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Abstract

In this paper we present some results concerning the existence and uniqueness of mild
solutions to certain abstract semilinear differential equations and the asymptotic behavior
of these solutions. The basic techniques used are the iterative method and the fixed point
theory for differential equations in Banach space. However, the most pleasant here is that it
can be applied to nonlinear equations without assuming the eigenvalues of the differential
operator in the linear parts of the differential equation has non-zero real part.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction and notation

The original motivation for this paper is to study sufficient conditions for the
existence and uniqueness, as well as the asymptotic behavior of the solutions for
the semilinear differential equation:


∂
∂t
u(t, x)=�u(t, x)+ βu(t, x)+ f (t, x,u) on (0,∞)×Ω,

u(t, x)= 0 on[0,∞)× ∂Ω,

u(0, x)= ξ0(x) onΩ.

(1.1)
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We assume thatΩ ⊂Rn is a bounded domain with smooth boundary and that the
constantβ > 0 and the functionf satisfy certain conditions. If one letsX denote
the Hilbert spaceL2(Ω) and if the operatorA :D(A)→X is defined by

Aϕ =∆ϕ + βϕ for all ϕ ∈D(A),

where

D(A)= {
ϕ ∈C2(Ω)∩C1(�Ω): ϕ(x)= 0 on∂Ω

}
,

then the semilinear differential equation (1.1) can be replaced by the abstract
semilinear initial value problem:{

d
dt
u(t)=Au(t)+ f

(
t, u(t)

)
on (0,∞),

u(0)= ξ0 ∈X onΩ,
(1.2)

where u(·) ∈ X. From [6, p. 205], there exists a sequence{ϕn: n ∈ N} of
eigenfunctions correspondent to the eigenvalues{λn: n ∈N} for A, and{ϕn: n ∈
N} forms an orthonormal basis for the Hilbert spaceX. Moreover, the operatorA
generates aC0-semigroup{T (t): t � 0} on the Hilbert spaceX, which is defined
by

(
T (t)ϕ

)
(x)=

∞∑
k=1

exp(λkt)〈ϕ,ϕk〉ϕk for all ϕ ∈X.

Therefore, instead of solving this semilinear differential equation (1.1) directly,
we consider more general abstract semilinear initial value problem:{

d
dt
u(t)=A(t)u(t)+ f

(
t, u(t)

)
on (s,∞),

u(s)= ξs ∈X onΩ,
(1.3)

wheres � 0 is a fixed real number and{A(t): t � 0} generates aC0-evolution
system{U(t, s): 0� s � t <∞} on the Banach spaceX.

Under the assumption thatA(t) is sectorial for eacht � 0, with a dense
constant domainD ≡D(A(t)), andY ⊃D is a dense imbedded Banach subspace
of X. M.I. Gil’ [7, chapter 16] gave a sufficient condition for the zero solution of
(1.3) which globally asymptoticallyY -stable. In [1], Y.H. Chang and R.H. Martin,
Jr. found sufficient conditions for the conditional stability for the zero solution
of the abstract semilinear initial value problem (1.3). The basic techniques used
in that paper are Lyapunov-like methods and fixed point theory for differential
equations in Banach spaces. Y.H. Chang [2] presented some results concerning the
existence and its asymptotic behavior of mild solutions for the abstract semilinear
initial value problem (1.3). However, if there is an eigenvalueλn of A with
Reλn = 0, then theC0-semigroup{T (t): t � 0} generated byA does not satisfy
the conditions in [2]. The existence and the trichotomy properties for vector value
ordinary differential equations (whereA is a matrix) were extensively studied by
Z. Deming and X. Min [4], S. Elaydi and O. Hajek [5] and H. Jialin [8,9]. In
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this paper, we try to continue Y.H. Chang and R.H. Martin, Jr.’s concept to the
generalized semilinear case in whichA(t) may be an unbounded operator with
some eigenvalues having zero real part.

In the rest of this preliminary section, we will introduce some notation and
hypotheses. In Section 2, we apply the iterative approximation method to prove
the local existence and uniqueness of the mild solution of (1.3) (see Theorem 2.1)
under some assumptions on the forcing term functionf (·, u(·)). Moreover, with
further restrictions on the functionf , we approach the global existence and
uniqueness of the mild solution for certain types of abstract semilinear equations
as well as the conditional asymptotic stability and the conditional stability (see
Theorem 2.4 and Theorem 2.7). Practical examples are given in the last section.

Through out this paper, we letX be the Banach space endowed with norm| · |,
and{A(t): t � 0} generates aC0-evolution system{U(t, s): 0 � s � t < ∞} on
the Banach spaceX. ‖ · ‖ denotes the norm on the Banach spaceB(X), where
B(X) is the space of bounded linear operators onX. We also let‖ · ‖∞ denote the
supremum norm onC([s,∞);X).

Here we assume that there exist nontrivial supplementary projectionsP1, P2
andP3 on the Banach spaceX such thatPiX = Xi , i = 1, 2, 3, and theC0-
evolution system{U(t, s): 0 � s � t <∞} satisfies the following conditions:

(A1) {U(t, s): 0 � s � t < ∞} restricted toXi , i = 1, 2, are total evolution
systems (that is, for eachx1 ∈ X1, x2 ∈ X2 and t < s, there is a unique
zit,s ∈ X, i = 1, 2, such thatU(s, t)zit,s = xi , i = 1, 2, and in this case we
defineU(t, s)xi = zit,s , i = 1, 2, fort < s).

(A2) U(t, s)Pi = PiU(t, s) for all 0� s � t <∞ andi = 1, 2, 3.
(A3)

∫ t
s ‖U(t, τ )P3‖dτ + ∫∞

t ‖U(t, τ )P1‖dτ �K for all 0 � s � t <∞.
(A4) ‖U(t, s)P2‖ � L2 for all 0� s, t <∞.

For the purpose of obtaining the global existence of the mild solution for the
differential equation (1.3), we also assume that the functionf : [s,∞)×X →X

in (1.3) satisfies the following conditions (see Theorem 2.4):

(F1) f (t, x) is continuous int ∈ [s,∞) for any fixedx ∈X.
(F2) f (t, x) is locally Lipschitz continuous inx ∈ X for all t ∈ [s,∞); that is,

for any constantα > 0, there exists a constantγ (α) such that∣∣f (t, x)− f (t, y)
∣∣� γ (α)|x − y| for all s � t <∞, |x|, |y| � α.

(F3) f (t,0)≡ 0 for all s � t <∞.
(F4)

∫∞
s |P2f (τ,ϕ(τ )) − P2f (τ,φ(τ ))|dτ � γ2‖ϕ − φ‖∞ for all ϕ,φ ∈ D,

where

D = {
ϕ ∈ C([s,∞);X): ‖ϕ‖∞ � α

}
andα is the constant given in (F2).
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However, if we just wanted to get the local existence of the mild solution for the
differential equation (1.3), we only need assume conditions (F1) and (F2) (see
Theorem 2.1).

2. Main results

The argument of the proof for the Theorem 2.1 is standard. To prove the
existence and uniqueness of the mild solution to the differential equation (1.3),
one can use a similar argument showed in [3, Theorem 2.3]. On the other hand,
one can also obtain the blow-up result by following the proof of Theorem 6-1.4
in Pazy’s book [10] with a slight modification. So, we omit the detail here.

Theorem 2.1. Let linear operators{A(t): t � 0} generate aC0-evolution system
{U(t, s): 0 � s � t < ∞} on the Banach spaceX, and letT > s be any fixed
constant. If the functionf : [s,∞)×X →X in (1.3)satisfies conditions(F1)and
(F2), then for anyξs ∈X, there istmax ∈ (s, T ] such that the integral equation

u(t)=U(t, s)ξs +
t∫

s

U(t, τ )f
(
τ,u(τ )

)
dτ (2.1)

has a unique solutionu on the interval[s, tmax). Moreover, iftmax< T , then

lim
t→tmax

∣∣u(t)∣∣= ∞.

To prove the global existence and uniqueness of the solution to the integral
equation (2.1) (Theorem 2.4), we need following lemmas as preliminaries.

Lemma 2.2. Suppose theC0-evolution system{U(t, s): 0 � s � t <∞} satisfies
conditions(A1)–(A4) and the functionf : [s,∞) × X → X satisfies conditions
(F1)–(F4). If ξ3 ∈X3 and the operatorC :D →C([s,∞);X) is defined by

(Cϕ)(t)=U(t, s)ξ3 +
t∫

s

U(t, τ )P3f
(
τ,ϕ(τ )

)
dτ

−
∞∫
t

U(t, τ )P2f
(
τ,ϕ(τ )

)
dτ −

∞∫
t

U(t, τ )P1f
(
τ,ϕ(τ )

)
dτ

for all ϕ ∈D, thenC is well-defined and

‖Cϕ −Cφ‖∞ � (γK + γ2L2)‖ϕ − φ‖∞ for anyϕ,φ ∈D,

whereγ , K, γ2, L2 are the constants in(A3), (A4), (F3)and(F4).
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Proof. From the conditions (A1), (A3), (A4), (F3) and (F4), for anyε > 0,
t1 > t2 � s andϕ ∈D, there exists a constantT0 > t1 large enough such that∣∣Cϕ(t1)−Cϕ(t2)

∣∣
�
∣∣U(t1, s)ξ3 −U(t2, s)ξ3

∣∣+
t2∫
s

∣∣{U(t1, τ )−U(t2, τ )
}
P3f

(
τ,ϕ(τ )

)∣∣dτ

+
t1∫

t2

∣∣U(t1, τ )P3f
(
τ,ϕ(τ )

)∣∣dτ +
t1∫

t2

∣∣U(t2, τ )P2f
(
τ,ϕ(τ )

)∣∣dτ

+
t1∫

t2

∣∣U(t2, τ )P1f
(
τ,ϕ(τ )

)∣∣dτ

+
T0∫
t1

∣∣{U(t1, τ )−U(t2, τ )
}
(P1 + P2)f

(
τ,ϕ(τ )

)∣∣dτ + 2ε.

Since the functiont �→ U(t, s)ξ3 is continuous on 0� s � t < ∞, and func-
tionsτ �→ |U(t1, τ )P3f (τ,ϕ(τ ))|, τ �→ |U(t2, τ )P2f (τ,ϕ(τ ))|, τ �→ |U(t2, τ )×
P1f (τ,ϕ(τ ))| are uniformly continuous on the compact interval[t1, t2], there ex-
ist constantsδ1 > 0 andδ2 > 0 such that|U(t1, s)ξ3 − U(t2, s)ξ3| < ε for all
|t1 − t2|< δ1 and

t1∫
t2

∣∣U(t1, τ )P3f
(
τ,ϕ(τ )

)∣∣dτ +
t1∫

t2

∣∣U(t2, τ )P2f
(
τ,ϕ(τ )

)∣∣dτ

+
t1∫

t2

∣∣U(t2, τ )P1f
(
τ,ϕ(τ )

)∣∣dτ < ε for all |t1 − t2|< δ2.

On the other hand, since the functions

(t, τ ) �→U(t, τ )P3f
(
τ,ϕ(τ )

)
and (t, τ ) �→U(t, τ )(P1 + P2)f

(
τ,ϕ(τ )

)
are uniformly continuous on the compact sets{

(t, τ ): 0 � s � τ � t � T0
}

and
{
(t, τ ): 0 � s � t � τ � T0

}
respectively, there exists a constantδ3 > 0 such that∣∣{U(t1, τ )−U(t2, τ )

}
P3f

(
τ,ϕ(τ )

)∣∣< εT −1
0

for all |t1 − t2|< δ3, s � τ � t2 � T0, and∣∣{U(t1, τ )−U(t2, τ )
}
(P1 + P2)f

(
τ,ϕ(τ )

)∣∣< εT −1
0
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for all |t1 − t2|< δ3, s � t1 � τ � T0. Let δ � min{δ1, δ2, δ3}, then∣∣Cϕ(t1)−Cϕ(t2)
∣∣� ε+ (t2 − s)εT −1

0 + (T0 − t1)εT
−1
0 + 2ε � 6ε

for all 0 � s � t2 � t1 � t2 + δ. Hence,Cϕ ∈ C([s,∞);X) for all ϕ ∈D, andC
is well defined. Moreover, for anyφ, ϕ ∈D,

‖Cϕ −Cφ‖∞ � sup
t�s

{ t∫
s

∥∥U(t, τ )P3
∥∥γ ∣∣ϕ(τ)− φ(τ)

∣∣dτ

+
∞∫
t

∥∥U(t, τ )P1
∥∥γ ∣∣ϕ(τ)− φ(τ)

∣∣dτ
}

+ sup
t�s

∞∫
t

∥∥U(t, τ )P2
∥∥∣∣P2f

(
τ,ϕ(τ )

)− P2f
(
τ,φ(τ )

)∣∣dτ
� (γK + γ2L2)‖ϕ − φ‖∞

and this lemma is proved.

Lemma 2.3. Suppose theC0-evolution system{U(t, s): 0 � s � t <∞} satisfies
conditions(A1)–(A4). Thenlimt→∞ ‖U(t, τ )P3‖ = 0 for all τ � s, and there is
a constantL3 = L3(s) > 0 such that‖U(t, τ )P3‖ � L3 for all 0 � s � t < ∞.
Furthermore, if the functionf : [s,∞) × X → X satisfies conditions(F1)–(F4)
and the constantsγ , K, γ2, L2 in (A3), (A4), (F3) and (F4) satisfy γK +
γ2L2 < 1, then for anyξ3 ∈ P3X with |ξ3|< (1−γK−γ2L2)αL

−1
3 , the operator

C is a contraction mapping fromD intoD.

Proof. From the condition (A3),
∫ t
s
‖U(t, τ )P3‖dτ �K for all t � s. Setϕ(t)=

‖U(t, s)P3‖−1 for all t � s, then for any fixedξ ∈X andt � s,∣∣∣∣∣
( t∫

s

ϕ(τ ) dτ

)
U(t, s)P3ξ

∣∣∣∣∣�
t∫

s

ϕ(τ )
∥∥U(t, τ )P3

∥∥∥∥U(τ, s)P3
∥∥|ξ |dτ

�K|ξ |.
Thus, for allt � s, ϕ(t)−1

∫ t
s ϕ(τ ) dτ � K. Let Ψ (t) = ∫ t

s ϕ(τ ) dτ for all t � s.
Then

Ψ ′(t)= ϕ(t)� 1

K

t∫
s

ϕ(τ ) dτ = 1

K
Ψ (t),

and henceΨ (t)� Ψ (t0)exp{K−1(t − t0)} for all t � t0 > s. This implies

lim
t→∞

∥∥U(t, τ )P3
∥∥= 0 for all τ � s
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and ∥∥U(t, s)P3
∥∥�KΨ (t)−1

�
{
KΨ (s + 1)−1 exp

(
K−1(s + 1)

)}
exp(−K−1t)

for all t � s + 1, since the functiont �→ U(t, s)P3ξ is uniformly continuous on
the compact interval[s, s + 1]. It follows from Theorem 2.1 that there exists a
constantM1(s) > 0 such that‖U(t, s)P3‖ �M1(s), for all t ∈ [s, s + 1]. Let

L3 = max
{
M1(s),KΨ (s + 1)−1 exp

(
K−1(s + 1)

)}
.

Then‖U(t, s)P3‖ � L3 for t � s. If γK + γ2L2 < 1 andξ3 ∈ P3X with |ξ | <
(1− γK − γ2L2)αL

−1
3 , then for anyϕ ∈D

‖Cϕ‖∞ � sup
t�s

∣∣U(t, s)P3ξ3
∣∣+ sup

t�s

∞∫
t

∥∥U(t, τ )P2
∥∥∣∣P2f

(
τ,ϕ(τ )

)∣∣dτ

+ sup
t�s

( t∫
s

∥∥U(t, τ )P3
∥∥∣∣f (τ,ϕ(τ ))∣∣dτ

+
∞∫
t

∥∥U(t, τ )P1
∥∥∣∣f (τ,ϕ(τ ))∣∣dτ

)
� α.

Hence,Cϕ ∈D for anyϕ ∈D, andC(D) ⊂D. Moreover, from Lemma 2.2,

‖Cϕ −Cφ‖∞ � (γK + γ2L2)‖ϕ − φ‖∞ for anyϕ,φ ∈D.

Hence,C :D → D is a contraction mapping onD with a contraction constant
γK + γ2L2. The assertion of this lemma is established now.

Theorem 2.4. Suppose theC0-evolution system{U(t, s): 0 � s � t < ∞}
satisfies conditions(A1)–(A4) and the functionf : [s,∞) × X → X satisfies
conditions(F1)–(F4). If the constantsγ , K, γ2, and L2 in (A3), (A4), (F3)
and (F4) satisfyγK + γ2L2 < 1, then for anyξ3 ∈ X3 with |ξ3| < (1 − γK −
γ2L2)αL

−1
3 , there existsξs ∈X such thatP3ξs = ξ3 and the corresponding unique

mild solutionu(t) to the abstract semilinear initial value problem(1.3)is bounded
on [s,∞). Furthermore,limt→∞ |u(t)| = 0.

Proof. From Lemma 2.3,C :D → D is a contraction mapping onD with
contraction constantγK + γ2L2. Then there exists a uniqueu in D such that
Cu= u. Henceu(t) is bounded on[s,∞), and

u(t)=U(t, s)ξ3 +
t∫

s

U(t, τ )P3f
(
τ,u(τ )

)
dτ
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−
∞∫
t

U(t, τ )P2f
(
τ,u(τ )

)
dτ −

∞∫
t

U(t, τ )P1f
(
τ,u(τ )

)
dτ.

Thus

u(s)= ξ3 −
∞∫
s

U(s, τ )P2f
(
τ,u(τ )

)
dτ −

∞∫
s

U(s, τ )P1f
(
τ,u(τ )

)
dτ.

Let ξs = u(s) ∈ X. Following from the factsP3U(t, s) = U(t, s)P3 andPjP3 =
0, for eachj = 1, 2, we haveP3ξs = P3u(s)= ξ3. On the other hand,

u(t)=U(t, s)ξs +U(t, s)

∞∫
s

U(s, τ )P2f
(
τ,u(τ )

)
dτ

+U(t, s)

∞∫
s

U(s, τ )P1f
(
τ,u(τ )

)
dτ +

t∫
s

U(t, τ )P3f
(
τ,u(τ )

)
dτ

−
∞∫
t

U(t, τ )P2f
(
τ,u(τ )

)
dτ −

∞∫
t

U(t, τ )P1f
(
τ,u(τ )

)
dτ

=U(t, s)ξs +
t∫

s

U(t, τ )(P1 + P2 + P3)f
(
τ,u(τ )

)
dτ

=U(t, s)ξs +
t∫

s

U(t, τ )f
(
τ,u(τ )

)
dτ

for any t � s. This shows thatu(t) is a bounded mild solution to the abstract
semilinear initial value problem (1.3) with initial valueξs on [s,∞) which
satisfiesP3ξs = ξ3. From Theorem 2.1, the solutionu(t) is unique on[s,∞).

Since |u(t)| � α for all t � s, there existsµ ∈ [0,∞) such thatµ =
lim supt→∞ |u(t)|. If µ > 0, then there is a constantθ ∈ (0,1) and t1 � s such
thatθ > γK + γ2L2 and|u(t)| � θ−1µ, for all t � t1. From Lemma 2.3, one may
have

lim
t→∞

∥∥U(t, s)P3
∥∥= lim

t→∞
∥∥U(t, t1)P3

∥∥= 0.

For anyt � t1 � s, with t large enough,

∣∣u(t)∣∣� ∥∥U(t, s)P3
∥∥|ξ3| +

∥∥U(t, t1)P3
∥∥ t1∫
s

∣∣U(t1, τ )P3f
(
τ,u(τ )

)∣∣dτ
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+
t∫

t1

∣∣U(s, τ )P3f
(
τ,u(τ )

)∣∣dτ +
∞∫
t

∣∣U(t, τ )P1f
(
τ,u(τ )

)∣∣dτ

+
∞∫
t

∣∣U(t, τ )P2f
(
τ,u(τ )

)∣∣dτ

�
∥∥U(t, s)P3

∥∥|ξ3| +
∥∥U(t, t1)P3

∥∥ t1∫
s

∣∣U(t1, τ )P3f
(
τ,u(τ )

)∣∣dτ

+Kγθ−1µ+L2

∞∫
t

∣∣P2f
(
τ,u(τ )

)∣∣dτ.
Thusµ = lim supt→∞ |u(t)| � (γK + γ2L2)θ

−1µ < µ. This is impossible, and
henceµ= 0. This shows that limt→∞ |u(t)| = 0, and this theorem is completely
proved now.

With the same processes as in the proofs of Lemma 2.2 and Lemma 2.3, one
may easily obtain the following Lemma 2.5 and Lemma 2.6.

Lemma 2.5. Suppose theC0-evolution system{U(t, s): 0 � s � t <∞} satisfies
conditions(A1)–(A4) and the functionf : [s,∞) × X → X satisfies conditions
(F1)–(F4). For any fixedξ2 ∈X2, ξ3 ∈X3, let the operatorB :D → C([s,∞);X)
be defined by

(Bϕ)(t)=U(t, s)ξ2 +U(t, s)ξ3 +
t∫

s

U(t, τ )P2f
(
τ,u(τ )

)
dτ

+
t∫

s

U(t, τ )P3f
(
τ,u(τ )

)
dτ −

∞∫
t

U(t, τ )P1f
(
τ,u(τ )

)
dτ

for all ϕ ∈D, thenB is well-defined and

‖Bϕ −Bφ‖∞ � (γK + γ2L2)‖ϕ − φ‖∞ for anyϕ,φ ∈D,

whereγ , K, γ2, L2 are the constants in(A3), (A4), (F3)and(F4).

Lemma 2.6. Suppose theC0-evolution system{U(t, s): 0 � s � t <∞} satisfies
conditions(A1)–(A4) and the functionf : [s,∞) × X → X satisfies conditions
(F1)–(F4). If the constantsγ , K, γ2, L2 in (A3), (A4), (F3) and (F4) satisfy
γK + γ2L2 < 1, then for anyξ2 ∈ P2X, ξ3 ∈ P3X with both|ξ2| and|ξ3| strictly
less than(1 − γK − γ2L2)α(L2 + L3)

−1, whereL3 is as in Lemma2.3, the
operatorB is a contraction mapping fromD intoD.
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Theorem 2.7. Suppose theC0-evolution system{U(t, s): 0 � s � t < ∞}
satisfies conditions(A1)–(A4) and the functionf : [s,∞) × X → X satisfies
conditions(F1)–(F4). If the constantsγ , K, γ2, andL2 in (A3), (A4), (F3)and
(F4) satisfyγK + γ2L2 < 1. Then for any fixedξ2 ∈ P2X, ξ3 ∈ P3X with |ξ2|,
|ξ3| < (1 − γK − γ2L2)α(L2 + L3)

−1, there existsξs ∈ X such thatP3ξs = ξ3,
P2ξs = ξ2 and the corresponding unique mild solutionu(t) to the abstract
semilinear initial value problem(1.3) is bounded on[s,∞). Furthermore,

‖u‖∞ � L2

1− γK − γ2L2
|ξ2| + L3

1− γK − γ2L2
|ξ3|.

Proof. From Lemma 2.6,B :D → D is a contraction mapping onD with a
contraction constantγK + γ2L2. Hence there exists a uniqueu ∈ D such that
Bu= u, u(t) is bounded on[s,∞), and

u(t)=U(t, s)(ξ2 + ξ3)+
t∫

s

U(t, τ )P2f
(
τ,u(τ )

)
dτ

+
t∫

s

U(t, τ )P3f
(
τ,u(τ )

)
dτ −

∞∫
t

U(t, τ )P1f
(
τ,u(τ )

)
dτ,

u(s)= ξ2 + ξ3 −
∞∫
s

U(t, τ )P1f
(
τ,u(τ )

)
dτ.

Let ξs = u(s) ∈ X. SincePjU(t, s) = U(t, s)Pj andPjPi = 0, i �= j for all i,
j ∈ {1,2,3}, this implies thatP2ξs = P2u(s) = ξ2, P3ξs = P3u(s) = ξ3. On the
other hand,

u(t)=U(t, s)ξs +U(t, s)

∞∫
s

U(s, τ )f
(
τ,u(τ )

)
dτ

+
t∫

s

U(t, τ )P2f
(
τ,u(τ )

)
dτ +

t∫
s

U(t, τ )P3f
(
τ,u(τ )

)
dτ

−
∞∫
t

U(t, τ )P1f
(
τ,u(τ )

)
dτ

=U(t, s)ξs + +
t∫

s

U(t, τ )f
(
τ,u(τ )

)
dτ

for any t � s. Thusu(t) is a bounded mild solution to the abstract semilinear
initial value problem (1.3) on[s,∞) with initial valueξs which satisfiesP2ξs =
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ξ2, P3ξs = ξ3. The uniqueness of the solution can be obtained as in the proof of
Theorem 2.1 immediately. Furthermore,

‖u‖∞ =L2|ξ2| +L3|ξ3| +L2

t∫
s

∣∣P2f
(
τ,u(τ )

)∣∣dτ

+ sup
t�s

( t∫
s

∥∥U(t, τ )P3
∥∥γ ∣∣u(τ)∣∣dτ −

∞∫
t

∥∥U(t, τ )P1
∥∥γ ∣∣u(τ)∣∣dτ

)

�L2|ξ2| +L3|ξ3| + (γK + γ2L2)‖u‖∞.

Thus‖u‖∞ � (1− λK + −γ2L2)
−1(L2|ξ2| +L3|ξ3|). The proof of this theorem

is completed now.

3. Applications

Example 3.1. We first consider the semilinear initial-boundary value problem:


∂
∂t
u(t, x)=�u(t, x)+ βu(t, x)+ f (t, x,u) on (0,∞)×Ω,

u(t, x)= 0 on[0,∞)× ∂Ω,

u(0, x)= ξ0(x) onΩ,

(3.1)

whereΩ ⊂ Rn is a bounded domain with smooth boundary,β > 0 is a constant,
the functionf satisfy conditions (F1)–(F4), andξ0(·) is in L2(Ω). Let X be
the Hilbert spaceL2(Ω), and let the operatorA :D(A) → X be defined by
Aϕ =∆ϕ + βϕ for all ϕ ∈ D(A) with D(A) = {ϕ ∈ C2(Ω): ϕ(x)= 0 on∂Ω}.
Then the semilinear differential equation (3.1) can be replaced by the abstract
semilinear initial value problem (1.2). It can be shown that there exists a sequence
of eigenfunctions{ϕn: n ∈ N} corresponding to the sequence of eigenvalues
{λn: n ∈N} for A, and{ϕn: n ∈N} is an orthonormal basis for the Hilbert space
X [6, p. 205]. This implies thatϕ = ∑∞

k=1〈ϕ,ϕk〉ϕk for all ϕ ∈ X and theC0-
semigroup{T (t): t � 0} generated byA onX is defined by

(
T (t)ϕ

)
(x)=

∞∑
k=1

exp(λkt)〈ϕ,ϕk〉ϕk

for all ϕ ∈ X. Supposeβ > 0 be a constant such that the eigenvalues ofA

satisfies Reλ1 � · · · � Reλn > 0, Reλn+1 = · · · = Reλm = 0 and 0>Reλm+1 �
Reλm+2 � · · ·. We may define linear operatorsP1, P2 andP3 onX by

P1ϕ =
n∑

k=1

〈ϕ,ϕk〉ϕk, P2ϕ =
m∑

k=n+1

〈ϕ,ϕk〉ϕk, P3ϕ =
∞∑

k=m+1

〈ϕ,ϕk〉ϕk

for all ϕ ∈ X. Then operatorsP1, P2 and P3 are projections on the Hilbert
spaceX. Let Xi be the range of a projectionPi for eachi = 1, 2, 3. Then the
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dimensions ofX1 andX2 aren andm− n, respectively. LetU(t, s) = T (t − s)

for all t � s � 0, then{U(t, s): 0 � s � t} is a C0-evolution system with the
infinitesimal generatorA(t) ≡ A. It is easy to see that the conditions (A1) and
(A2) are satisfied.

For anyt ∈R andϕ ∈X,

∣∣T (t)P1ϕ
∣∣=

∣∣∣∣∣
n∑

k=1

〈ϕ,ϕk〉exp(λkt)ϕk

∣∣∣∣∣� |ϕ|
n∑

k=1

exp(t Reλk),

and hence∥∥U(t, τ )P1
∥∥= ∥∥T (t − τ )P1

∥∥�
n∑

k=1

exp
(
Reλk(t − τ )

)
for all t, τ ∈ R. Let 3 = 2−1 min{Reλn,−Reλm+1}.Then Reλk(t − τ ) �
3(t − τ )� 0 for all t � τ <∞ and for allk = 1,2, . . . , n. Hence‖U(t, τ )P1‖ �
nexp(3(t − τ )) for all t � τ <∞. We define a functionV : [0,∞)×X → R by

V (t, ϕ)= ∣∣exp
(−(3 + λm+1)t

)
T (t)P3ϕ

∣∣
for all t ∈ [0,∞) and for allϕ ∈X. Then for allt � 0 andϕ ∈D(A),

d

dt
V (t, ϕ)= 1

V (t, ϕ)
Re

〈
d

dt
exp

(−(3 + λm+1)t
)
T (t)P3ϕ,

exp
(−(3 + λm+1)t

)
T (t)P3ϕ

〉

= −3V (t,ϕ)+ |e−(3+λm+1)t |2
V (t, ϕ)

× Re

〈 ∞∑
k=m+1

(λk − λm+1)〈ϕ,ϕk〉T (t)ϕk, T (t)P3ϕ

〉

= −3V (t,ϕ)+ |exp(−(3 + λm+1)t)|2
V (t, ϕ)

× Re
∞∑

k=m+1

∣∣〈ϕ,ϕk〉∣∣2∣∣eλkt ∣∣2(λk − λm+1)

= −3V (t,ϕ)+ |e−(3+λm+1)t |2
V (t, ϕ)

×
∞∑

k=m+1

∣∣〈ϕ,ϕk〉∣∣2∣∣eλkt ∣∣2(Reλk − Reλm+1)

� −3V (t,ϕ).

This implies that

V (t, ϕ)� V (0, ϕ)exp(−3t)= exp(−3t)|P3ϕ| � exp(−3t)|ϕ|,
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and hence∣∣exp
(−(3 + λm+1)t

)
T (t)P3ϕ

∣∣� exp(−3t)|ϕ|
for all t � 0 andϕ ∈ D(A). SinceD(A) is dense inX, for anyϕ ∈ X, there is a
sequence{ϕj : j ∈N} in D(A) such that limj→∞ ϕj = ϕ. This implies that∣∣exp

(−(3 + λm+1)t
)
T (t)P3ϕ

∣∣= lim
j→∞

∣∣exp
(−(3 + λm+1)t

)
T (t)P3ϕj

∣∣
� lim

j→∞ exp(−3t)|ϕj |
= exp(−3t)|ϕ|

for all t � 0 andϕ ∈X. Hence for allt � 0,∣∣exp
(−(3 + λm+1)t

)∣∣∥∥T (t)P3
∥∥= ∥∥exp

(−(3 + λm+1)t
)
T (t)P3

∥∥
� exp(−3t).

This shows that‖T (t)P3‖ � exp(Reλm+1t)� exp(−3t) for all t � 0, and for all
t � τ � 0,∥∥U(t, τ )P3

∥∥= ∥∥T (t − τ )P3
∥∥� exp

(−3(t − τ )
)
.

Therefore, for all 0� t <∞,

t∫
0

∥∥U(t, τ )P3
∥∥dτ +

∞∫
t

∥∥U(t, τ )P1
∥∥dτ

�
t∫

0

exp
(−3(t − τ )

)
dτ +

∞∫
t

nexp
(
3(t − τ )

)
dτ

� 1+ n3−1.

This implies that the condition (A3) holds withK = 1 + n3−1 andL3 = 1. For
all t ∈ R andϕ ∈X, we have

∣∣T (t)P2ϕ
∣∣=

∣∣∣∣∣
m∑

k=n+1

〈ϕ,ϕk〉exp(λkt)ϕk

∣∣∣∣∣� (m− n)|ϕ|.

Thus‖U(t, τ )P2‖ = ‖T (t − τ )P2‖ � (m− n) for all 0 � s, t <∞, and hence the
condition (A4) holds withL2 =m− n.

Suppose the forcing term functionf (t, ϕ) satisfies conditions (F1)–(F4) with
constantsγ , γ2, α. If (n +3)3−1γ + (m− n)γ2 < 1, then from Theorem 2.4,
for any ξ3 ∈ X3 with |ξ3| < (1 − (n + 3)3−1γ − (m − n)γ2)α, there exists
a ξ0 ∈ X such thatP3ξ0 = ξ3 and the corresponding unique mild solution
u(t) to the semilinear initial value problem (1.2) satisfies limt→∞ |u(t)| = 0.
Furthermore, from Theorem 2.7, for anyξ2 ∈ X2, ξ3 ∈ X3 with |ξ2|, |ξ3| <
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3−1(m− n+ 1)−1{3 − (n+3)γ −3(m− n)γ2}α, there exists aξ0 ∈X such
thatP2ξ0 = ξ2, P3ξ0 = ξ3 and the corresponding unique bounded mild solution
u(t) to the semilinear initial value problem (1.2) satisfies

‖u‖∞ � (1− γK − γ2L2)
−1{(m− n)|ξ2| + |ξ3|

}
.

Example 3.2. Let s � 0,31 > 0,33 > 0, ξ1, ξ2 andξ3 are given real constants.
Consider the differential system:

u′

1(t)=31u1(t)+ a11(t)u
2
1(t)+ a12(t)u

2
2(t)+ a13(t)u

2
3(t),

u′
2(t)= a21(t)u

2
1(t)+ a22(t)u

2
2(t)+ a23(t)u

2
3(t),

u′
3(t)= −33u3(t)+ a31(t)u

2
1(t)+ a32(t)u

2
2(t)+ a33(t)u

2
3(t),

u1(s)= ξ1, u2(s)= ξ2, andu3(s)= ξ3,

(t > s) (3.2)

where aij ∈ C([0,∞);R) satisfies‖aij‖∞ � M and
∫∞
s

|a2j (τ )|dτ � L for
some constantsM, L, for all i, j = 1, 2, 3. LetX be the Banach spaceR3

with the Euclidean norm, and let projectionsP1, P2, P3 :X → X be defined by
P1x = (x1,0,0), P2x = (0, x2,0), andP3x = (0,0, x3) for all x = (x1, x2, x3) ∈
X. Suppose the operatorA :X → X and the functionf : [s,∞) × X → X are
defined by

Ax = (31x1,0,−33x3),

f (t, x)T =
[
a11(t) a12(t) a13(t)

a21(t) a22(t) a23(t)

a31(t) a32(t) a33(t)

]
x2

1

x2
2

x2
3




for all x = (x1, x2, x3) ∈ X. Then the differential equations (3.2) can be written
as the abstract semilinear differential equation (1.2) with the initial value
u(s) = (ξ1, ξ2, ξ3). Moreover, sinceA is a bounded operator, theC0-semigroup
{T (t): t � 0} generated byA is aC0-group, and it can be represented as

T (t)x = (
exp(31t)x1, x2,exp(−33t)x3

)
for all x = (x1, x2, x3) ∈X.

LetXj = PjX, j = 1, 2, 3. Then dimXj = 1, for all j = 1, 2, 3, since

T (t)P1x = (
exp(31t)x1,0,0

)
,

T (t)P2x = (0, x2,0),

and

T (t)P3x = (
0,0,exp(−33t)x3

)
,

for all x = (x1, x2, x3) ∈ X. Let U(t, s) = T (t − s) for all t, s ∈ R. Then
{U(t, s): t, s ∈ R} is a C0-evolution system with the infinitesimal generator
A(t)≡A. The conditions (A1) and (A2) obviously hold, since for allt ∈ R,
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∥∥T (t)P1
∥∥= sup

|x|=1

∣∣exp(31t)x1
∣∣

= exp(31t) sup
|x|=1

|x1| � exp(31t) sup
|x|=1

|x| = exp(31t),

∥∥T (t)P2
∥∥= sup

|x|=1
|x2| � sup

|x|=1
|x| = 1,

and ∥∥T (t)P3
∥∥= sup

|x|=1

∣∣exp(−33t)x3
∣∣� exp(−33t) sup

|x|=1
|x| = exp(−33t).

This implies that∥∥U(t, τ )P1
∥∥= ∥∥T (t − τ )P1

∥∥� e31(t−τ ),∥∥U(t, τ )P2
∥∥= ∥∥T (t − τ )P2

∥∥� 1,

and ∥∥U(t, τ )P3
∥∥= ∥∥T (t − τ )P3

∥∥� e−33(t−τ ),

for all t, τ ∈R. Thus

t∫
s

∥∥U(t, τ )P3
∥∥dτ +

∞∫
t

∥∥U(t, τ )P1
∥∥dτ

� (3133)
−1(31 +33) for all t � s.

Therefore, the conditions (A3) and (A4) hold with the constantsK = (3133)
−1 ×

(31 +33), L2 = 1 andL3 = 1.
From the definition of the functionf and the assumptions ofaij , for all

i, j = 1, 2, 3,f is continuous int andf (t,0) ≡ 0. Thus conditions (F1) and
(F3) hold. Furthermore, for allt � s andx, y ∈X, with |x|, |y| � α,∣∣f (t, x)− f (t, y)

∣∣
�

3∑
i=1

∣∣ai1(t)(x2
1 − y2

1

)+ ai2(t)
(
x2

2 − y2
2

)+ ai3(t)
(
x2

3 − y2
3

)∣∣

�M

3∑
i=1

3∑
j=1

(|x| + |y|)|x − y|

� 18αM|x − y|.
Thus the condition (F2) holds withγ = 18αM. If ϕ,φ ∈ C([s,∞);X) satisfy
‖ϕ‖∞, ‖φ‖∞ � α, then



Y.-H. Chang, G.-C. Jau / J. Math. Anal. Appl. 275 (2002) 312–332 327

∞∫
s

∣∣P2f
(
τ,ϕ(τ )

)− P2f
(
τ,φ(τ )

)∣∣dτ

=
∞∫
s

∣∣∣∣∣
3∑

j=1

a2j (τ )
(
ϕ2
j (τ )− φ2

j (τ )
)∣∣∣∣∣dτ

�
3∑

j=1

∞∫
s

∣∣a2j (τ )
∣∣(‖ϕ‖∞ + ‖φ‖∞

)‖ϕ − φ‖∞ dτ

� 2α‖ϕ − φ‖∞
3∑

j=1

∞∫
s

∣∣a2j (τ )
∣∣dτ

� 6Lα‖ϕ − φ‖∞
and hence the condition (F4) holds withγ2 = 6Lα.

If the constantα > 0 satisfies

α <
3133

6(L3133 + 3M31 + 3M33)
,

thenγK + γ2L2 < 1. From Theorem 2.4, for anyξ3 ∈X3 with

|ξ3|< α(3133)
−1{(1− 6Lα)3133 − 18Mα(31 +33)

}
,

there exists aξs ∈ X such thatP3ξs = ξ3 and the corresponding unique mild
solution u(t) to the abstract semilinear initial value problem (1.2) satisfies
limt→∞ |u(t)| = 0. This implies limt→∞ u(t) = 0, whereu(t) = (u1(t), u2(t),

u3(t)) is the mild solution to the semilinear differential equation (3.2). From
Theorem 2.7, for any fixedξ2 ∈X2, ξ3 ∈X3 with

|ξ2|< α(23133)
−1{(1− 6Lα)3133 − 18Mα(31 +33)

}
,

and

|ξ3|< α(23133)
−1{(1− 6Lα)3133 − 18Mα(31 +33)

}
,

there exists aξs ∈X such thatP2ξs = ξ2, P3ξs = ξ3 and the corresponding unique
mild solutionu(t) to the abstract semilinear initial value problem (1.2) satisfies

‖u‖∞ � (1− γK − γ2L2)
−1(|ξ2| + |ξ3|

)
.

Example 3.3. Consider the semilinear initial-boundary value problem:


∂
∂t
u(t, x)= ∂2

∂x2u(t, x)+ β(t)u(t, x)+ f (t, x) on (0,∞)× (0,π),

u(t,0)= u(t,π)= 0 on[0,∞),

u(0, x)= ξ0(x) on (0,π),

(3.3)

whereβ is a continuous function on the interval[0,∞) satisfying the following
conditions:
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(1) There is a positive integern such thatn2 = inft�0β(t) � supt�0β(t) <

(n+ 1)2.
(2) β is a constant function on[T ,∞) for someT � 0,
(3)

∫∞
0 (β(τ )− n2) dτ is finite.

LetX = L2[0,π],
D = {

ϕ ∈C2(0,π)∩C1[0,π]: ϕ(0)= ϕ(π)= 0
}
,

and the operatorA(t) :D →X is defined by

(
A(t)ϕ

)
(x)= ∂2

∂x2ϕ(x)+ β(t)ϕ(x)

for all ϕ ∈D and for allt ∈ [0,∞). Then initial-boundary value problem (3.3) can
be replaced by the abstract semilinear initial value problem (1.3) with the initial
valueu(0)= ξ0 ∈ X. From the definition ofA(t), ϕk(x)= √

2π−1 sin(kx) is an
eigenfunction ofA(t) corresponding to the eigenvalueλk(t)= β(t)− k2 of A(t)
for each fixedt � 0 and for allk ∈N . On the other hand, the sequence of functions
{ϕk: k ∈ N} forms an orthonormal basis for the Hilbert spaceX [6, p. 231]
and eachϕ in X can be represented asϕ = ∑∞

k=1〈ϕ,ϕk〉ϕk [11, pp. 137–139].
Moreover, the operatorA(t) generates aC0-evolution{U(t, s): 0 � s � t < ∞}
on the Hilbert spaceX which satisfies

U(t, s)ϕ =
∞∑
k=1

exp

( t∫
s

(
β(τ)− k2)dτ

)
〈ϕ,ϕk〉ϕk (3.4)

for all ϕ ∈X and 0� s � t <∞. Sinceλk(t)= β(t)−k2 andλ1(t) > λ2(t) > · · ·
for eacht ∈ [0,∞). This implies that

inf
t�0

λ1(t) > · · ·> inf
t�0

λn(t)= 0> inf
t�0

λn+1(t) > · · ·
and

sup
t�0

λ1(t) > · · ·> sup
t�0

λn(t)� 0> sup
t�0

λn+1(t) > · · ·

for all t ∈ [0,∞). LetP1, P2 andP3 are projections onX which are defined by

P1ϕ =
n−1∑
k=1

〈ϕ,ϕk〉ϕk, P2ϕ = 〈ϕ,ϕn〉ϕn, and P3ϕ =
∞∑

k=n+1

〈ϕ,ϕk〉ϕk

for all ϕ ∈ X. Let Xi be the range of a projectionPi , for eachi = 1, 2, 3. Then
X1 andX2 are finite dimensional spaces, and hence the conditions (A1) and (A2)
hold. Since

P1U(t, s)ϕ =U(t, s)P1ϕ =
n−1∑
k=1

〈ϕ,ϕk〉exp

( t∫
s

(
β(τ)− k2)dτ

)
ϕk
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for all 0 � s, t <∞ andϕ ∈X. If we set3 = 2−1 inft�0λn−1(t), then

λ1(t) > · · ·> λn−1(t) >3 > 0 for all t � 0.

This derives

∥∥U(t, s)P1
∥∥�

n−1∑
k=1

exp

( t∫
s

(
β(τ)− k2)dτ

)
� (n− 1)exp

(
3(t − s)

)

for all 0� t � s <∞ and
∫∞
t

‖U(t, τ )P1‖dτ � (n−1)3−1 is finite for all t � 0.
As long as we can show that there is constantsL3 > 0 andη > 0 such that∥∥U(t, s)P3

∥∥� L3 exp
(−η(t − s)

)
for all 0 � s � t <∞.

Then for allt � 0,

t∫
0

∥∥U(t, τ )P3
∥∥dτ � L3η

−1 exp(−η)

is finite and this shows the condition (A3) to be true with the constantK which
equals toL3η

−1 exp(−η)+ (n− 1)3−1.
Since

∥∥U(t, s)P3
∥∥�

∞∑
k=1

exp

( t∫
s

β(τ ) dτ − (n+ k)2(t − s)

)

for all t � s � 0 and there 0� ε < 1 is such that supt�0β(t) � (n + ε)2 <

(n+ 1)2.

∥∥U(t, s)P3
∥∥�

∞∑
k=1

exp(
∫ t
s (n+ ε)2 dτ)

exp(((n+ ε)+ (k − ε))2(t − s))

=
∞∑
k=1

1

exp((2(n+ ε)(k − ε)+ (k − ε)2)(t − s))

� exp
(−(1− ε)2(t − s)

) ∞∑
k=1

(
exp

(−2n(t − s)
))k−1

= exp(2n(t − s))

exp(2n(t − s))− 1
exp

(−(1− ε)2(t − s)
)

(3.5)

for all t > s � 0. The constant(exp(2n(t− s))−1)−1exp(2n(t− s)) is dependent
on t , s, and

lim
s→t

exp(2n(t − s))

exp(2n(t − s))− 1
= ∞.
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So, we can not directly estimate‖U(t, s)P3‖ from (3.5). To overcome this
difficulty, we need to consider the parameters of theC0-evolution systemU(t, s)
in the following cases:

(1) The first parametert is in the interval[0, T + 1] and the second parameters

satisfies 0� s � t � T + 1.
(2) The first parametert is in the interval(T + 1,∞) and the second parameter

s satisfiesT < t − 1 � s � t <∞.
(3) The first parametert is in the interval(T + 1,∞) and the second parameter

s satisfies 0� s < t − 1.

Case1: By using the same technique as used in the proof of Theorem 2.1, one
may haveM1 = {‖U(t, s)P3‖: 0 � s � t � T + 1} which is a finite constant. So,
we obtain the estimation∥∥U(t, s)P3

∥∥�M1 exp
(
(1− ε)2(T + 1)

)
exp

(−(1− ε)2(t − s)
)

for all 0 � s � t � T + 1.
Case2: From the assumption (2) of the functionβ and (3.4), it is easy to see

thatU(t, s)=U(t − s + T ,T ) for all T < t − 1 � s � t <∞. Therefore,

M2 = {∥∥U(t, s)P3
∥∥: t − 1 � s � t

}= {∥∥U(T + h,T )P3
∥∥: 0 � h� 1

}
is finite for allT + 1< t <∞ and hence∥∥U(t, s)P3

∥∥�M2 exp
(
(1− ε)2

)
exp

(−(1− ε)2(t − s)
)

for all T < t − 1 � s � t .
Case3: From (3.5), it is easy to see that

∥∥U(t, s)P3
∥∥� exp(2n)

exp(2n)− 1
exp

(−(1− ε)2(t − s)
)
.

Finally, letη andL3 are the constantsη = (1− ε)2 and

L3 = max

{
M1 exp

(
(1− ε)2(T + 1)

)
,M2 exp

(
(1− ε)2

)
,

exp(2n)

exp(2n)− 1

}
,

then we may get the estimation of‖U(t, s)P3‖ as‖U(t, s)P3‖ � L3 exp(−η×
(t − s)) for all 0 � s � t <∞. This shows the condition (A3) to be true with the
constant

K = L3(1− ε)−2 exp
(−(1− ε)2

)+ (n− 1)3−1.

On the other hand, since for all 0� s, t <∞,

P2U(t, s)ϕ =U(t, s)P2ϕ = 〈ϕ,ϕn〉exp

( t∫
s

(
β(τ)− n2)dτ

)
ϕn
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and

∥∥U(t, s)P2
∥∥� exp

( t∫
s

(
β(τ)− n2)dτ

)
.

From the assumption (3) of the functionβ ,

∥∥U(t, s)P2
∥∥� max

{
exp

( ∞∫
0

(
β(τ)− n2)dτ

)
,exp

( ∞∫
0

(
n2 − β(τ)

)
dτ

)}

for all 0 � s, t <∞. This implies the condition (A4) holds, and

L2 = max

{
exp

( ∞∫
0

(
β(τ)− n2)dτ

)
,exp

( ∞∫
0

(
n2 − β(τ)

)
dτ

)}
.

Suppose the functionf (t, ϕ) satisfies conditions (F1)–(F4). IfγK+γ2L2 < 1,
then followed from Theorem 2.4, for anyξ3 ∈X3 which satisfies|ξ3|< (1−γK−
γ2L2)αL

−1
3 , there exists aξ0 ∈ X such thatP3ξ0 = ξ3 and the corresponding

unique mild solutionu(t) to the abstract semilinear initial value problem (1.3)
satisfies limt→∞ |u(t)| = 0. On the other hand, according to Theorem 2.7, for any
ξ2 ∈X2, ξ3 ∈X3 with both|ξ2| and|ξ3| less than(1−γK−γ2L2)α(L2 +L3)

−1,
there exists aξ0 ∈ X such thatP2ξ0 = ξ2, P3ξ0 = ξ3, and the corresponding
unique mild solutionu(t) to the abstract semilinear initial value problem (1.3)
satisfies

‖u‖∞ � (1− γK − γ2L2)
−1(L2|ξ2| +L3|ξ3|

)
.
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