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We introduce a generalized Demjanenko matrix associated with an arbitrary
abelian field of odd prime power conductor, and exhibit direct connections between
this matrix and both the relative class number and the cyclotomic units of the field.
Beyond using the analytic class number formula, all arguments are elementary.
Combining the two conncctions yields a simple proof that the relative class number
is odd if and only if all the totally positive cyclotomic units are squares of
cyclotomic units, which was known by results of Hasse and Garbanati. An
interesting feature of our new class number formula is its expression as the determi-
nant of a matrix with relatively small integer entries. Thus we also easily obtain a
reasonable upper bound on the relative class number. € 1995 Academic Press, Inc.

I. INTRODUCTION

Fix a power g=p" of an odd prime p, let G denote the multiplicative
group (Z/qZ)* and let M = G be defined by M ={de G:0<a<(g—1)/2}.
Thus G is the disjoint union —M u M. The corresponding Demjanenko
matrix can be defined using the characteristic function of the set M. For
aeG, let cy(@)y=1 if aeM and ¢, (a)=0 if a¢ M. The (modified)
Demjanenko matrix D, may then be defined to have its rows and columns
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indexed by the elements of M and its (@, b)-entry equal to ¢,,(adb). We shall
use the notation
D,=(cy (@), s

The determinant of the Demjanenko matrix D, provides a formula for the
relative class number of the gth cyclotomic field @({,). This was estab-
lished by Hazama in [7]} when ¢ =p, and noted for ¢ =p" in general in
[15]. Another basic property shown in [15] is that when D, is considered
modulo 2, its rank determines the number of different configurations of
positive and negative conjugates which occur among the real cyclotomic
units of this field.

The goal of this work is to completely extend the theory we have just
described to allow consideration of a quotient group of G and the corre-
sponding subfield of Q({,). In Section II, we will define the appropriate
Demjanenko matrix. Our main result, presented in Section III, is a deter-
minant formula for the relative class number of the subfield. The connec-
tion between the Demjanenko matrix and the real cyclotomic units will be
developed in Section IV, This leads to a simple proof that the parity of the
relative class number equals the parity of the index of the squares of
cyclotomic units in the group of totally positive cyclotomic units. Finally,
we devote Section V to deriving an upper bound on the relative class
number. Aside from the use of the analytic class number formula, all of our
proofs are elementary.

We owe much to certain classical results. In 1955, Carlitz and Olson
[3] transformed the analytic formula for the relative class number of
@({,) into a simple multiple of the Maillet determinant. The classical
literature (see [ 1, p. 346]) offers an alternate expression for the Bernoulli
numbers in the analytic class number formula (see Lemma [11.3). Using
this alternate expression, for which the character values in the sum do not
require any coeflicients, one arrives instead at the determinant of a matrix
of zeroes and ones, the Demjanenko matrix. This is the essence of
Hazama’s proof.

Coming more than three decades after the paper by Carlitz and Olson,
Hazama’s formula still seems a logical extension of their work. Indeed,
Carlitz and Olson did show how to manipulate the Maillet matrix to
obtain a matrix of zeroes and ones. It is not exactly the Demjanenko
matrix, but a computation of Hazama reveals how closely the two are
related. It is natural to seek a generalization of Hazama’s formula, and that
is exactly the subject of Section IIl of this paper. The entries of our
generalized Demjanenko matrix will not necessarily be zeroes and ones, but
their absolute values will be bounded by the relative degree of Q({,) over
the chosen subfield.
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Carlitz [2] used his determinant formula to obtain an upper bound on
the relative class number of Q({,). Once we have our more general deter-
minant formula, it is a simple matter to follow his example and obtain a
similar result for any complex subfield of Q({,). The Demjanenko matrix
is well-suited for this purpose because there is clearly a good bound on its
entries.

It would also be natural to generalize the Maillet matrix just as we have
generalized the Demjanenko matrix. This has been done for the field Q({,)
by Kiihnova in [8], and by Metsdnkyld in [11], but seems not to have
been done for subfields. In bounding the relative class number, such an
approach would be expected to yield weaker results than those we have
obtained here. {For instance, our result improves upon that of Carlitz for
Q({,), as explained at the end of section V.)

I1. THE GENERALIZED DEMJANENKO MATRIX

Consider an arbitrary complex subfield K of Q({,). Of course G is
canonically isomorphic to the Galois group Gal(Q({,)/Q), and so by
Galois theory, K will correspond to a subgroup N of G in such a way that
G/N is canonically isomorphic to Gal(K/Q). The assumption that K is
complex implies that —1¢ N, and furthermore that the cardinality |N| of
N is odd, since —1 is the only element of order 2 in the cyclic group G.
Given such a field K, we can define an associated generalized Demjanenko
matrix. Equivalently, we can associate such a matrix D=D, y to any
subgroup N of G having odd order. It is in fact more natural to pursue
the latter approach, emphasizing the role of group theory in our
arithmetic results on the relative class number and the real cyclotomic
units of K.

In order to define the generalized Demjanenko matrix associated with
the groups G and N, let M <G be as in the Introduction, and for each
ae G, put

Cay=C, a)y=|aNn M|,
C(a)=C, (a)=|aNn —M|=|N| - C(a).

Choose a subset R M which forms a system of representatives for
G/(N-{+1}), letting Te R. We could specify the choice of R uniquely by
requiring that its elements have the smallest possible positive residues
modules ¢, and we could specify an order on the elements of R by the size
of these residues. It will be clear that our results do not depend on these
choices. Our generalized Demjanenko matrix D =D, . has its rows and
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columns indexed by the elements of R. Its (4, b)-entry is defined to be
Clab)—~ C'(b). Thus

D=D, yv=(Clah)— C' (b)), s x-

When N = {1} and R =M, note that C(ah) — C'(h) = C(ab) = c,,(ab), and
so we obtain the Demjanenko matrix of the Introduction.

II1. THE RELATIVE CLASS NUMBER AND THE DETERMINANT OF
THE DEMJANENKO MATRIX

Let {, be a primitive gth root of unity, let K be a complex subfield of
@({,), and let N be the subgroup of G corresponding to K as in section 1L
Also let K* be the maximal real subfield of K. Thus K* corresponds to the
subgroup N-{+1} of G. We will be interested in the class numbers
h=h(K) and h"=h(K*) of K and K* respectively, and especially the
quotient A =h (K)=h(K)/h"(K), which we call the relative class number
of K; it is known to be an integer [ 16, Thm. 4.10]. Beginning with the
analytic class number formula, we will derive a formula for 2~ in terms of
the determinant det D, y of D, .

In order to write the analytic class number formula, let X denote the
group of (irreducible complex-valued) characters of G which are trivial on
N. Then X is naturally identified with the group of characters of G/N.
A character y is called even or odd depending on whether y(—1) equals
+1 or —1, respectively. Fix a choice of odd character e. If X* < X denotes
the subgroup of even characters, then X+ is naturally identified with the
group of characters of G/(N.{ < +1}). The collection of odd characters
is denoted X~ and coincides with the coset ¢X*. We set y(a) =0 when
a¢(Z/qZ)” =G. For a nontrivial y e X, the first generalized Bernoulli
number (see [ 16, p. 31]) may be expressed as

B,

I M=
™

xd)a.
1

1
Note that, since ¢ is a prime power, and y # 1, it makes no difference
whether we view x as a character mod ¢ (as we do) or modulo its conduc-
tor (as is usual for defining B, ).

We also need to fix the notation E for the units of the ring of integers
of K, E. for the units of the ring of integers of K*, and u, for the roots
of unity in K. Finally put wy=|ugl and Qx = |E/(Ex+ - tig)l.

Now we can state the analytic class number formula (see [16, Thm.
4.17]).
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III.1. THEOREM (Analytic Class Number Formula).

h(K)=Qwwx [[ (=3B, ,)

reX—

Under our assumption that K< Q({,) with ¢=p’, we also have the
following result of Hasse ([ 6, Satz 23]; see also [ 16, Cor. 4.13]).

H1.2. ProrosITION {Hasse).

QA'=1~

Like Hazama [7] and Feng [4], we find 1t advantageous to use an
alternate expression for the generalized Bernoulli numbers B, .

L3, LEmMMma.  If x is a primitive odd character of (Z/fZ)™, then

—(2-72) B, ,= 3, jla)

Il <a< fi2

Proof. The proof is a straightforward computation. It appears in [1,
p. 346] for quadratic characters and in [4] for the general case. |

Observe that the sum in the lemma remains the same if the upper limit
of summation is changed from f/2 to any odd muitiple of f/2, since
S/, x(@)=0. Thus we may apply the lemma with f=gq for each ye X .

Combining the previous three results, we then get

xeX reXx” LEXT

where d= | X |=|X*|=[K*:Q].

Now we evaluate the product on the left, generalizing a computation
made by Hazama [7] and by Feng [4]. Note that this product is 2¢ times
the ratio of the Euler factors for the prime 2 in the Dedekind zeta functions
of K and K*, evaluated at s = |. Hence we actually have a special case of
a standard and even more general computation.

Let / (resp. f*) be the order of the image of 2 in G/N (resp.
GHN-{£1})), which is the same as the residue degree of each prime ideal
above (2) in K (resp. K*).

111.4. LEMMA.

(2—72)) =27 £ )"

rEX
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the plus sign occurring when =2 is cven, and the minus sign occurring
when f=f* Is odd.

Proof. Since X is cyclic, y(2) runs through the fth roots of unity 2d/f

times as y runs through X Letting 7 be an indeterminate, we have

H (T—x(2))={(T' = 1™,

X
Similarly
T (T—x2)=(1"" — 14",

ze Xt
Taking the quotient yields
H (T'_,‘((z)):(]’/4 il)d“"/+’

reX
and setting 7= 2 yields the result. ]

Making use of the lemma in the formula which preceded it produces the
following proposition.

II1.5. PROPOSITION.

tg - 1)2
h H < )y )((67)>,

I\)

where
F—$2”+1wu if 20/
IRTEAE §L i 21
Now let + @ denote the class of @ in G/{ +1} and let

5(d) {l, aeM
1) =
4 ~1. ae—M.

Then &d( +a) is well defined, as is Y( +4a) for Yye X, and

(g 1)2 tg - 12

I ¥ do=11 ¥ wiaea sa

7€eX a=1 veXt u=1

=J] Y Yl +a)ed( +a)

weX! taeGil 1}

= 11 > W(A)f(A),

veXt AeGHN {+1})

where f(A)=3 faeaq O(Xa)
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Splitting the sum up this way allows us to apply the Dedekind determi-
nant formula ([9, Thm. 3.6.1]). From this, we obtain the equality

[1 Y A f(4)= det  f(AB ).

JEXT ACGAN-1 411 A BeGAN-{ £11)

Let R denote a system 0[ representativgs of G/({V- { ii}) as in section II,
and write 4A=a(N-{ il_}) and B=5H(N-{+1}), with a. beR. Since
—1¢ N, we have (N-{+1})/{+1} =N, and

JtAB~) = )3 ed( £ X)

+ v edah :lz\'-{tif)

=glab ") S(X)

veah ‘N
=g(ab~"W|abh 'NnM||—|ab~'Nn —M])
=¢lab " WCab " )—Cl(ab ")
=¢e(ab ") 2C(ah ') —|N)).

At this point we have shown that
= det (elab ')2C(ab ") — |N]))

Multiplying the @-row of the matrix by (@)~ ' and the b-column by &(b) for
each @ and b cancels out the factor &(@b ') without changing the determi-
nant. We arrive at the formula

(K=

with
=(2C(ah ")~ 1IN, i cr-

We will use this matrix for bounding /#~ in Section V. Note that the entries
of D depend only on 5N, and up to sign even only on H(N-{+1}).
Replacing » ' by b therefore only changes the order and the sign of some
of the columns. The 1-row then has entries 2C(b) — [N| = C(b)— C'(b) =
|N) —2C'(b). Adding it to all other rows and d1v1d1ng them by two yields
our matrix

D=(Cah)—Cb), icnr

and the following theorem.
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I11.6. THEOREM.

ho(K) = ;—fﬁdew +——detD

where
F {42“ FDHC i 2 f
(2f— 1) if 2/f

1V. THE SiGNS oF CYcLOTOMIC UNITS AND THE 2-RANK OF
THE DEMJANENKO MATRIX

In our case where ¢ is odd, the group C of cyclotomic units of K+ is the
group generated by the numbers

Cu _ C --d Cu,\’ s L:’ IR
éazNQl;)s”K<—vlll Vq~1>: H - qr qfw g
L"l—gq xeN Cq_cq
Note that these are real because the numerator and denominator are both
purely imaginary. Furthermore, ;= —1, since |N| is odd. As {+¢,}

depends only on the class a(N - { +1}), we may choose @€ R; recall that we
have asumed I € R.

We now consider K<« Q({,) as subfields of C, setting { = exp(2ni/g). Let
Cpos € C be the group of totally positive cyclotomic units of K; similarly,
E and E, will denote the group of units and totally positive units,
respectively.

IV.l THEOREM. Let r denote the rank of D over F,. Then (C: Cp,,) =
and (C,.,: C?)=24"".

pos

Proof. Let a;: Q((,)—Q(,) be the automorphism defined by
o, )—gq The automorphisms of K* are given by the restrictions of o,
with b€ R, since R represents G/(N-{ +1})=Gal(K*/Q).

Let sgn: R™ — [, be the signum homomorphism, defined by sgn(z) =0 if

=>0, sgn(z)=1 if - <0. Define the homomorphism Sgn: C — [F‘z’ by
Sgn(&) = (sgn(a () g

The kernel of Sgn is ker(Sgn)=C,,. Thus we obtain an induced
isomorphism between C(/C,. and the image Sgn(C) of Sgn, which is
generated by {Sgn(&,): e R}. We now compute Sgn(&,). First

Vahx C ahx
sgn(a;(é‘,))=sgn<]_[ >

h b
v LG
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Note that

ey
¢, —<,

i

: - —1
=2 sin(2niv/g) >0 < vmod g & {1, L}

Therefore, with ¢,, and C as in Sections I and I,

sabx __ y —abx yhx ¥ —hx
sgn(o(E,)) = Y, <sgn <Q~"%—> —sgn (—i"—l—>>

xeN

= Y (epd@bx) — cpylb3) + 1) = Clab) — C'(b).

xeN

Thus Sgn(¢,) is exactly the a-row of D mod 2. Therefore dim, Sgn(C) =7,
and we have proved that (C:C,,)=2". The second equation of the
theorem follows once we show that (C: C?)=2“ To compute this index,
note that C has the same free rank d — 1 as E, since (£ : C) is finite (see [6,
Satz 4], for example). The torsion subgroup of C is clearly { +1}, since C
consists of real units. This gives the desired result. §

IV.2. CoroLLARY. The following statements are equivalent:

(1) D is singular over [,

(2) 2|h
(3) CoaC?
4y 2|h* or E, #E.

pos
Moreover, with r as in (4.1), 297" | h~.

Proof. (1)<(2) follows from (II1.6) upon noting that w,/2 and F are
odd.
{1)<=>1(3) follows from (IV.1).
(3)<=(4): (compare [6, p. 27, (2)] or [15, Section 3]) We will use the
important fact ([6, Satz 4]) that (E: C)=h". Let (¢,),,. g7, be a system
of fundamental units of K*, i.e., a Z-basis of E/ + 1. There is a non-singular
matrix 4 e M,_ (Z) such that

£ R 3 _ 1 !
(Su)aeR\:l;_A'({'u)ueR\{I{ n E"i—l’

where @ is to be a row index. Inserting &; = —1 and ¢; := —1 yields

L0 ,
(&:u)zzeR:(* A)'(gu}deR in FE.
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(* stands for a column of zeroes and ones giving the right signs.) Applying
the homomorphism Sgn leads to

1 0
DmOd‘?‘:(* A>'Sgn(8a)uER'

The same argument as in the proof of (IV.1) gives us (E
where ' is the rank of the matrix Sgn(¢, ), .. Since +det 4=
taking determinants yields the desired equivalence.

For the last statement, we use (I11.6) and note that 2¢~" | det D. One can
see this by taking matrices 4, Be GL,_,(Z) such that ADB has diagonal
form. Then d —r is the number of even elements on the diagonal and det D
is the product of the diagonal elements. ||

ZEZ) :2¢17r‘
E: ()=

V. AN UprPER BOUND FOR THE RELATIVE CLASS NUMBER

We start with the class number formula

2 Y et B
h=(K) —2‘,Fdet D,
where D= (2C(ab~ ") —|N|), 7.z
The entries of D have absolute value at most |N|. Hadamard’s inequality
says that the determinant is bounded by the product of the lengths of the
row vectors. So

|det El < (dls“2|N| )d= ddy‘Z!N|d: (d]N| )m‘z |N'dv‘2 — (¢(q)/2)dr‘2 |NI¢I@‘2.
Combining this inequality with our class number formula yields a class
number formula yields a class number bound.

V.1. THEOREM. h~(K) < (w/F)Nd'?|N|/2) = (w/F)¢(q) |N|/8)** 1

V2. Remark. (1) If fis even, then F> (272! <24 If f=1 (in other
words, if 2€ N), then F=1. If fis odd but f# 1, then f >3 and consequently
F>= 7% This inequality clearly holds whenever [# 1. The following estimate
is valid for arbitrary f. Put t=2"—1 and note that exp(1/t)=1+(1/t)=
(t+ 1Y/t. Thus

dif
quh4r”=ﬂ<iw>
r+1

1 «
>2exp | —— |2 2%exp | =5).
o (22000 (=)
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In particular, for K= Q(,), the congruence 27=1 (mod q) implies that
t12q>d(q)=2d, so F=2exp(—1)=24"".

_ (2) The entries of the matrix are 2C(ab™"')—|N|={ab~'N M| -
|@b~'N ~ M|. One expects that about half of the class ab~'N should be in
M and half in — M. The difference is expected to be of order O(|N|'?) by

probabilistic arguments, but this seems to be hard to prove.

Bounds on relative class numbers have appeared prior to this primarily
in two cases, the case of K=Q({,) (or N={1}), and the case of K< Q({,)
(or g =p). Our method has provided a unified approach to both of these
case. More importantly, it applies to new ones as well. This approch
provides reasonable bounds in a simple manner, but does not improve
upon results obtained by analytic methods in special situations. However,
even in specail cases, our bound seems to be the best one obtained by
means of the determinant method introduced by Carlitz.

We briefly present some explicit comparisons.

When specialized to the case of K= Q((,), our theorem coincides exactly
the main result of Feng [4]. He used the method of orthogonality relations
for characters introduced by Metsdnkyla in [13]. In this case, we have
N={1}, we=2q, d=¢(q)/2. Our estimate F>2¢"" then yields

h=(Q(L,)) <2 -2 93 (q)/8) "% = 4q( i q)/32)# "%

Feng’s result actually superceded prior analytic results.
For the case of K< Q({,), our theorem implies that

h=(K) < (wg/F)((p—1)/8)4% |N|“2.
This is to be compared with the inequalities
p11—£)ds‘2<h~(K)<p(1+£)dx‘2

of Metsdnkyld [ 12, 14], which hold for all but a finite number of p once
£> 0 1s fixed.
In the most special case of K= Q((,), our bound is

h(Q(E)) < (2p/F)((p—1)/8) 7~ <dp((p—1)/32)) 7~ 14,

This improves by a factor of 2”~* on the original result of Carlitz [2]
obtained from determinant formulas. The more precise analytic result of
Masley and Montgomery [ 10] states that

h T(QUE)) = p/47t2)/’"‘4p3s“4+7{),

for some —1<6<1.

641 52 1-7
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Finally, note that there is indeed a well known general method for
bounding the relative class number of a complex abelian number field.
With a result such as (IIL.5) in hand, this method follows immediately from
a lemma of Polya-Vinogradov. See [ 16, p. 214] for a short proof.

V.3. LeMMA (Polya-Vinogradov). If y is a non-trivial primitive character
of (Z/fZ)™, and u is any positive integer, then

o

Y xla)

a=1

</f'*log(f).

V.4. THEOREM. Let K be a complex abelian subfield of Q((,) of degree
2d over Q. Then

h™(K) < (wg/F)(¢q"* log(q)/2)*

Proof. Consider the formula of Proposition (IIL5):

I X Wy (g —1)/2 _
/ =— .

(K)=57p HY < ; X(a)>

JE 7

Each character x is primitive modulo a non-trivial divisor p**’ of ¢ =p’. As
we have remarked before, the character sum for y is the same whether we
take the modulus to be p** or ¢q. Thus we may apply the Polya—
Vinogradov lemma and conclude that

< % log(p“) < q' log(q).

Taking the product yields the result. |

The comparison between (V.l) and (V.4) is clear; we have simply
replaced the term ¢(g)|N|/8 = ¢(1 — 1/p) |N|/8 in (V.1) by g log*(q)/4. Thus
the Polya—Vinogradov bound is preferable for |N|>2{p/(p—1)}log?(q)
and the Demjanenko matrix bound is preferable for |N| <2(p/(p—1))
log?(¢). Clearly this method of using the Polya-Vinogradov lemma extends
to other complex abelian fields as well.
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