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Abstract

We introduce a relative index for a pair of dissipative operators in a von Neumann algebra of finite
type and prove an analog of the Birman–Schwinger principle in this setting. As an application of this
result, revisiting the Birman–Krein formula in the abstract scattering theory, we represent the de la Harpe–
Skandalis determinant of the characteristic function of dissipative operators in the algebra in terms of the
relative index.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In 1961 M.Sh. Birman [3] and J. Schwinger [24] independently introduced a method to control
the number of negative eigenvalues of Schrödinger operators. In the abstract operator-theoretic
setting, the classical Birman–Schwinger principle (in its simplest form) states (see, e.g., [25]):

Given a self-adjoint strictly positive operator H0 and a non-negative self-adjoint compact
operator V on a Hilbert space H, the number of negative eigenvalues (counting multiplicity)
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of the operator H = H0 −V coincides with the number of eigenvalues greater than one of the
Birman–Schwinger operator V 1/2H−1

0 V 1/2.

That is,

dim
[
EH (R−)H

] = dim
[
E

I−V 1/2H−1
0 V 1/2(R−)H

]
, (1.1)

where R− = (−∞,0) and ET (·) is the spectral measure of a self-adjoint operator T .
The sign-definiteness assumptions upon H0 and V can be relaxed and the principle admits

further generalizations. Assume that V is factorized in the form V = K∗N−1K , with N a self-
adjoint unitary and K a compact operator, and that H0 and H = H0 − V have bounded inverses.
Then (1.1) can be extended to a more general equality

ind
(
EH0(R−),EH (R−)

) = ind
(
EN(R−),E

N−KH−1
0 K∗(R−)

)
(1.2)

of the Fredholm indices for the associated pairs of the spectral projections (cf. [16] for the proof
in the case of trace class perturbations; see also [22,23]). For the concept of the Fredholm index
for a pair of orthogonal projections we refer to [1].

The main purpose of this paper is to find an appropriate generalization of the principle (1.2)
in the context of perturbation theory in a von Neumann algebra A of finite type. To accomplish
this goal, we introduce the concept of a relative index ξ(M,N) associated with a pair (M,N) of
dissipative elements in A via

ξ(M,N) = τ
[
Ξ(N)

] − τ
[
Ξ(M)

]
. (1.3)

Here Ξ(M) denotes the Ξ -operator [16,17] (cf. also [10]) associated with M and τ a normal
tracial state on the algebra A.

If both M and N are self-adjoint, the relative index ξ(M,N) can be expressed in terms of the
τ -Fredholm indices of the corresponding spectral projections:

ξ(M,N) = indτ

(
EN(R−),EM(R−)

) + 1

2
indτ

(
EN

({0}),EM

({0})). (1.4)

Recall that the notion of the τ -Fredholm index for a pair of orthogonal projections (P,Q) is
an analog of the index introduced in [1], where the usual trace has to be replaced by the tracial
state τ . In the particular case of von Neumann algebras of finite type, one has indτ (P,Q) =
τ(P − Q). We refer to [8,9] for the theory of τ -Fredholm operators.

The main result of the present paper (see Theorem 3.3) establishes a generalization of the
Birman–Schwinger principle to the case of dissipative operators in a finite von Neumann alge-
bra A. For boundedly invertible dissipative operators M , N , M −K∗N−1K , and N −KM−1K∗
in A we prove the relation

ξ
(
M,M − K∗N−1K

) = ξ
(
N,N − KM−1K∗). (1.5)

In the self-adjoint case, this relation together with (1.4) provides an analog of (1.2) for the τ -
Fredholm indices.

Relaxing the invertibility assumption on the operators M and/or N , we present an extension
of the principle (1.5) (see Theorem 3.7). In particular, if N has a bounded inverse and the family
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of the operators N − K(M + iεI)−1K∗, ε > 0, has a limit as ε ↓ 0 in the norm topology as an
invertible (dissipative) operator we show that the relation

ξ
(
M,M − K∗N−1K

) = ξ
(
N,N − K(M + i0I )−1K∗) (1.6)

holds.
As an application of (1.6) to the self-adjoint case, we study the perturbation problem H0 �→

H = H0 − K∗N−1K , with N = N∗ boundedly invertible and H0 = H ∗
0 . Under mild additional

assumptions, (1.6) leads to an equality (see Theorem 4.3) relating the index ξ(H,H0) to the
de la Harpe–Skandalis determinant [14] of the Lifshits characteristic function of the dissipative
operator N −K(H0 + i0I )−1K∗. We remark that this result strongly resembles the Birman–Krein
formula [4] relating the scattering matrix to the spectral shift function.

It should be mentioned that in the context of perturbation theory for self-adjoint operators in
von Neumann algebras of finite type, the function

R � λ �→ ξ(H − λI,H0 − λI) (1.7)

coincides with the spectral shift function associated with the pair of self-adjoint operators
(H,H0). We recall that the concept of the spectral shift function was introduced by I.M. Lifshits
[21] and M.G. Krein [20] for (finite or infinite) factors of type I (see [5,6,27], and references
therein) and it has been extended to the case of (semi)finite von Neumann algebras in [2,11] (see
also [7]).

Throughout the paper we assume that A is a von Neumann algebra of finite type and τ a
normal tracial state on it. In the case when A is a factor of type II1, the symbol Dim(·) stands
for the relative dimension associated with A. The set of the boundedly invertible dissipative
operators in A is given particular consideration and we reserve the symbol DA for this set.
We use the letter K to refer to an arbitrary operator in A and M , N to refer to dissipative
operators in A. We denote self-adjoint operators in A by H0, V , and H while discussing issues
of perturbation problems. Auxiliary self-adjoint operators will be denoted by A, B , L and unitary
operators by U , S.

2. The Ξ -operator

Suppose M is a dissipative, not necessarily invertible, operator in A and L its minimal self-
adjoint dilation (see [26]) in a Hilbert space K ⊃ H. We define the Ξ -operator associated with
M by

Ξ(M) = PH

[
EL(R−) + 1

2
EL

({0})]∣∣∣∣
H

, (2.1)

where EL(·) stands for the spectral measure of L and PH for the orthogonal projection in the
space K onto H.

Theorem 2.1. If M ∈ A is a dissipative operator, then the self-adjoint non-negative contraction
Ξ(M) belongs to the algebra A.
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Proof. Suppose first that M has a bounded inverse. Then, by the Langer lemma, the minimal
self-adjoint dilation L of M has a trivial kernel, that is,

EL

({0}) = 0,

and, therefore,

Ξ(M) = PHEL(R−)|H = 1

π
Im logM (2.2)

(cf. [17, Lemma 2.7]). Here logM denotes the principal branch of the operator logarithm of
M ∈ DA with the cut along the negative imaginary semi-axis provided by the Riesz functional
calculus. Equivalently, the operator logarithm logM can be understood as the norm-convergent
Riemann integral

logM = −i

∞∫
0

(
(M + iλI)−1 − (1 + iλ)−1I

)
dλ. (2.3)

Representation (2.3) proves that Ξ(M) is an element of A (under the assumption that M has a
bounded inverse).

To prove the claim of the theorem in the general case, it suffices to deduce that

s-lim
ε↓0

Ξ(M + iεI) = Ξ(M) (2.4)

whenever M is dissipative. Indeed, given ε > 0, the dissipative operator M + iεI ∈ A obviously
has a bounded inverse. Hence Ξ(M + εiI ) ∈ A, by the first part of the proof, and the claim
follows from (2.4).

In order to prove (2.4), we note that

Ξ(M + iεI) = 1

π
Im log(M + iεI)

= − 1

π

∞∫
0

Re
(
(M + iεI + iλI)−1 − (1 + iλ)−1IH

)
dλ

= − 1

π
PH

∞∫
0

Re
(
(L + iεI + iλI)−1 − (1 + iλ)−1IK

)∣∣
H dλ

= 1

π
PH Im log(L + iεI)|H

= 1

π
PH Im log(L + iεI)

[
EL

({0}) + EL

(
R \ {0})]∣∣H. (2.5)

Following almost verbatim the arguments in [17], we verify that

s-lim
1

Im log(L + iεI)EL

(
R \ {0}) = EL(R−), (2.6)
ε↓0 π
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with the limit taken in the strong operator topology of the Hilbert space K. Finally, applying the
Spectral Theorem to the self-adjoint operator L with the use of (2.5) and (2.6), we conclude that

s-lim
ε↓0

Ξ(M + iεI) = PH

[
EL(R−) + 1

2
EL

({0})]∣∣∣∣
H

= Ξ(M). �
Remark 2.2. As one can see from the proof of Theorem 2.1, the Ξ -operator possesses the con-
tinuity property in the sense that

s-lim
ε↓0

Ξ(M + iεI) = Ξ(M), (2.7)

whenever M is a dissipative operator in A. It is also clear that if, in addition, M is self-adjoint,
then the Ξ -operator can be expressed in terms of the spectral resolution EM(·) associated with
M via

Ξ(M) = EM(R−) + 1

2
EM

({0}). (2.8)

To conclude this section, we link the trace of the Ξ -operator to the phase of the de la Harpe–
Skandalis determinant [14]. Basic properties of this determinant can be found in Appendix A.

Theorem 2.3. Assume that M ∈ DA. Let detτM be the de la Harpe–Skandalis determinant asso-
ciated with the homotopy class of the C1-paths of invertible operators joining M with the identity
I and containing any C1-path [0,1] � t �→ Mt ∈DA. Then

detτ M = exp
(
iπτ

[
Ξ(M)

]) · Δ(M),

with Δ(·) the Fuglede–Kadison determinant (cf. [15]).

Proof. As any complex number, detτM can be written in the polar form

detτM = exp
(
i Im log[detτ M]) · |detτ M|. (2.9)

Lemma A.2(i) implies that detτ M = exp(τ [logM]) and Lemma A.1(ii) that |detτ M| = Δ(M).
Combining the latter representations with (2.9), one gets

detτ M = exp
(
iπ Im τ [logM]) · Δ(M). (2.10)

By positivity of the state τ , one concludes that τ ◦ Im = Im ◦ τ , and hence the right-hand side
of (2.10) equals exp(iπτ [Im logM]) · Δ(M). Taking into account (2.2) completes the proof. �
Remark 2.4. In the case A is a finite type factor,

τ
[
Ξ(H)

] = Dim
[
EH

(
(−∞,0)

)
H

]
whenever H is a self-adjoint invertible element in A. Thus, τ [Ξ(M)] can be considered a natural
generalization of the Morse index of the dissipative element M .
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3. The Birman–Schwinger principle

The main aim of this section is to provide an analog of the Birman–Schwinger principle in
the context of perturbation theory for dissipative operators in the von Neumann algebra setting.

Definition 3.1. We define the ξ -index associated with the pair (M,N) of dissipative operators
M and N in A by

ξ(M,N) = τ
[
Ξ(N)

] − τ
[
Ξ(M)

]
. (3.1)

Remark 3.2. The index ξ(M,N) can also be recognized as the argument of the de la Harpe–
Skandalis determinant Δ(t �→ Mt) associated with the homotopy class of the nonsingular C1-
paths joining M with N and containing any C1-path [0,1] � t �→ Mt ∈ DA with the endpoints
M0 = M and M1 = N . That is,

Δ(t �→ Mt) = exp
(
iπξ(M,N)

) · Δ(
NM−1),

with Δ(·) the Fuglede–Kadison determinant.

We note that in view of Remark 2.2 the relative index associated with the pair (H0,H) of
self-adjoint operators in A admits a transparent representation via the τ -Fredholm indices of the
corresponding spectral projections

ξ(H,H0) = indτ

(
EH0(R−),EH (R−)

) + 1

2
indτ

(
EH0

({0}),EH

({0})). (3.2)

We start with an invariance principle for the ξ -index associated with a pair of boundedly
invertible dissipative operators, a natural analog of the Birman–Schwinger principle in the per-
turbation theory for self-adjoint operators in the standard I∞ setting.

Theorem 3.3. Let K ∈ A and M,N ∈ DA. Suppose, in addition, that the dissipative operators
M − K∗N−1K and N − KM−1K∗ are boundedly invertible. Then

ξ
(
M,M − K∗N−1K

) = ξ
(
N,N − KM−1K∗). (3.3)

Before turning to the proof of Theorem 3.3, let us interpret its result in the context of pertur-
bation theory for self-adjoint operators.

Assume that H0 = H ∗
0 is a boundedly invertible element in A, and that the perturbation V =

H − H0 can be factored in the form1 V = −K∗N−1K , with N = N∗ a boundedly invertible
element in A. Then Theorem 3.3 guarantees the coincidence of the τ -Fredholm indices for the
dual pairs of the spectral projections

indτ

(
EH0(R−),EH (R−)

) = indτ

(
EN(R−),E

N−KH−1
0 K∗(R−)

)
. (3.4)

1 Such a factorization is available for any V = V ∗; for instance, one can take K = √|V | and N = − sgn(V ), with

sgn(x) =
{

1 if x � 0,

−1 if x < 0.
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In particular, if A is a factor of finite type, H0 and V are positive, and both H0 and H have
bounded inverses, principle (3.4) acquires the traditional “counting dimensions” flavor (cf. (1.1)):

Dim
[
EH0−V (R−)H

] = Dim
[
E

V 1/2H−1
0 V 1/2

(
(1,∞)

)
H

]
. (3.5)

Proof of Theorem 3.3. Introduce an auxiliary Herglotz operator-valued function

z �→ M(z) =
(

M + zI K∗
K N + zI

)
, z ∈ C+,

with values in the von Neumann algebra A⊗M2, where M2 is the space of 2 × 2 (scalar) ma-
trices. Note that M(z), z ∈ C+, are boundedly invertible operators in A ⊗ M2 and the diagonal
entries of M−1(z) are the inverses of the operators

M(z) = M + zI − K∗(N + zI)−1K,

N (z) = N + zI − K(M + zI)−1K∗, (3.6)

the Schur complements of M(z).
Taking into account that

d

dz
M(z) =

(
I 0
0 I

)
and using the Dixmier–Fuglede–Kadison differentiation formula (cf. [13,15]) yields

d

dz
τ (2)

[
logM(z)

] = τ (2)
[
M−1(z)

] = 1

2
τ
[
M−1(z)

] + 1

2
τ
[
N−1(z)

]
. (3.7)

Here τ (2) denotes the normal tracial state on the von Neumann algebra A⊗ M2 given by

τ (2)

[(
A B

C D

)]
= τ(A) + τ(D)

2
, A,B,C,D ∈ A. (3.8)

By direct computations, we get

N−1(z) = (N + zI)−1 + (N + zI)−1KM−1(z)K∗(N + zI)−1. (3.9)

Employing the additivity and cyclicity of the state τ and representation (3.9), we derive

τ
[
M−1(z)

] + τ
[
N−1(z)

]
= τ

[
M−1(z)

] + τ
[
M−1(z)K∗(N + zI)−2K

] + τ
[
(N + zI)−1]

= τ
[
M−1(z)

(
I + K∗(N + zI)−2K

)] + τ
[
(N + zI)−1]

= d (
τ
[
logM(z)

] + τ
[
log(N + zI)

])
. (3.10)
dz
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Comparing (3.7) and (3.10) gives

d

dz

(
2τ (2)

[
logM(z)

]) = d

dz

(
τ
[
logM(z)

] + τ
[
log(N + zI)

])
.

From this, we conclude that

2τ (2)
[
logM(z)

] = τ
[
logM(z)

] + τ
[
log(N + zI)

] + C, (3.11)

with C a constant. Combining the asymptotic expansions

τ (2)
[
logM(iy)

] = log(iy) +O
(

1

y

)
,

τ
[
logM(iy)

] = log(iy) +O
(

1

y

)
,

τ
[
log(N + iyI)

] = log(iy) +O
(

1

y

)
as y → +∞, we infer that the constant C in (3.11) equals zero and, hence,

2τ (2)
[
logM(z)

] = τ
[
logM(z)

] + τ
[
log(N + zI)

]
, Im z > 0. (3.12)

Computing the normal boundary values as z ↓ 0 in (3.12) ensures the equality

τ (2)[log M] = 1

2

(
τ
[
log

(
M − K∗N−1K

)] + τ [logN ]), (3.13)

where

M = M(0).

Next, we note that (
0 I

I 0

)(
M K∗
K N

)(
0 I

I 0

)−1

=
(

N K

K∗ M

)
.

It is straightforward to check that, for any unitary operator U ∈ A⊗ M2 and any H ∈ DA⊗M2
,

log
(
UHU−1) = U(logH)U−1, (3.14)

which along with the invariance of the state τ (2) with respect to unitary transformations yields

τ (2)
[
log

(
UHU−1)] = τ (2)[logH ].

Hence, (3.13) implies the equality

τ (2)[log M] = 1(
τ
[
log

(
N − KM−1K∗)] + τ [logM]). (3.15)
2
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Combining (3.13) and (3.15) we get

τ
[
log

(
M − K∗N−1K

)] + τ [logN ] = τ
[
log

(
N − KM−1K∗)] + τ [logM].

By (2.2) and (3.1), this completes the proof of the theorem. �
Remark 3.4. The requirement that both the Shur complements M − K∗N−1K and N −
KN−1K∗ of M have bounded inverses is redundant. It is sufficient to require that at least one of
the Shur complements is nonsingular since M − K∗N−1K ∈ DA implies N − KN−1K∗ ∈ DA
and vice versa (cf. representation (3.9)).

The following consequence suggests a recipe for the computation of the (relative) Morse index
of a 2 × 2 operator matrix (cf. Remark 2.4). It also provides a representation for the ξ -index
associated with an off-diagonal perturbation problem.

Corollary 3.5. Assume hypothesis of Theorem 3.3 and let M be the operator matrix

M =
(

M K∗
K N

)
.

Let U and W be isometries from H into H⊕H such that U∗MU = M and W ∗MW = N . Then

2τ (2)
[
Ξ(M)

] = τ
[
Ξ

((
W ∗M−1W

)−1)] + τ
[
Ξ(U∗MU)

]
= τ

[
Ξ

((
U∗M−1U

)−1)] + τ
[
Ξ(W ∗MW)

]
. (3.16)

In particular,

2ξ(M0,M) = ξ
(
U∗MU,

(
U∗M−1U

)−1)
= ξ

(
W ∗MW,

(
W ∗M−1W

)−1)
,

where

M0 =
(

M 0
0 N

)
.

Proof. We notice that equalities (3.13) and (3.15) yield

2τ (2)
[
Ξ(M)

] = τ
[
Ξ

(
N − KM−1K∗)] + τ

[
Ξ(M)

]
= τ

[
Ξ

(
M − K∗N−1K

)] + τ
[
Ξ(N)

]
. (3.17)

According to the definition of the Shur complements of M (cf. (3.6)), we get

U∗M−1U = (
M − K∗N−1K

)−1
, W ∗M−1W = (

N − KM−1K∗)−1

and hence (3.16) follows from (3.17). �
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Remark 3.6. In the I∞ setting, a relation similar to (3.16) has been recently derived in [12].

Our next goal is to obtain an extension of the basic invariance principle stated in Theorem 3.3
by relaxing the invertibility hypotheses.

Theorem 3.7. Let M , N ∈ A be dissipative and K an arbitrary operator in A. Then the following
assertions hold.

(i) lim
ε↓0

ξ
(
M + iεI,M + iεI − K∗(N + iεI)−1K

)
= lim

ε↓0
ξ
(
N + iεI,N + iεI − K(M + iεI)−1K∗).

(ii) Assume that N has a bounded inverse. Then

ξ
(
M,M − K∗N−1K

) = lim
ε↓0

ξ
(
N,N − K(M + iεI)−1K∗). (3.18)

(iii) If, in addition, the limit

K(M + i0I )−1K∗ = n-lim
ε↓0

K(M + iεI)−1K∗

exists and N − K(M + i0I )−1K∗ has a bounded inverse, then

ξ
(
M,M − K∗N−1K

) = ξ
(
N,N − K(M + i0I )−1K∗). (3.19)

Proof. (i) Theorem 3.3 guarantees that

ξ
(
M + iεI,M + iεI − K∗(N + iεI)−1K

)
= ξ

(
N + iεI,N + iεI − K(M + iεI)−1K∗), ε > 0.

Therefore, to prove the claim it is sufficient to establish the existence of the limit

lim
ε↓0

ξ
(
M + iεI,M + iεI − K∗(N + iεI)−1K

)
= lim

ε↓0

(
τ
[
Ξ

(
M + iεI − K∗(N + iεI)−1K

)] − τ
[
Ξ(M + iεI)

])
.

By Remark 2.2, the limit limε↓0 τ [Ξ(M + iεI)] exists. Next, by Remark 3.6,

τ
[
Ξ

(
M + iεI − K∗(N + iεI)−1K

)] = 2τ (2)
[
Ξ(M + iεI)

] − τ
[
Ξ(N + iεI)

]
, (3.20)

where M = (
M K∗
K N

)
is a 2×2 operator matrix in A⊗M2. Applying Remark 2.2 to the dissipative

elements M and N in the algebras A⊗M2 and A, respectively, insures the existence of the limit
of the left-hand side of (3.20) as ε ↓ 0, completing the proof.

(ii) From Theorem 3.3, we obtain that the equality

ξ
(
M + iεI,M − K∗N−1K + iεI

) = ξ
(
N,N − K(M + iεI)−1K∗) (3.21)
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holds for all ε > 0. Observe that invertibility of N implies that of the operator N −
K(M + iεI)−1K∗ for any ε > 0. Indeed, the Herglotz operator-valued function

z �→ N − K(M + zI)−1K∗

in the upper-half plane is invertible for |Im z| large enough and, therefore, it is invertible for all
z ∈ C+ (cf. [17, Lemma 2.3]). Passing to the limit ε ↓ 0 in (3.21) and making use of Remark 2.2
implies (3.18).

Since by hypothesis N − K(M + i0I )−1K∗ has a bounded inverse, using continuity of the
operator logarithm (cf. (2.3)) and that of the state τ , we attain

lim
ε↓0

τ
[
Ξ

(
N − K(M + iεI)−1K∗)] = τ

[
Ξ

(
N − K(M + i0I )−1K∗)].

Now the claim follows from (ii). �
Remark 3.8. As one can see from the proof, for any dissipative elements M and N in A and any
K ∈A, the limit

lim
ε↓0

τ
[
Ξ

(
M + iεI − K∗(N + iεI)−1K

)]
exists. If, in addition, the dissipative operator M has a bounded inverse, claim (ii) infers the
existence of the limit

lim
ε↓0

τ
[
Ξ

(
M − K∗(N + iεI)−1K

)]
.

4. The Birman–Krein formula revisited

As an application of Theorem 3.3, first we state a result regarding the computation of the rel-
ative index associated with purely imaginary dissipative perturbations A �→ A + iB , B � 0, of a
self-adjoint operator A. The following theorem sheds some light on the role of the characteristic
function of a dissipative operator in the relative index theory. We recall that the Lifshits charac-
teristic function S of the dissipative operator A + iB calculated at the spectral point λ = 0 (see,
e.g., [18, Section IV.6]) is given by

S = I − 2iB1/2(A + iB)−1B1/2, (4.1)

provided that A + iB has a bounded inverse.

Theorem 4.1. Let A = A∗ and B = B∗ � 0 be elements in A. Suppose both A and A + iB have
bounded inverses. Then

ξ(A,A + iB) = 1
τ
[
arctan

(
B1/2A−1B1/2)] = 1

τ [arg S]. (4.2)

π 2π
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Here S is as in (4.1) and the argument of S is defined by the Spectral Theorem

arg S =
∫

|z|=1

arg z dES(z), arg z ∈ (−π,π], z ∈ C \ {0},

with the cut along the negative semi-axis.

Proof. Introduce a self-adjoint operator H = B1/2A−1B1/2. Theorem 3.3 implies that

ξ(A,A + iB) = ξ(iI, iI − H) = τ
[
Ξ(iI − H)

] − 1

2

= 1

π
τ
[
Im log(iI − H)

] − 1

2
. (4.3)

By the Spectral Theorem applied to H , we obtain

τ
[
Im log(iI − H)

] − π

2
=

∫
R

(
Im log(i − λ) − π

2

)
dτ

[
EH (λ)

]
=

∫
R

Im log(1 + iλ)dτ
[
EH (λ)

] = τ [arctanH ]. (4.4)

Combining (4.3) and (4.4), completes the proof of the first equality in (4.2).
It is straightforward to verify that

S = (iI − H)(iI + H)−1, (4.5)

which, in particular, implies that S is unitary. For a smooth path of unitaries

[0,1] � t �→ Ut = (iI − tH)(iI + tH)−1 (4.6)

linking the identity I = U0 with S = U1, we derive that

τ [arg S] = Im τ(log S) = Im

1∫
0

d

dt
τ (logUt) dt = Im

1∫
0

τ
[
U̇tU

−1
t

]
dt. (4.7)

Observing that

τ
[
U̇tU

−1
t

] = −τ
[(

H(iI + tH)−1 + (iI − tH)(iI + tH)−2H
)
(iI + tH)(iI − tH)−1]

= −τ
[
H(iI + tH)−1] − τ

[
(iI − tH)−1H

]
= − d

dt
τ
[
log(iI + tH)

] + d

dt
τ
[
log(iI − tH)

]
, (4.8)

we arrive at the equality
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Im

1∫
0

τ
[
U̇tU

−1
t

]
dt = Im

(
τ
[
log(iI − H)

] − τ
[
log(iI )

])
− Im

(
τ
[
log(iI + H)

] − τ
[
log(iI )

])
.

By the Spectral Theorem this equality implies

Im

1∫
0

τ
[
U̇tU

−1
t

]
dt =

∫
R

(
Im log

(
1 − iλ

i

)
− Im log

(
1 + iλ

i

))
dτ

[
EH (λ)

]
=

∫
R

(
arg(1 + iλ) − arg(1 − iλ)

)
dτ

[
EH (λ)

]
= 2

∫
arg(1 + iλ)dτ

[
EH (λ)

] = 2τ [arctanH ]. (4.9)

Comparing (4.7) and (4.9) proves the second equality in (4.2). �
Before turning back to the context of perturbation theory for self-adjoint operators, it is con-

venient to collect basic assumptions and related notation in the form of a hypothesis.

Hypothesis 4.2. Suppose that H0 = H ∗
0 and V = V ∗ are elements in A and H = H0 − V .

Assume that V is factored in the form V = −K∗N−1K , where K ∈ A and N = N∗ an element
with a bounded inverse in A. Assume that the norm-limit

K∗(H0 + i0I )−1K = n-lim
ε↓0

K∗(H0 + iεI)−1K

exists and both the operators N = N − K∗(H0 + i0I )−1K and Re N have bounded inverses.
Assume, in addition, that S is the characteristic function of the dissipative operator N at the

zero value of the spectral parameter, that is,

S = I − 2i(ImN )1/2N−1(ImN )1/2. (4.10)

We conclude (under Hypothesis 4.2) with a result relating the relative index ξ(H,H0) to the
de la Harpe–Skandalis determinant of the characteristic function S of the dissipative operator N .

Theorem 4.3. Assume Hypothesis 4.2. Let detτ S be the de la Harpe–Skandalis determinant
associated with the homotopy class of the C1-paths of invertible operators joining S and I and
containing the path

[0,1] � t �→ tS + (1 − t)I. (4.11)

Then

detτ S = Θ exp
(−2π iξ(H,H0)

)
, (4.12)
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where

Θ = exp
(−2π iξ(N,ReN )

)
. (4.13)

Proof. Applying Theorem 3.7 yields

ξ(H0,H) = ξ(N,N ) = ξ(N,ReN ) + ξ(ReN ,N ). (4.14)

By Theorem 4.1 one has

ξ(ReN ,N ) = 1

2π
τ [arg S]

and, hence,

ξ(H0,H) = ξ(N,ReN ) + 1

2π
τ [arg S] (4.15)

holds. Multiplying by 2π i on both sides of (4.15) and then exponentiating ensures, by
Lemma A.2(ii), that

Δ(t �→ Ut) = Θ exp
(−2π iξ(H,H0)

)
,

where the nonsingular path [0,1] � t �→ Ut is given by

Ut = (
iI − t (ImN )1/2(ReN )−1(ImN )1/2)
× (

iI + t (ImN )1/2(ReN )−1(ImN )1/2)−1
, t ∈ [0,1].

Since the path of unitary operators t �→ Ut with endpoints S and I is homotopically equivalent
to the path of invertible operators [0,1] � t �→ tS + (1 − t)I (the point −1 does not belong to the
spectrum of S), the result follows upon applying Lemma A.1(i). �
Remark 4.4. Note that the characteristic function S of the dissipative operator N = N −
K∗(H0 + i0I )−1K given by (4.10) can also be understood as the abstract scattering operator
associated with the pair (H0,H) (cf. [27]). As distinct from the classical Birman–Krein formula
[4] where the argument of the determinant of the scattering matrix is directly related to the spec-
tral shift function (mod Z), representation (4.12) for detτ S via the ξ -index contains a unimodular
factor Θ (4.13). Presence of the additional factor Θ in (4.12) can be explained by the non-integer
nature of the τ -Fredholm index for the pair of orthogonal projections

ξ(N,ReN ) = indτ

(
EN(R−),EReN (R−)

) ∈ [−1,1].
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Appendix A

In this appendix, we recall the concept of a determinant introduced by P. de la Harpe and
G. Skandalis in [14].

Let GL0(A) be the set of boundedly invertible elements of A. Given a nonsingular C1-path
of operators [0,1] � t �→ Ht ∈ GL0(A), the de la Harpe–Skandalis determinant associated with
the path t �→ Ht is defined by

Δ(t �→ Ht) = exp

( 1∫
0

τ
[
ḢtH

−1
t

]
dt

)
. (A.1)

Some important properties of the de la Harpe–Skandalis determinant are listed in the lemma
below. The proofs of these facts can be found in [14, Lemma 1 and Proposition 2].

Lemma A.1. Suppose that [0,1] � t �→ Ht is a C1-path of operators in GL0(A).

(i) The determinant Δ(t �→ Ht) is invariant under fixed endpoint homotopies.
(ii) The absolute value of the perturbation determinant Δ(t �→ Ht) is path-independent. More-

over, ∣∣Δ(t �→ Ht)
∣∣ = Δ

(
H1H

−1
0

)
,

where Δ(A) = exp(τ [log
√

A∗A ]) denotes the Fuglede–Kadison determinant of a bound-
edly invertible operator A ∈ A.

(iii) If ‖Ht − I‖ < 1 for all t ∈ [0,1], then

Δ(t �→ Ht) = exp
(
τ [logH1] − τ [logH0]

)
, (A.2)

where the operator logarithm logHj , j = 1,2, in (A.2) is understood as the norm conver-
gent series

logHj = −
∞∑

k=1

(I − Hj)
k

k
, j = 0,1.

(iv) Let H
(j)
t : [0,1] → GL0(A), j = 1,2, be C1-paths. Then

Δ
(
t �→ H

(1)
t H

(2)
t

) = Δ
(
t �→ H

(1)
t

)
Δ

(
t �→ H

(2)
t

)
.

The following result reduces the computation of the determinant for paths of operators in
either DA or

UA = {
U : U = (iI − H)(iI + H)−1 for some H = H ∗ ∈ A

}
to that of the state τ of the operator logarithm.
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Lemma A.2.

(i) For a C1-path of operators [0,1] � t �→ Ht ∈ DA with H0 = I ,

Δ(t �→ Ht) = exp
(
τ [logH1]

)
, (A.3)

where log(·) is the principal branch of the operator logarithm of H1 with the cut along the
negative imaginary semi-axis provided by the Riesz functional calculus.

(ii) For a C1-path of operators [0,1] � t �→ Ut ∈ UA with U0 = I ,

Δ(t �→ Ut) = exp
(
τ [l̃ogU1]

)
,

where l̃og(·) is the principal branch of the operator logarithm of U1 with the cut along the
negative real semi-axis provided by the Spectral Theorem.

Proof. (i) One notices that τ [ḢtH
−1
t ] = d

dt
τ [logHt ]. Integrating the latter expression from 0

to 1 and comparing the result with (A.1) implies (A.3). The proof of (ii) goes along the same
lines as that of (i). �
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