event rates. Differences between NSAIDs were modeled from observed rates of GI events and adverse effects after adjusting for differences in population characteristics across three clinical trials (TARGET, CLASS and VIGOR). Other enhancements included modeling: 1) serious hepatic, renal, and skin adverse events (AEs); 2) proton pump inhibitor use after dyspepsia, while taking an NSAID; and 3) multiple occurrences of myocardial infarction (MI) (as opposed to one per patient). Health state utilities for AEs were assigned a value equal to that for the hospitalized surgical management of a complicated GI event. For MI, a 5% discount factor was used to reduce the patient’s utility score. Patients switching to acetaminophen because of an AE can experience reduced analgesic effect compared with NSAIDs; therefore utilities were discounted by 20%. RESULTS: The modified model produced lower estimates of LYs and QALYs (approximately 0.05 and 0.08 less, respectively) compared with the original model which could be clinically meaningful in a 3-year model. Patient and clinical characteristics that defined low GI-risk subgroup versus high GI-risk group produced differences in LYs and QALYs of up to 1.1Y and 0.7 QALY. CONCLUSION: Effectiveness can vary considerably across patients with varying clinical characteristics. Therefore, the cost-effectiveness of treatment in any population should consider the heterogeneity of patients. This model provides flexible means to compare cost-effectiveness of treatment for patients with osteoarthritis.

PAR7

MODELLING OF THE COST-EFFECTIVENESS OF RITUXIMAB FOR TREATMENT OF RHEUMATOID ARTHRITIS IN ITALY

De Vita S1, Giuliani G2, Diamantopoulos A1, Brown B1, Kiehlorn A1
1Policlinico Universitario Udine, Udine, Italy, 2Roche S.p.A, Milano, Italy, 3MTAG UK Ltd, London, UK, 4F. Hoffmann-La Roche Ltd, Basel, Switzerland

OBJECTIVES: Rituximab (RTX), a unique selective B-cell therapy, is a new option for rheumatoid arthritis (RA) patients who respond inadequately to anti-TNF therapies. This study reports a cost-effectiveness analysis modelling the introduction of RTX in Italy. METHODS: We used ACR response rates (adjusted for differences in study populations), plus observational data from EU registries and simulated real-life treatment for 10,000 RA patients who had responded inadequately to anti-TNF therapy, using baseline patient characteristics from the REFLEX study. We assumed an average treatment duration for biological therapy (in combination with methotrexate) of up to 4.25 years over the patient’s remaining lifetime. QALYs were mapped from a disease-severity measure (HAQ score) and based on registry data. Relevant costs included (2004–5 Euros [€]) drug costs (including administration and monitoring) and those related to reduced productivity (indirect costs). We assessed RTX as either a new treatment step or instead of adalimumab.

RESULTS: Average annual treatment costs were €8796 for RTX + MTX, €14,133 for adalimumab, €14,406 for etanercept, and €9950 for infliximab. Compared with the current treatment sequence, RTX + MTX as a new treatment step produced a gain of 0.677 QALYs at an incremental total medical cost of €12,355 over the lifetime of each patient—an incremental cost-effectiveness ratio (ICER) of €18,259 per QALY gained. The incremental cost per QALY for drug therapy or total (direct + indirect) cost was €19,241 and €13,621. RTX used instead of adalimumab produced a similar QALY gain, but resulted in a total direct medical-cost saving of €11,389 over the patient’s lifetime.

CONCLUSIONS: RTX offers a highly acceptable incremental cost per QALY gained for Italian patients with RA who respond inadequately to anti-TNF therapy and the possibility of either treating more patients within an existing budget or reducing the overall treatment cost for RA patients.