(T ).
The corona coro(G) of a graph G is that graph obtained from G by adding a pendant

edge to each vertex of G.
Let G=(V; E) be a graph and let S ⊆ V . A set S dominates a set U , denoted S 
 U ,

if every vertex in U is adjacent to a vertex of S. Furthermore, if S = {v} for some
v∈V , then we simply write v 
 U . If S 
 V − S, then S is called a dominating set
of G. The domination number �(G) is the minimum cardinality of a dominating set of
G. A dominating set of cardinality �(G) we call a �(G)-set. The independence number
�(G) is the maximum cardinality of an independent set of vertices in G. Domination
and its variations in graphs are now well studied. The literature on this subject has
been surveyed and detailed in the two books by Haynes et al. [8,9].
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In this paper we show that for any graph G and any integer k¿ 1, �(G)6 �k
R(G)6

(k + 1)�(G). In Section 3, we investigate graphs G with �(G) = �k
R(G) and we char-

acterize trees T for which �(T ) = �k
R(T ). In Section 4, we investigate graphs G with

�(G)=(k+1)�k
R(G) and we characterize trees T for which �(T )=(k+1)�k

R(T ). We show
in Section 5 that the decision problem to determine whether a graph G has a kRDF
of weight at most j for any given integer j where j6 (k + 1)|V (G)| is NP-complete
even for bipartite or chordal graphs.

3. Graphs with small k-Roman domination number

Our aim in this section is threefold: First we show that for any graph G, �(G)6
�k
R(G). Second, we give a necessary and suNcient condition for a graph G to satisfy

�(G) = �k
R(G). Third, we give a characterization of trees T for which �(T ) = �k

R(T ).

Theorem 1. For any graph G = (V; E) and for k¿ 1,

�(G)6 �k
R(G)

with equality if and only if there exists a �(G)-set S such that for any sequence
v1; : : : ; vk of vertices of V , there exists a sequence S0; S1; : : : ; Sk of �(G)-sets such that
S0 = S, and for i = 1; : : : ; k, either vi ∈ Si−1, in which case Si = Si−1, or vi �∈ Si−1, in
which case there exists a vertex ui ∈ Si−1 adjacent to vi and Si =(Si−1−{ui})∪{vi}.

Proof. Let G = (V; E) and let f = (V0; V1; : : : ; Vk+1) be a �k
R(G)-function. Let D =⋃k+1

i=1 Vi. Then, since D 
 V0, D is a dominating set of G, and so

�(G)6 |D|=
k+1∑
i=1

|Vi|6
k+1∑
i=1

i · |Vi|= w(f) = �k
R(G):

Hence �(G)6 �k
R(G). Suppose that �(G)=�k

R(G). Then we must have equality through-
out the above inequality chain. In particular, it follows that Vi = ∅ for 26 i6 k + 1.
Thus, S = V1 is a �(G)-set.
Suppose that v1; : : : ; vk is any sequence of vertices of G. Since f is a �k

R(G)-function
and since S = V1, there exists a sequence of functions f=f0; f1; : : : ; fk such that for
i=1; : : : ; k, (i) either fi−1(vi) = 1, in which case fi =fi−1, or fi−1(vi) = 0, in which
case fi is obtained from fi−1 by one movement to vi, and (ii) fi has no undefended
vertex. Each of the functions f0; f1; : : : ; fk have equal weight, namely |V1|=|S|=�(G),
and the weight of every vertex under fi is either 0 or 1. For i=0; 1; : : : ; k, let Si denote
the set of vertices that have weight 1 under fi. In particular, S0 = S. By the way in
which fi is constructed, either vi ∈ Si−1, in which case Si=Si−1, or vi �∈ Si−1 and there
exists a vertex ui ∈ Si−1 adjacent to vi such that Si=(Si−1−{ui})∪{vi}. Further, since
fi has no undefended vertex, each set Si is a dominating set of G and is therefore a
�(G)-set. This establishes the necessity.
To prove the suNciency, suppose there exists a �(G)-set S satisfying the hypothesis

of the theorem. Let f=(V0; V1; : : : ; Vk+1) be the function deCned by V1 =S and Vi=∅
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for 26 i6 k + 1. Since S is a dominating set of G, f has no undefended vertex.
Let v1; : : : ; vk be any sequence of vertices in G. By hypothesis, there exists a sequence
S0; S1; : : : ; Sk of �(G)-sets such that S0=S, and for i=1; : : : ; k, either vi ∈ Si−1, in which
case Si = Si−1, or vi �∈ Si−1, in which case there exists a vertex ui ∈ Si−1 adjacent to vi

and Si = (Si−1 − {ui}) ∪ {vi}. For i = 1; : : : ; k, let fi be the characteristic function of
Si, i.e., f(v)=1 if v∈ Si, otherwise f(v)=0. Then f=f0; f1; : : : ; fk is a sequence of
functions such that for i=1; : : : ; k, (i) either fi−1(vi)= 1, in which case fi =fi−1, or
fi−1(vi)=0, in which case fi is obtained from fi−1 by one movement to vi, and (ii) fi

has no undefended vertex. Hence f is a kRDF of T . Thus, �k
R(G)6w(f)= |S|=�(G).

Since �(G)6 �k
R(G) for all graphs G, �(G) = �k

R(G) as desired.

As an immediate consequence of Theorem 1, we have the following result.

Corollary 2. Let k¿ 1 and let G = (V; E) be a graph with �(G) = �k
R(G). If S is a

�(G)-set satisfying the hypothesis of Theorem 1, then

(1) epn(v; S) ∪ {v} induces a clique for every v∈ S;
(2) for every vertex u∈V − S that is not a private neighbor of any vertex of S,

there exists a vertex v∈ S such that u 
 epn(v; S) ∪ {v}.

Proof. (1) Let u∈ epn(v; S). Then, by Theorem 1, (S−{v})∪{u} is a �(G)-set. Since
v is the only vertex of S adjacent to each vertex of epn(v; S), u must be adjacent to
every other vertex of epn(v; S).
(2) Suppose u∈V−S is not a private neighbor of any vertex of S. Then, by Theorem

1, there exists a vertex v∈ S such that (S −{v})∪ {u} is a �(G)-set. Hence, as in the
proof of (1), u 
 epn(v; S) ∪ {v}.

We now provide a characterization of trees T for which �(T ) = �k
R(T ). For this

purpose, we introduce a family T of trees as follows: Let a be a positive integer. For
i=1; : : : ; a, let Ti=K1; ni where ni¿ 2, and let vi be the center of Ti. Let SA={v1; : : : ; va}
and let LA denote the set of all leaves of these a stars. Let b be an integer satisfying
b¿ (

∑a
i=1 ni)− a+1. Let T0 = bK2 and let SB be an independent set of b vertices in

T0 (one from each copy of K2 in T0). Let T be a tree obtained from the disjoint union⋃a
i=0 Ti of T0; T1; : : : ; Ta by adding a+ b− 1 edges such that (i) each added edge joins

vertices of LA ∪ SB, (ii) each vertex of LA is adjacent to at least one vertex of SB, and
(iii) each vertex of SB is incident with at least one added edge (and so has degree at
least 2 in T ). Let T be the family of all such trees T . An example of a tree in the
family T is shown in Fig. 1.

Theorem 3. For k¿ 1, a tree T satis(es �(T )=�k
R(T ) if and only if k=1 and T ∈T,

or k¿ 1 and T is the corona of a tree.

Proof. If T is the corona of a tree, then the function that assigns to each leaf of
T the weight 1 and to every other vertex of T the weight 0 is a kRDF of weight
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Fig. 1. A tree T ∈T.

�(T ) = |V (T )|=2, and so �k
R(T )6 �(T ). By Theorem 1, �(T )6 �k

R(T ). Consequently,
�(T ) = �k

R(T ).
Suppose k = 1 and T ∈T. Using the notation introduced earlier when constructing

the tree T , we note that S=SA∪SB is a �(T )-set and SA is a packing in T (i.e., a set of
vertices pairwise at distance at least 3 apart in T ). Furthermore, if v∈ SB, then epn(v; S)
consists only of the leaf adjacent to v in T , while if v∈ SA, then pn(v; S) = {v}. Let
u∈V (T ) − S. If u is a leaf adjacent to a vertex v∈ SB, then (S − {v}) ∪ {u} is a
�(T )-set. On the other hand, if u∈LA and v is the vertex of SA adjacent to u, then
(S −{v})∪{u} is a �(T )-set. Hence by Theorem 1, �(T )= �1R(T ). This establishes the
suNciency.
To prove the necessity, suppose that �(T ) = �k

R(T ). Then there exists a �(T )-set S
satisfying the hypothesis of Theorem 1. We may assume that S contains no leaf of
T , for otherwise we can simply replace a leaf in S with its neighbor. Thus we may
assume each vertex of S has degree at least 2 in T .
Let SB={v∈ S | epn(v; S) �= ∅} and let SA=S−SB. By Corollary 2, epn(v; S) induces

a clique for every v∈ S, and so since T is a tree, |epn(v; S)|= 1 for every v∈ SB. Let
S ′

B = {epn(v; S) | v∈ SB}. Then, |S ′
B|= |SB|.

We proceed further with six claims.

Claim 1. SA is a packing in T .

Proof. For every v∈ SA, epn(v; S) = ∅ and so pn(v; S) = {v}. Hence each vertex of
SA is isolated in 〈S〉 (otherwise, S − {v} should be a dominating set of T ). Thus,
N (SA) ⊆ V − S. If d(v1; v2) = 2 where v1; v2 ∈ SA, then there exists a unique vertex
u∈N (SA) adjacent to both v1 and v2. But then (S − {v1; v2}) ∪ {u} is a dominating
set of T of cardinality less than �(T ), which is impossible. Hence SA is a packing
in T .

Claim 2. V − S − S ′
B = N (SA).

Proof. Let u∈V − S − S ′
B. Then by Theorem 1, there exists a vertex v∈ S adjacent to

u such that (S − {v}) ∪ {u} is a �(T )-set. Since u �∈ S ′
B and there exists at least one

vertex u′ in S ′
B adjacent to v, v cannot be in SB (otherwise, u′ should not be dominated

by (S −{v})∪{u}); therefore, v∈ SA and u∈N (SA). Thus, V −S −S ′
B ⊆ N (SA). Since

SA is a packing in T , N (SA) ⊆ V − S − S ′
B. The desired result follows.
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Claim 3. Each vertex of N (SA) is adjacent to a unique vertex of SA and to at least
one vertex of SB.

Proof. By Claim 1, SA is a packing in T , and so each vertex of N (SA) is adjacent to
a unique vertex of SA. Since epn(v; S) = ∅ for each v∈ SA, each vertex of N (SA) is
adjacent to at least one vertex of SB.

Claim 4. S ′
B is an independent set.

Proof. Let v1; v2 ∈ SB. For i = 1; 2, let epn(vi; S) = {ui}. Suppose u1u2 ∈E(T ). Since
degT v1¿ 2, there exists a vertex x∈N (v1)−{u1}. If x∈ S, then (S−{v1; v2})∪{u2} is
a dominating set of T of cardinality less than �(T ), which is impossible. Hence, x∈V−
S−S ′

B=N (SA). Let v be the vertex of SA adjacent to x. Then, (S−{v; v1; v2})∪{u2; x}
is a dominating set of T of cardinality less than �(T ), which is impossible. Hence,
u1u2 �∈ E(T ). The desired result follows.

Claim 5. Each vertex of S ′
B is a leaf.

Proof. Let v1 ∈ SB and let epn(v1; S)={u1}. Suppose u1 is not a leaf. Let u2 ∈N (u1)−
{v1}. Since S ′

B is an independent set, it follows that u2 ∈N (SA). Let v2 be the vertex
of SA adjacent to u2. Since degT v1¿ 2, there exists a vertex x∈N (v1)−{u1}. If x∈ S,
then (S −{v1; v2})∪ {u2} is a dominating set of T of cardinality less than �(T ),which
is impossible. Hence, x∈V − S − S ′

B =N (SA). Let v be the vertex of SA adjacent to x.
Then, (S − {v; v1; v2}) ∪ {u2; x} is a dominating set of T of cardinality less than �(T ),
which is impossible. Hence, u1 is a leaf. The desired result follows.

Claim 6. If k¿ 2, then SA = ∅.

Proof. Suppose k¿ 2 and SA �= ∅. Let F be the bipartite graph with partite sets SA and
N (SA) and with edge set E(F)= {uv∈E(T ) | v∈ SA; u∈N (SA)}. Since SA is a packing
in T , each vertex of N (SA) has degree 1 in F . Since each vertex of S has degree at
least 2, each vertex of SA has degree at least 2 in F . Let u∈N (SA) and let v∈ SA be
the neighbor of u in F . Let w∈N (v)− {u}.
Consider now the sequence v1; v2; : : : ; vk of vertices, where v1 = w and v2 = u. Let

S0; S1; : : : ; Sk be the corresponding sequence of �(T )-sets satisfying the hypothesis of
Theorem 1. By Theorem 1, there exists a vertex w′ ∈ S adjacent to v1 = w such that
(S − {w′}) ∪ {w} is a �(T )-set. Since w′ ∈ SA, we must have v= w′. Thus, S1 = (S −
{v}) ∪ {w}. Since v2 = u �∈ S1, there exists a vertex u2 ∈ S1 adjacent to v2 such that
S2=(S1−{u2})∪{v2}. Since, by Claim 3, N (v2)∩S1 ⊆ SB, u2 ∈ SB. Let u′=epn(u2; S).
By Claim 5, u′ is not adjacent to v1 or v2. But then u′ is not dominated by S2, a
contradiction. Hence, if k¿ 2, then SA = ∅.

If SA = ∅, then by Claim 2, V (T ) = SB ∪ S ′
B. By Claim 5, each vertex of S ′

B is a
leaf. Thus, T is the corona of the tree 〈SB〉 induced by SB, i.e, T = cor(〈SB〉). Hence
by Claim 6, it remains only to consider the case when k = 1 and SA �= ∅. Letting
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N (SA)=LA, it follows readily from Claims 1, 2, 3 and 5, and the fact that each vertex
of S has degree at least 2 in the tree T , that T ∈T.

4. Graphs with large k-Roman domination number

Our aim in this section is Crst to show that for any graph G, �k
R(G)6 (k + 1)�(G)

and, second, to characterize forests G for which �k
R(G) = (k + 1)�(G).

Lemma 4. For any graph G and for k¿ 1,

�k
R(G)6 (k + 1)�(G):

Proof. Let G=(V; E) and let S= {v1; : : : ; v�} be a �(G)-set. Let f=(V0; V1; : : : ; Vk+1)
be the function deCned by V0 = V − S, Vi = ∅ for 16 i6 k and Vk+1 = S. Since
S 
 V , we can partition V into sets W1; : : : ; W�, where vi 
 Wi for each i = 1; : : : ; �.
The movement of k legions from vi to vertices in Wi cannot create an undefended
vertex since vi will still have positive weight and vi 
 Wi. Hence, f is a kRDF, and
so �k

R(G)6 (k + 1)�(G).

Lemma 5. If k¿ 1 and G is a graph satisfying �k
R(G) = (k + 1)�(G), then for every

�(G)-set S and every v∈ S, epn(v; S) contains an independent set of k + 1 vertices.

Proof. Let G = (V; E) and let S = {v1; : : : ; v�} be a �(G)-set. Suppose that epn(v1; S)
contains no set of k + 1 independent vertices. Let G1 = 〈epn(v1; S) ∪ {v1}〉. Then,
�(G1)6 k. Since S 
 V , we can partition V into sets W1; W2; : : : ; W�, where W1=V (G1)
and for i=2; : : : ; �, vi 
 Wi for each i=1; : : : ; �. Let f=(V0; V1; : : : ; Vk+1) be the function
deCned by V0=V −S, Vk={v1}, Vk+1=S−{v1} and, if k¿ 2, Vi=∅ for 16 i6 k−1.
For i¿ 2, the movement of k legions from vi to vertices in Wi cannot create an

undefended vertex since after any such movement, vi will still have positive weight
and vi 
 Wi. Hence to prove that f is a kRDF, it suNces to show that the movement
of k legions between the vertices of G1 cannot create an undefended vertex. Suppose,
then, that w1; : : : ; wk is the sequence of (attacked) vertices in G1 corresponding to such
a movement of k legions in G1.
Initially, we move one legion from v1 to w1. If k = 1, then �(G1)6 k implies that

G1 is a clique, and therefore this movement cannot create an undefended vertex. If
k¿ 2, then for i = 2; : : : ; k, we deCne our movement as follows: If wi is adjacent
to wj for some j ¡ i, then we move a legion from wj to wi (note that after such
a movement, v1 has positive weight and therefore no undefended vertex is created);
otherwise, if wi is not adjacent to wj for any j ¡ i, then we move a legion from
v1 to wi. After such a movement of k legions, either a legion was moved between
two vertices wj and wi for some i, j with 16 j ¡ i6 k, in which case v1 has positive
weight and therefore no undefended vertex is created, or no legion was moved between
two vertices of epn(v1; S), in which case W = {w1; w2; : : : ; wk} is an independent set
and each vertex of W has weight 1. By assumption, �(G1)6 k and so W must be a
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maximum independent set in G1. But then W 
 V (G1), implying that no undefended
vertex is created. Hence f is a kRDF, and so �k

R(G)6w(f)=(k+1)�(G)−1, contrary
to assumption. Therefore, epn(v1; S) must contain an independent set of k+1 vertices.
Similarly, for i = 2; : : : ; �, �(〈epn(vi; S)〉)¿ k + 1.

The necessary condition in Lemma 5 for a graph G satisfying �k
R(G) = (k + 1)�(G)

is not suNcient. For example, for k¿ 1 and i = 1; 2, let Fi be a star K1; k+1 with
center vi and with wi a leaf. Let G be obtained from F1 ∪ F2 by adding the edge
w1w2. Then, S = {v1; v2} is the unique �(G)-set. For i = 1; 2, epn(vi; S) = N (vi) is an
independent set of k+1 vertices. However the function f deCned by f(v1)=f(v2)=k,
f(w1) = 1, and f(v) = 0 for all other vertices v of G, is a kRDF of G, and so
�k
R(G)6w(f)¡ 2(k + 1) = (k + 1)�(G). This example is easily extendable to graphs

G with arbitrary domination number at least 2.
Gunther et al. [7] presented the following characterization of trees with unique min-

imum dominating sets.

Theorem 6 (Gunther et al. [7]). Let T be a tree of order at least 3. Then, T has a
unique �(T )-set if and only if T has a �(T )-set S such that |epn(v; S)|¿ 2 for every
vertex v∈ S.

As an immediate consequence of Lemma 5 and Theorem 6, we have the following
result.

Corollary 7. If k¿ 1 and T is a tree satisfying �k
R(T ) = (k + 1)�(T ), then T has a

unique �(T )-set.

The necessary condition in Corollary 7 for a tree T satisfying �k
R(T ) = (k + 1)�(T )

is not suNcient as may be seen by considering the tree T constructed in the paragraph
following the proof of Lemma 5.
Recall that a support vertex of a tree T is a vertex adjacent to a leaf, while an

r-support vertex is adjacent to at least r leaves. Further, the set of all r-support vertices
of T is denoted by Sr(T ). Note that Sr+1(T ) ⊆ Sr(T ). For r¿ 2, every r-support vertex
of a tree T belongs to every �(T )-set. Hence, if r¿ 2 and a tree T has a unique �(T )-set
S, then Sr(T ) ⊆ S. We state this as an observation.

Observation 8. If k¿ 1 and T is a tree with a unique �(T )-set S, then Sk+1(T ) ⊆ S.

Lemma 9. If k¿ 1 and T is a tree with a unique �(T )-set S, and if every vertex of
S is a (k + 1)-support vertex, then �k

R(T ) = (k + 1)�(T ).

Proof. By Observation 8, Sk+1(T ) ⊆ S. By assumption, every vertex of S is a (k +
1)-support vertex, and so S ⊆ Sk+1(T ). Consequently, S = Sk+1(T ). Let f be a
�k
R(T )-function. We show that w(f)¿ (k + 1)�(T ). For each v∈ S, let Nv consist
of v and every leaf adjacent to v. Since S = Sk+1(T ), v is adjacent to at least k + 1
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leaves, and so |Nv|¿ k + 2. Suppose ‘¿ 0 leaves adjacent to v have weight 0 under
f. If ‘¿ k + 1, then f(Nv)¿ k + 1. On the other hand, if ‘6 k, then f(v)¿ ‘, and
so f(Nv)¿f(v)+(|Nv|−1−‘)¿ |Nv|−1¿ k+1. In any event, f(Nv)¿ k+1. Since
the sets

⋃
v∈S Nv are disjoint sets in T , it follows that �k

R(T )=w(f)¿
∑

v∈S f(Nv)¿
(k + 1)|S|= (k + 1)�(T ). Consequently, by Lemma 4, �k

R(T ) = (k + 1)�(T ).

Lemma 10. If T is a tree with a unique �(T )-set S, and if no vertex of S is a
(k + 1)-support vertex, then �k

R(T )¡ (k + 1)�(T ).

Proof. We proceed by induction on �(T ). Suppose �(T ) = 1. Let S = {v}. Then, T is
a star K1; n. Since S is a unique �(T )-set, n¿ 2. On the other hand, since S has no
(k + 1)-support vertex, n6 k. Let f be the function that assigns the weight k to v
and the weight 0 to every other vertex. Then, f is a kRDF, and so �k

R(T )6w(f) =
k ¡ k + 1 = (k + 1)�(T ). This establishes the base case.
Suppose, then, that the result of the lemma is true for all trees T ′ with �(T ′)¡ t,

where t¿ 2, that satisfy the hypothesis in the statement of the lemma. Let T = (V; E)
be a tree with �(T ) = t and with a unique �(T )-set S such that no vertex of S is a
(k + 1)-support vertex. Let T be rooted at an endvertex r of a longest path. Let w be
a vertex at distance diam(T ) − 2 from r on a longest path starting at r, and let v be
the child of w on this path. Let x denote the parent of w, and let y denote the parent
of x.
By Observation 8, Sk+1(T ) ⊆ S. Hence, since S is the unique �(T )-set and no vertex

of S is a (k+1)-support vertex, Sk+1(T )=∅. By Theorem 6, no leaf belongs to S, and so
v∈ S. Therefore v is adjacent to at most k leaves. If deg v6 k, then epn(v; S) does not
contain an independent set of k+1 vertices, and so, by Lemma 5, �k

R(T )¡ (k+1)�(T ).
Hence we may assume that deg v = k + 1 and that epn(v; S) = N (v). It follows that
degw = 2 and that w; x �∈ S. Thus, x cannot be a support vertex.
Suppose x has a child w′ that is a support vertex. Then it follows from Theorem 6

that w′ ∈ S. If w′ has a child v′ that is a support vertex, then (as with the vertex v)
deg v′= k +1, epn(v′; S)=N (v′) and w′ �∈ S, a contradiction. Hence every child of w′

is a leaf. But then degw′ = k + 1 and epn(w′; S) = N (w′). Let f = (V0; V1; : : : ; Vk+1)
be the function deCned by V0 = V − S, Vk+1 = S − {v; w′}, V1 = {v; w′; x} if k = 1
while V1 = {x} and Vk = {v; w′} if k¿ 2, and if 26 i6 k − 1, let Vi = ∅. Then f is a
kRDF, and so �k

R(T )6w(f)=(k+1)|S|−1=(k+1)�(T )−1, contrary to assumption.
Hence, no child of x is a support vertex.
Suppose deg x¿ 3. Let w′ ∈C(x) − {w}. Then, w′ is neither a leaf nor a support

vertex. Let v′ be a child of w′ and let u′ be a child of v′. As shown earlier (with
the vertex v), deg v′ = k + 1, v′ ∈ S and degw′ = 2. Let g = (V0; V1; : : : ; Vk+1) be the
function deCned by V0=V −S, Vk+1=S−{v; v′}, V1={x; v; v′} if k=1 while V1={x}
and Vk = {v; v′} if k¿ 2, and if 26 i6 k − 1, let Vi = ∅. Then g is a kRDF, and
so �k

R(T )6w(g) = (k + 1)|S| − 1 = (k + 1)�(T ) − 1, contrary to assumption. Hence,
deg x = 2. Since w; x �∈ S, we must therefore have y∈ S.
Let T ′=T −C(v)−{v; w; x}. Since y∈ S, S −{v} is a dominating set of T ′, and so

�(T ′)6 |S|−1= �(T )−1. Let h′ be a �k
R(T

′)-function and let h :V → {0; 1; : : : ; k+1}
be the function deCned by h(z) = h′(z) if z ∈V (T ′), h(x) = 1, h(v) = k, h(w) = 0 and
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h(u) = 0 for each child u of v. Then, h is a kRDF of T , and so

�k
R(T )6w(h) = w(h′) + k + 16 (k + 1)�(T ′) + k + 16 (k + 1)�(T ): (1)

Suppose we have equality throughout the inequality chain (1). In particular, �k
R(T

′)=
(k +1)�(T ′) and �(T ′) = �(T )− 1. By Corollary 7, T ′ has a unique �(T ′)-set, namely
S ′ = S − {v}. In particular, since y∈ S ′, y is not a leaf in T ′. Hence, every leaf in
T ′ is also a leaf in T . Therefore since T has no (k + 1)-support vertex, neither does
T ′. Consequently, T ′ is a tree with �(T ′)¡ t and with a unique �(T ′)-set S ′ such that
no vertex of S ′ is a (k + 1)-support vertex. Applying the inductive hypothesis to T ′,
�k
R(T

′)¡ (k +1)�(T ′), a contradiction. Hence, we cannot have equality throughout the
inequality chain (1), i.e., �k

R(T )¡ (k + 1)�(T ) as desired.

As an immediate consequence of Lemma 10 we have the following result.

Corollary 11. If F is a forest with a unique �(F)-set S, and if F has a component
with no (k + 1)-support vertex, then �k

R(F)¡ (k + 1)�(F).

In order to characterize the trees T for which �k
R(T ) = (k + 1)�(T ), we construct a

family F of forests as follows.
Let F be a forest with a unique �(F)-set S such that each component of F contains a

(k+1)-support vertex. It follows from Observation 8 that Sk+1(F) ⊆ S. If Sk+1(F)=S,
then we let F̃ = F . Otherwise, if Sk+1(F) �= S, then we deCne the subforest F̃ of F
recursively by means of a sequence of subforests F0; F1; : : : ; Ft of F , where F0 = F ,
as follows: For i = 0; : : : ; t − 1, let Si = S ∩ V (Fi). If every component of Fi has a
(k + 1)-support vertex and if Si − Sk+1(Fi) �= ∅, then let

Fi+1 = Fi −

 ⋃

v∈Sk+1(Fi)

N [v]− (Si − Sk+1(Fi))


 :

Hence, Fi+1 is obtained from Fi by deleting all vertices, except for possibly any vertices
of Si − Sk+1(Fi), in the closed neighborhoods of every (k + 1)-support vertex in Fi.
Since �(F) is Cnite, there exists an integer t¿ 1 such that Ft has a component with no
(k +1)-support vertex or St = Sk+1(Ft). Then, F̃ =Ft . For i=1; : : : ; t, we call Fi+1 the
pruning of Fi and we deCne t to be the number of prunings of the forest F . Note that,
if t ¿ i¿ 0, then Si+1 = Si − Sk+1(Fi). The three prunings F0, F1 and F2 of a forest
F = F0 with k = 2 are illustrated in Fig. 2, where for i = 0; 1; 2, the unique �(Fi)-set
Si is indicated by the large darkened vertices.

Observation 12. For i = 0; : : : ; t, the set Si is the unique �(Fi)-set.

Proof. We proceed by induction on i. If i = 0, then S0 = S and F0 = F , and so S0 is
the unique �(F0)-set. Thus the statement is true for i = 0. Suppose that the set Sm is
the unique �(Fm)-set, where 06m ¡ t. By construction, Sm+1 is a dominating set of
Fm+1, and so �(Fm+1)6 |Sm+1|. If �(Fm+1)¡ |Sm+1|, then adding the set Sk+1(Fm) to
any �(Fm+1)-set produces a dominating set of Fm of cardinality |Sk+1(Fm)|+�(Fm+1)¡
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Fig. 2. Prunings of the forest F = F0 with k = 2.

|Sk+1(Fm)|+ |Sm+1|= |Sk+1(Fm)|+ |Sm − Sk+1(Fm)|= |Sm|= �(Fm), which is impossible.
Hence, �(Fm+1) = |Sm+1|. If Fm+1 has two distinct �(Fm+1)-sets X and Y , then X ∪
Sk+1(Fm) and Y ∪ Sk+1(Fm) are both �(Fm)-sets, contradicting the inductive hypothesis
that Sm is the unique �(Fm)-set. Hence, Sm+1 is the unique �(Fm+1)-set.

We deCne the family F to consist of all forests F , every component of which
contains a (k + 1)-support vertex, that have a unique �(F)-set S such that F̃ = Ft and
St = Sk+1(Ft). Note that if F ∈F and F̃ = Ft , then each of the subgraphs F0; : : : ; Ft

belong to the family F.

Lemma 13. If F ∈F, then �k
R(F) = (k + 1)�(F).

Proof. We proceed by induction on the number t of prunings of the forest F . Let
S be the unique �(F)-set. We shall adopt the notation introduced in constructing the
family F. Suppose t = 0. Then, F̃ = F and S = Sk+1(F). Thus every vertex of S is
a (k + 1)-support vertex. Hence it follows from Lemma 9 that �k

R(F) = (k + 1)�(F).
Therefore the base case when t = 0 is true.
Suppose that all forests F ∈F with F̃ = Fm where 06m ¡ t satisfy �k

R(F) = (k +
1)�(F). Let F ∈F satisfy F̃ = Ft . Then, St = Sk+1(Ft). Since t¿ 1, S − Sk+1(F) �= ∅.
We consider the forest F1 = F − (

⋃
v∈Sk+1(F) N [v]− S1). By Observation 12, S1 is the

unique �(F1)-set. Since F ∈F, every component of F1 has a (k + 1)-support vertex
(possibly, S1=Sk+1(F1)). Now, F1 ∈F and t−1 prunings of the forest F1 are needed to
construct the forest F̃1. Applying the inductive hypothesis to F1, �k

R(F1)=(k+1)�(F1).
Let f1 be a �k

R(F1)-function, and let f :V (F) → {0; 1; : : : ; k + 1} be deCned by
f(v) =f1(v) if v∈V (F1), f(v) = k +1 if v∈ Sk+1(F), and f(v) = 0 otherwise. Then,
f is a kRDF of F , and so �k

R(F)6w(f) =w(f1) + (k + 1)|Sk+1(F)|= �k
R(F1) + (k +

1)|Sk+1(F)|. On the other hand, let g be a �k
R(F)-function. Suppose v∈ Sk+1(F) and u

is a leaf adjacent to v. If g(u) = 1, then we can reassign to v the value g(v) + 1 and
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to u the value 0. Hence we may assume that g(v) = k + 1 for each v∈ Sk+1(F) and
g(u) = 0 for each leaf u adjacent to v. Furthermore, if u∈N [Sk+1(F)]− S and if u is
not a leaf, then we may assume that g(u) = 0 for otherwise we can shift the positive
weight on u to a vertex of F1. Let g′ be the restriction of g to F1. Then, g′ is a kRDF
of F1, and so �k

R(F1)6w(g′) = w(g) − (k + 1)|Sk+1(F)| = �k
R(F) − (k + 1)|Sk+1(F)|.

Consequently, �k
R(F) = �k

R(F1) + (k + 1)|Sk+1(F)|.
Since S1 is the unique �(F1)-set, �(F1) = |S1|= |S| − |Sk+1(F)|= �(F)− |Sk+1(F)|.

Thus, since �k
R(F1) = (k +1)�(F1), it follows that �k

R(F) = �k
R(F1) + (k +1)|Sk+1(F)|=

(k + 1)(�(F1) + |Sk+1(F)|) = (k + 1)�(F).

Lemma 14. Let F be a forest. If F �∈ F, then �k
R(F)¡ (k + 1)�(F).

Proof. Suppose F �∈ F. If the forest F does not have a unique �(F)-set, then it
follows from Corollary 7 that �k

R(F)¡ (k + 1)�(F). Hence we may assume that F
has a unique �(F)-set S. If F has a component with no (k + 1)-support vertex, then,
by Corollary 11, �k

R(F)¡ (k + 1)�(F). Hence we may assume that each component
of F contains a (k + 1)-support vertex. Now since F �∈ F, it follows that F̃ = Ft

where Ft has a component with no (k +1)-support vertex. Let g be a �k
R(Ft)-function.

Then, by Corollary 11, w(g) = �k
R(Ft)¡ (k + 1)�(Ft). By Observation 12, St is the

unique �(Ft)-set and, by construction, S − St is a dominating set of F − V (Ft). Let
f :V (F) → {0; 1; : : : ; k + 1} be deCned by f(v) = g(v) if v∈V (Ft), f(v) = k + 1 if
v∈ S − St , and f(v) = 0 otherwise. Then, f is a kRDF of F , and so �k

R(F)6w(f) =
w(g) + (k +1)|S − St |¡ (k +1)�(Ft) + (k +1)(|S| − |St |) = (k +1)|St |+ (k +1)(|S| −
|St |) = (k + 1)|S|= (k + 1)�(F).

As an immediate consequence of Lemmas 13 and 14, we have the following char-
acterization of forests F that satisfy �k

R(F) = (k + 1)�(F).

Theorem 15. Let F be a forest. Then �k
R(F) = (k + 1)�(F) if and only if F ∈F.

5. Complexity

The following decision problem for the domination number of a graph is known to
be NP-complete, even when restricted to bipartite graphs (see Dewdney [5]) or chordal
graphs (see Booth [1] and Booth and Johnson [2]).

DOMINATING SET (DM)
INSTANCE: A graph G and a positive integer ‘6 |V (G)|.
QUESTION: Does G have a dominating set of cardinality ‘ or less?

We will demonstrate a polynomial time reduction of this problem to our k-Roman
dominating function problem.

k-ROMAN DOMINATING FUNCTION (kRDF)
INSTANCE: A graph H and a positive integer j6 (k + 1)|V (H)|.
QUESTION: Does H have a kRDF of weight j or less?
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Theorem 16. kRDF is NP-complete, even when restricted to bipartite or chordal
graphs.

Proof. It is obvious that kRDF is a member of NP since we can, in polynomial time,
guess at a function f :V (H) → {0; 1; : : : ; k + 1} and verify that f has weight at most
j and is a kRDF. We next show how a polynomial time algorithm for kRDF could
be used to solve DM in polynomial time. Given a graph G and a positive integer ‘
construct the graph H by adding for each vertex v of G a star K1; k+1, joining v to an
endvertex of this star and then subdividing the resulting edge once. Note that if k =1,
then we have added a path of length 4 to v. It is easy to see that the construction of
the graph H can be accomplished in polynomial time. Note that if G is a bipartite or
chordal graph, then so too is H .

Lemma 17. �k
R(H) = �(G) + (k + 1)|V (G)|.

Proof. Let f= (V0; V1; : : : ; Vk+1) be a �k
R(H)-function. Let v∈V (G) and let Fv be the

component of H −(V (G)−{v}) containing v. Then, Fv is obtainable from a star K1; k+1

by subdividing one edge twice. Let v; w; x; y denote the path from v to the center y
of the star that was added to v to produce H . We may assume that f(z) = 0 for
each of the k leaves z adjacent to y (for otherwise we can simply shift any positive
weight from z to its neighbor y). Since f is a kRDF, it follows that f(y)¿ k and
f(N [w])¿ 1. Thus, f(V (Fv))¿ k + 1. Let S = (

⋃k+1
i=1 Vi) ∩ V (G).

If f(V (Fv))¿ k + 2, then we may assume that f(v)¿ 1, f(w) = 1, f(x) = 0,
f(y)=k, and f(z)=0 for each leaf z adjacent to y (for otherwise we can simply shift
any additional positive weight in the subgraph Fv to v). Hence, if f(V (Fv))¿ k + 2,
then v∈ S.
Suppose that f(V (Fv))= k +1. Then, f(N [w]) = 1 and f(y)= k. If f(x)= 1, then

f(v) = f(w) = 0. In particular, v∈V0, and so v must be adjacent to a vertex u of
positive weight in f. Since w∈V0, u∈V (G). Hence, v is adjacent to a vertex of S.
On the other hand, suppose f(x) = 0. If f(w) = 0, then the movement of k legions
from y to its k leaves will create an undefended vertex, namely x. Hence, f(w) = 1
and so f(v) = 0. Consider now the sequence of k vertices consisting of k − 1 leaves
of y followed by the vertex x. The movement of k legions from y to these k vertices
will create an undefended vertex, namely a leaf of y. Thus the movement of a legion
from w to x cannot create an undefended vertex. But this implies that the vertex v
must be adjacent to a vertex of S. Hence, if f(V (Fv)) = k + 1, then v is dominated
by S.
Thus, S is a dominating set of G, and so �(G)6 |S|. Furthermore, if v∈ S, then

f(V (Fv))¿ k+2, while if v �∈ S, then f(V (Fv))=k+1. Hence, �k
R(H)=w(f)¿ (k+

2)|S|+ (k + 1)(|V (G)| − |S|) = |S|+ (k + 1)|V (G)|¿ �(G) + (k + 1)|V (G)|.
On the other hand, let D be a �(G)-set. Let g :V (H) → {0; 1; : : : ; k + 1} be the

function deCned as follows: if v∈D, then let g(v) = g(w) = 1, g(x) = 0, g(y) = k, and
g(z) = 0 for each leaf z adjacent to y, while if v �∈ D, then let g(v) = 0, g(w) = 1,
g(x) = 0, g(y) = k, and g(z) = 0 for each leaf z adjacent to y. Then, g is a kRDF of
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H , and so �k
R(H)6w(g)= (k +2)|D|+(k +1)(|V (G)| − |D|)= |D|+(k +1)|V (G)|=

�(G) + (k + 1)|V (G)|. Consequently, �k
R(H) = �(G) + (k + 1)|V (G)|, as desired.

Lemma 17 implies that if we let j = ‘ + (k + 1)|V (G)|, then �(G)6 ‘ if and only
if �k

R(H)6 j. This completes the proof of Theorem 16.
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