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The PDZ domain is a protein–protein interacting module that plays an important role in the orga-
nization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide
motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also
includes recognition of internal peptide sequences, dimerization and phospholipid binding. The
PDZ function can be tuned by various means such as allosteric effects, changes of physiological buf-
fer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as
dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Signal transduction relies on scaffolding proteins that coordi-
nate the assembly of signaling complexes. These molecular
scaffolds are composed of modular interaction domains that bring
their interacting partners close in space and thereby facilitate the
interactions between the proteins [1]. This review is focused on
the PDZ domain, which is one of the most widespread protein–
protein interacting modules. The name is derived from the three
proteins in which it was first identified almost 20 years ago,
namely postsynaptic density protein-95 (PDZ-95), disks large tu-
mor suppressor (DLG) and zonula occludens-1 (ZO-1) [2–4]. PDZ
domains are commonly involved in processes of cell signaling
and polarity, and are predominantly found in multi-cellular organ-
isms, with for example more than 250 human PDZ domains found
in over 150 different proteins. The low abundance of PDZ domains
in unicellular organisms led to the suggestion that PDZ domains
co-evolved with multi-cellularity [5].

PDZ domains are over-and-above known as protein–protein
interacting modules recognizing short peptide stretches at the C-
terminus of their target proteins [6,7], but their functional reper-
toire also include recognition of internal peptide motifs [8–11],
hetero- and/or homo-dimerization [12,13] and interactions with
membrane phospholipids [14–17]. The ligands are commonly
transmembrane receptors or ion channels. The interactions tend
to be promiscuous, and one PDZ domain can commonly recognize
al Societies. Published by Elsevier
various peptide ligands and the same ligand can be recognized by
different PDZ domains [6]. The plasticity of PDZ interactions is fur-
ther reflected in the ease by which the specificity of the interac-
tions can be changed by mutagenesis of either ligands or PDZ
domains [18–21], which allowed frequent rewiring of PDZ–ligand
interactions during evolution [22]. The function of PDZ domains
can be tuned by various means such as changes in physiological
buffer conditions [23,24], allosteric changes [25] and phosphoryla-
tion [26] posing them as dynamic regulators of cell signaling. This
review is focused on the plasticity of PDZ interactions, starting
from the structure of the domain and the versatility of the
ligand-binding partners and ending with an overview of the regu-
latory mechanisms tuning the interactions.

2. Structure of PDZ domains and their integration in scaffolding
proteins

PDZ domains consist of 80–90 amino acids and share a common
fold of five to six b-strands (b1–b6) and two a-helices as shown by
the over 300 PDZ structures currently deposited in the PDB data
bank (Fig. 1). Their average sequence identity is only 30% and
although sharing the same core structure, PDZ domains often have
variable loop regions and might contain additional secondary
structural elements that may affect the structure and function
[27]. Indeed, even the archetypical structure of PSD-95 PDZ3 holds
an additional C-terminal a-helix that influences the dynamics of
the protein [28–30]. The PDZ structure is robust and tolerates
extensive mutagenesis [31] as well as topological changes such
B.V. Open access under CC BY-NC-ND license. 
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Fig. 1. Cartoon representations of canonical and PDZ-like domains with the N- and C-terminal strands highlighted in blue and red, respectively. PTP-BL PDZ2 (PDB code
1GM1, left) with indicated secondary elements (b1–b2–b3–a1–b4–b5–a2–b6) represents a canonical metazoan PDZ domain. The PDZ domain of the D1 C-terminal-
processing protease (middle, PDB code 1FC7) and GRASP55 PDZ1 (right, PDB code 3RLE) illustrate two differentially circularly permuted PDZ structures.
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as circular permutations (Fig. 1) [32–35]. The canonical metazoan
PDZ domains have a b1–b2–b3–a1–b4–b5–a2–b6 secondary struc-
ture arrangements and make part of scaffolding proteins [6]. PDZ
domains in bacteria, plant and yeast generally make part of prote-
ases and are circularly permuted as compared to the canonical
PDZ domains, typically having a symmetric b2–b3–a1–b4–b5–
a2–b6–b1 secondary structure arrangement. In these organisms,
PDZ domains are less common, yeast has for example only one
PDZ protein holding four PDZ domains [5]. The structure of the
PDZ domains of bacterial RseP revealed an alternative connectivity
of the secondary structure elements (b3–a1–b4–b5–a2–b6–b1–
b2) [36], which is shared with the PDZ tandem of human GRASP55
[37]. In all cases, PDZ domains have their N- and C-termini close in
space, which facilitates their integration in pre-existing protein
scaffolds.

PDZ domains are found in a wide range of proteins, from those
that almost exclusively consist of a single PDZ domain such as
Tax1-binding protein 3 (TIP-1), to proteins that contain several
PDZ domains such as multiple PDZ domain protein, and scaffolds
combining PDZ domains with other modular domains such as
phosphatidylinositol 3,4,5-triphosphate-dependent Rac exchanger
2 protein that contains a RhoGef domain, a pleckstrin homology
(PH) domain, two DEP domains and a PDZ tandem (i.e. two PDZ do-
mains connected by a short linker). In some cases, two tightly con-
nected PDZ domains form a functional unit, or supramodule, with
distinct functional properties from the isolated PDZ domains [38].
For example, PDZ4 in the PDZ4–5 tandem of glutamate receptor-
interacting protein 1 (GRIP1) does not bind to peptides but serve
as structural support for the PDZ5 [39]. PDZ domains may also
form supramodular units with other domains. For example, a re-
cent study by Pan and co-workers revealed a supramodular organi-
zation of the PDZ3-SRC homology (SH3)-guanylate kinase (GUK)
domains of ZO-1, where the PDZ3-SH3 interface forms a hydropho-
bic pocket that make additional contacts with the connexin43 pep-
tide [40]. In line with these data, protein engineering experiments
have highlighted the ease by which PDZ peptide binding affinity
and specificity can be greatly enhanced by the addition of a binding
inert domain and optimization of the interface residues [33].

3. Versatility of PDZ interactions

3.1. C-terminal peptide recognition

The by far most common PDZ interaction is the recognition of C-
terminal ligands with hydrophobic residues at their C-termini [41].
The carboxylate terminus of the peptide ligand is bound by a con-
served carboxylate binding loop (R/K-XXX-G-U-G-U, where X is
any amino acid and U a hydrophobic residue) and the peptide is
added as an additional b-strand to the grove between b2 and a2,
with the last four amino acids in the PDZ-binding motif being most
important for recognition (Fig. 2) [21,42,43]. The last amino acid of
a PDZ-binding motif is denoted ‘‘0’’, the penultimate residue ‘‘�1’’
and so on. Deviations from the canonical C-terminal peptide bind-
ing have been reported for example from structural studies on
syntenin-1 PDZ1 [44] and tamalin PDZ [45], for which the peptides
were found to be bound perpendicular to the main b-sheet and
only interacting with the PDZ domains through the last two amino
acids.

PDZ domains were early on divided into specificity classes
based on the last amino acids of the C-terminal target peptide, with
the typical class I motif being X[T/S]XU-COO-, the class II motif
being XUXU-COO-, and the minor class III motif being X[D/
E]XU-COO- [41,46]. Although this classification system is an over-
simplification, it is useful to note that the class I binding PDZ do-
mains have a characteristic His in a-helix 2 that hydrogen bonds
with a Ser/Thr at position �2. A more fine-tuned ligand binding
specificity was hinted early on when computer-aided design of
PSD-95 PDZ3 showed that every position in the target peptide con-
tribute to the binding specificity [19]. Furthermore, it was found
that some PDZ domains recognize residues up to position �7;
the additional recognition typically being conferred by an ex-
tended b2–b3 loop region [47–50] or an extended a2 [51]. In line
with these observations, two large-scale studies that addressed
PDZ–peptide binding specificities on family-wide scales showed
that peptide binding specificity is derived from interactions
throughout the binding pocket and that PDZ domains in general
are not promiscuous but can be divided in up to 16 different clas-
ses based on their ligand binding profile [20,21].

Experimental and computational data suggest that the binding
reaction involves the rate-limiting formation of a weak encounter
complex between the C-terminus of a disordered peptide and the
PDZ domain, followed by formation of native side chain contacts
and rearrangement into the final complex [52–54]. The kon and koff

rates are fast and the PDZ–peptide affinities are typically in the
low-to-mid micro molar range with changes in affinities correlat-
ing with changes in koff [53]. PDZ domains exhibit a range of dy-
namic and entropic behaviors, distinct between PDZ domains but
also between the same PDZ domain bound to different ligands,
suggesting that the dynamics of the domains contribute to the
binding specificity [55–58]. For example, differences in dynamics
were suggested for PDZ domains recognizing class I and class II
peptides, such that dynamics of the b1–b2 and the b2–b3 loops
are more critical in class I type binding and the dynamic of the
b2–b3 loop and a2 is more critical in type II interactions [56]. Dou-
ble mutant cycle analysis of PSD-95 PDZ3 and tyrosine-protein
phosphatase non-receptor type 13 (PTP-BL) PDZ2 suggested that
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Fig. 2. The repertoire of PDZ interactions include peptide binding (A), dimerization (B) and phospholipid interactions (C). (A) Par6 PDZ in complex with a VKESLV-COO-
peptide (left; PDB code 1RZX) representing canonical C-terminal peptide binding. The structure can be compared with the same protein in complex with a PALS1 internal
peptide ligand (middle, PDB code 1X8S). Note the changes in the b1–b2 loop that allow for the accommodation of the internal peptide ligand. The structure of SNTA1 PDZ in
complex with the nNOS internal peptide (right, PDB code 1QAV) illustrates that internal peptide ligands can be accommodated if they take restricted conformations
mimicking free C-terminal ligands. (B) Different strategies for PDZ–PDZ dimerization as illustrated by the structures of shank1 PDZ (left, PDB code 1Q3P) and ZO-1 PDZ2
(right, PDB code 2RCZ). The constituting monomers are shown in in blue and yellow cartoon representation. (C) PDZ domains employ different means for interacting with PIPs
containing lipid membranes. Par3 PDZ2 (PDB code 2OGP) interacts with negatively charged lipid membranes through a combination of non-specific electrostatic interactions
(Lys491, Arg496, Lys506 and Arg546 indicated in blue spheres), membrane penetration (Leu494, Pro495 and Ile500 in yellow spheres), and a defined PIPs binding site
(Glu469, Lys535 and Arg532 in green spheres) [17]. PICK1 PDZ (middle, PDB code 2PKU) interacts with lipid membranes through a conserved Cys-Pro-Cys motif (yellow
spheres) and a positive charge cluster (Arg76, Lys79 and Lys81 in blue spheres). A bound peptide is indicated in red. Mutaganic analysis of ZO-1 PDZ2 (right) indicated a set of
basic residues to be of importance for the interactions with PIPs containing liposomes (Arg201, Lys246, Arg251 and Lys253 shown as blue spheres) [86].
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mutagenic alterations of the dynamic pathways affected the bind-
ing and that the whole PDZ domain and not only the binding site
may be used to fine tune specificity [59]. However, some PDZ do-
mains such as syntenin-1 PDZ2 and shank1 PDZ are promiscuous
and may interact with ligands of different classes, which is possible
owing to a structural flexibility of the binding sites [60,61].

3.2. Interactions with internal peptide ligands

Although C-terminal peptide recognition is the hallmark of PDZ
domains, some PDZ domains interact also with internal peptide
motifs (Fig. 2) [8–11,62–65]. Indeed, a recent high-throughput
yeast two-hybrid screen found that more than half of the identified
PDZ interactions did not require a free C-terminal consensus
sequence, which suggests that binding to internal peptide motifs
may be more common than previously appreciated [66]. Although
this is an interesting finding that might suggest that a significant
percentage of PDZ domains recognize internal peptide motifs, it
is unfortunately not clear from the study to what extent the ob-
served interactions are peptide mediated, and to what extent these
interactions may engage other parts of the PDZ domains. For
binding internal peptide stretches, it is paramount that the PDZ–
peptide couple overcomes the problems caused by steric clashes
between amino acids extending beyond the 0 position and the car-
boxylate binding groove. The structures of a-1-syntrophin (SNTA1)
PDZ in complex with the ca. 30 amino acid residue extension of the
nitric oxide synthas (nNOS) PDZ domain, revealed that steric
clashes can be avoided by the peptide adopting a b-strand struc-
ture replacing the normally required carboxyl terminus (Fig. 2A)
[8]. A recent study on the kinetics of the binding reaction suggested
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that native contacts form cooperatively after an initial rate-
limiting docking step, and that the b-hairpin thus folds upon
binding [67]. However, the interaction between PDZ domains and
internal peptide ligands may also be accomplished by already con-
formationally constrained cyclic peptides [68]. In addition, internal
peptide ligands may be accommodated by structural changes of
PDZ domains as shown for the Par6 PDZ domain in complex with
an internal region of the InaD-like protein (PALS1). In this case,
there is a conformational change of the carboxylate binding loop
upon peptide binding (Fig. 2A) and a conserved lysine in the car-
boxylate binding loop forms a salt bridge with the aspartic acids
side chain in position +1 [69]. Similarly, phage display of Dishev-
eled-2 (Dvl2) PDZ2 with an internal peptide library revealed that
Dvl2 PDZ2 recognizes a continuous stretch of 7–8 amino acids with
a conserved aspartate residue mimicking the carboxylate of the C-
terminal ligand. The structural analysis of Dvl2 PDZ2 in complex
with different peptide ligands clarified that the protein can interact
with both C-terminal and internal peptide ligands owing to a struc-
tural flexibility of its binding site [11,70].

The recognition of internal peptide ligands allows multiple PDZ
domains to interact with the same target protein facilitating the
assembly of multi protein signaling complexes. It also opens for
the bidentate recognition of a target protein by two PDZ domains
that are physically linked or dimerized. For example, INAD PZ3 rec-
ognizes an internal peptide stretch of transient receptor potential
protein (TRP) and INAD PDZ5 interacts with the TRP C-terminus,
a bidentate interaction that provides INAD with a high affinity
for TRP (ca. 0.1 lM) [71]. Another example is given by PSD-95 that
interacts with both an internal region and the C-terminus of
shaker-type K+ channels [72]. An added value of the bidentate
binding may be the possibility to independently regulate the inter-
action with the distinct PDZ domains.

3.3. PDZ–PDZ interactions

It was early on discovered that some PDZ domains engage in
PDZ–PDZ interactions [8,12,13]. For example, INAD PDZ3 and
PDZ4 can form either homo- or hetero oligomers, and the PDZ tan-
dems of NHERF1 and NHERF2 can hetero- or homodimerize with-
out affecting peptide binding [12,13]. However, the extent of PDZ–
PDZ dimerizations was not fully appreciated until a recent study by
Chang and co-workers revealed that as much as 30% of PDZ
domains engage in PDZ–PDZ interactions with low micromolar
affinities [73]. PDZ–PDZ interactions appear more selective than
PDZ–peptide interactions and therefore contribute to defining the
precise composition of the protein complexes. The prevalence of
specific high affinity PDZ–PDZ interactions may suggest that these
domains evolved to form multiprotein complexes by the simulta-
neous interaction with more than one ligand [73].

Structural studies have shown that PDZ–PDZ dimerization can
be accomplished by different means (Fig. 2B). For example, shank1
PDZ and GRIP1 PDZ6 form back-to-back homo-dimers that are sta-
bilized by interactions engaging their unusually long b2–b3 loops
and N-terminal b1-strands, and leave the peptide binding pockets
of the constituting domains readily available for engaging in pep-
tide interactions [74,75]. The second PDZ domain of ZO-1 forms a
peculiar domain swapped dimeric structure, where the constitut-
ing PDZ domains retain their overall fold but have exchanged their
b1- and b2-strands; the peptide binding sites are in this case lo-
cated on opposite sides of the dimeric molecule (Fig. 2B) [76,77].
PDZ–PDZ interactions thus commonly leave the peptide binding
sites available and may serve to increase the binding avidity of
the interactions. Exceptions to this notion are the SNTA1-nNOS
PDZ and PSD-95 PDZ2-nNOS PDZ dimerizations, where the binding
of the C-terminal extension of nNOS blocks the binding site of
SNTA1 and PSD-95 PDZ2, respectively [8,78].
3.4. PDZ–phospholipid interactions

As PDZ domains are over-and-above known as protein–protein
interacting modules, it was surprising when the first reports came
on PDZ domains as phosphoinositide (PIPs) binders now ten years
ago [14]. PIPs are phosphorylated forms of phosphatidylinositol.
Only a minor percentage of phosphatidylinositol is phosphorylated
on one to three of the hydroxyl groups of the inositol headgroup
and the seven biologically relevant PIPs species have a defined cel-
lular localization that is regulated by a system of kinases and
phosphatases [79,80]. PIPs are important regulators of cell polari-
zation and signaling. They can serve as precursors for second mes-
sengers, or function as membrane-bound signaling molecules
regulating the localization of signaling complexes. The PDZ
tandems of syntenin-1 and syntenin-2 represent the paradigm
examples of PDZ domains interacting with membrane and nuclear
PIPs, respectively [14,16]. The in vivo importance of the syntenin-
1-phosphatidylinositol 4.5-bisphosphate (PIP2) interaction was
demonstrated for the recycling of syndecans, cell spreading and
directional movements in zebrafish [81,82]. The syntenin-2-PIP2
interaction was suggested to be of importance for targeting the
protein to membrane and nuclear pools of PIP2 [16]. Estimates
now have it that 20–40% of PDZ domains interacts with phospho-
lipids [15,17,83] and in the cases investigated, PDZ–PIPs interac-
tions appear relevant for the function of the PDZ proteins. For
example, lipid membrane interactions are crucial for the clustering
of AMPA receptors by PICK1 [84]. In other cases, a PIPs binding PDZ
domain is linked to another PDZ domain that recruits a phospha-
tase or kinase and thus target the enzyme to its substrate, as exem-
plified by Par3 where the second PDZ domain interacts with PIPs
and the third PDZ domain interact with the PIP3 phosphatase PTEN
[51].

PIPs–PDZ interactions are commonly in the low-to-mid micro
molar range and often occur in tandem with other lipid binding
modules, such as the PDZ domain of PICK1 being linked to a BAR
domain [84] and the lipid binding PDZ domain of SNTA1 being con-
nected to a PH domain [85]. Alternatively, PIPs interacting PDZ do-
mains exist as dimers such as ZO-1 PDZ2 [86] and its Drosophila
homologue polychaetoid (Pyd) PDZ2 [87], or form multimers
exemplified by of the PDZ domains of bacterial DegP [88]. Combi-
nations of more than one lipid binding module provide proteins
with avidity for the lipid membrane making the interactions bio-
logically relevant, although the affinity of each domain may be
rather low. As reviewed by Gallardo and co-authors, PDZ domains
employ different means to target PIPs containing lipid membranes
such as electrostatic interactions, membrane insertion and basic
clusters interacting with the lipid headgroup (Fig. 2C) [15]. The
PDZ domains appear in general to lack well-defined PIPs binding
pockets providing stereospecific interactions with distinct PIPs
species, which is present in more classic PIPs binding modules such
as the PH of PLC-d1 [89] and the PX domain of p40(phox) [90], and
PDZ domains thus tend to have low stereospecificity [16,17,87].

PDZ–PIPs interactions have been mapped to different structural
regions in distinct cases and competition as well as synergy be-
tween PIPs and peptide binding have been reported, both of which
may be involved in regulating the PDZ function [14,17,87]. For
example, NMR analysis of the PTP-BAS PDZ2b-PIP2/PIP3 interac-
tion suggested it to take place in the groove between a2 and b2
and to be competitive with peptide binding [91]. Par3 PDZ2 mem-
brane targeting involves the insertion of a cluster of hydrophobic
residues into the membrane and non-specific electrostatic interac-
tions between a defined positive charge cluster and the negatively
charged lipid membrane (Fig. 2) [17]. NMR titration of Par3 PDZ2
with PI3P indicated the strongest chemical shift changes to be lo-
cated to a polar pocket between the b1–b2 and b5–b6 loops, and
the lipid headgroup was modeled into this pocket making contacts



2642 Y. Ivarsson / FEBS Letters 586 (2012) 2638–2647
with Arg532, Lys535 and Glu469 [17]. The PIPs binding site of Par3
PDZ2 partially overlaps with the peptide binding region and the
authors consistently reported on competition between peptide
and lipid binding. In line with these data, biochemical analysis of
ZO-1 PDZ2 suggested competition between peptide and lipid bind-
ing [14,86]. The PDZ domain of PICK1 displays a distinct mode of
lipid membrane binding as outlined by biochemical and muta-
tional analysis [84]. The PICK1 PDZ interaction with lipid mem-
branes requires a conserved Cys-Pro-Cys motif in the b2–b3 loop
and a juxtaposed positive charge cluster in the b5–a2 loop [84].
The basic cluster provides non-specific electrostatic interactions
with the lipid membrane and the Cys-Pro-Cys motif was suggested
to insert into the lipid membrane, although the molecular mecha-
nism is not clear. There is no overlap between the peptide binding
site and the lipid binding region of PICK1 PDZ, and peptide binding
does not appear to compete with lipid membrane binding.

The first example of synergistic binding between peptide and
PIPs ligands was given by a recent study on the Pyd PDZ2 [87],
where it was found that preloading Pyd PDZ2 with a LKLPPERLI-
COO- peptide conferred a sixfold increase in affinity for PIP2. The
results suggest that peptide binding may tune the affinity for the
lipid binding partner and that the protein will be efficiently
targeted to the membrane when both peptide and PIPs are avail-
able. Mutagenic analysis of Pyd PDZ2 revealed that electrostatic
interactions along one face of the a2 are crucial for lipid membrane
binding [87]. The study on Pyd PDZ2 further highlighted that
PDZ–PIPs interactions may be reinforced by additional inter-
actions with other negatively charged phospholipids, such as
phosphatidylserine.

Recently, a study by Chen and co-workers suggested that up
to 40% of PDZ domains may interact with lipid membranes
and that these domains function as dual-specificity modules reg-
ulating proteins interactions at the membrane [83]. The study
further suggested a classification of lipid-binding PDZ domains
based on the localization of their basic clusters, with class A li-
pid-binding PDZ domains having topologically distinct peptide
and lipid binding sites and acting as coincidence detectors of
lipid and peptide signaling. Class B PDZ domains have basic clus-
ters in or near the a2 helix that makes part of the peptide bind-
ing site. The class B domains were further subdivided into class
B1 having the basic cluster at the C-terminal end of a2 and
potentially acting as coincidence detectors of PIPs and peptide
signaling, and class B2 domains having the basic cluster at the
N-terminal end of a2 and displaying competitive peptide and
PIPs binding. Future studies of the growing list of lipid binding
PDZ domains will elucidate the intriguing interplay between
peptide and lipid binding and the biological consequences of
these interactions.
4. Regulation of PDZ interactions

PDZ domains are functionally versatile modules that can be
dynamically be regulated by various means, as reviewed in the fol-
lowing section.

4.1. Changes of buffer conditions

PDZ interactions can be regulated by changes in physiological
buffer conditions [23,24]. In particular, the salt and pH dependence
of the peptide binding of PSD-95 PDZ3 was found to result from the
binding of a chloride to a conserved Arg318 in the carboxylate
binding loop and protonation of His372 in a2, respectively [23].
As the His in a2 is the hallmark for class-1 interacting PDZ do-
mains, it is plausible that pH change may have similar effects on
other PDZ domains of the same class.
PDZ function may further br regulated by changes in redox-po-
tential, with INAD PDZ5 being the best-characterized example
[71,92,93]. The peptide binding of INAD PDZ5 is controlled by a
light-dependent redox-regulated transient change from an open
reduced form to an oxidized closed conformation. In the closed
conformation, the peptide-binding pocket is distorted through an
intra-molecular disulfide bond formed between Cys606 in b3 and
Cys645 in a2, which confers a 20-fold decrease in its affinity for
a target peptide [71,92,93]. INAD PDZ5 is locked in the reduced
state by its C-terminal extension being tucked into a groove at
the rear of PDZ4. At lower pH, a His547 in the C-terminal extension
is protonated, which uncouples the PDZ4–PDZ5 supramodule and
results in a dramatic decrease in redox potential. INAD assembles
a signaling complex essential for signaling in Drosophila photore-
ceptor cells, and acts as a dynamic regulator of cell signaling
through the cycles of conformational changes INAD.

PICK1 PDZ was suggested to be redox-regulated by the forma-
tion of a reversible intermolecular disulfide bond engaging Cys44
in the b2–b3 loop under mildly oxidative conditions [94]. The re-
dox-regulated dimer formation abolishes the lipid membrane
binding and also affects the peptide binding, and the authors sug-
gested that this might be of importance for the regulation of PICK1
mediated trafficking processes. However, it is not clear if PICK1
PDZ is actually redox-regulated in a cellular context.

4.2. Allosteric changes

PDZ domains often have dynamic properties that can be used
for allosteric regulation. Indeed, PDZ domains have been popular
model systems for the study of single-domain allostery as re-
viewed by Smock and Gierasch [25]. Early work by Ranganathan
and co-workers identified a network of co-evolving residues
stretching from the a1, through the peptide binding site to the
a2, and the authors suggested this co-evolving set of residues to
be involved in allosteric communication [95]. Several experimental
and computational studies have since then suggested similar net-
works of connected residues [95–98]. A recent study by Reynolds
et al. demonstrated the ease by which such networks can be used
to evolve allosteric switches [97]. In this study, all surface exposed
residues in PSD-95 PDZ3 were probed by saturation mutagenesis.
Eleven probed surface positions with no obvious spatial relation-
ship to the binding site or to each other affected the peptide bind-
ing. Ten of the eleven residues make part of networks of connected
co-evolving amino acids as suggested by statistical coupling anal-
ysis, and the authors proposed that these residues can be used as
hot spots for the rapid evolution of allosteric control [97].

Allosteric regulation of PDZ function has also been suggested for
human PTP-BAS/murine PTP-BL PDZ2. Different studies have indi-
cated the presence of two contiguous interaction pathways in the
molecule [57,59,95,99] and the affinity and specificity of the pro-
tein was found to be allosterically regulated by the binding of
PTP-BL PDZ1 to a surface on PDZ2 opposite to the PDZ2 peptide
binding groove [98]. The PTP-BL PDZ1–PDZ2 interaction confers a
shift of the promiscuous PDZ2 peptide binding specificity towards
a more stringent recognition of class 1 peptides [98]. Another
example of allosteric regulation is given by the PDZ domain of
Par6 that was found to be allosterically regulated by the binding
of the small GTPase Cdc42 to a CRIB domain adjacent to the PDZ
domain [69,96]. The Cdc42-CRIB interaction evokes an allosteric
transition of the Par6 PDZ domain from a low-affinity dynamic
state to a more rigid high-affinity state, with the changes of the
dynamics particularly affecting the b1–b2 loop. The details of the
allosteric transition were further elucidated in a recent study by
Whitney et al., outlining that the conformational switch transposes
two adjacent side chains of the conserved carboxylate binding loop
[100]. A curiosity in the context is that the interaction between
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Par6 PDZ and the internal peptide ligand of PALS1 is decoupled
from Cdc42 regulation, which might be explained by this interac-
tion deforming the carboxylate binding loop [101].

Finally, allosteric regulation is not limited to the canonical PDZ
domains. The binding of specific peptides to PDZ1 of the heat-
shock factor DegP causes a local rearrangement that is allosterical-
ly transmitted to the substrate-binding pocket of the protease do-
main [102,103]. Allosteric regulation thus plays an important role
in the dynamic regulation of function of several PDZ proteins.

4.3. Autoinhibition

Different studies have reported on autoinhibition of PDZ pro-
teins with structural evidences being available for X11 a, tamalin
and NHERF1 [45,104–108]. In these cases, the C-terminal regions
folds back and interact with the PDZ domains. The NMR structure
of the PDZ tandem of X11a in complex with the C-terminal tail of
X11a provided the first structure of an autoinhibitory PDZ interac-
tion. The intramolecular interaction was supported by analytical
gel filtration and was suggested to be regulated by phosphoryla-
tion [106]. The structure of the PDZ domain of tamalin bound to
the tamalin C-terminal peptide showed that the peptide can be
bound by canonical b-addition or in a non-canonical perpendicular
fashion [45]. The self-interaction is of low affinity (630 lM KD) and
can be competed by C-terminal peptides of metabotropic gluta-
mate receptors that interact with tamalin PDZ with higher affini-
ties (ca. 100 lM KD). Finally, the NMR structures of NHERF1 PDZ2
in complex with the NHERF1 C-terminal ezrin-binding domain re-
vealed that the ligand takes a helical conformation that is accom-
modated in the PDZ2 binding pocket and stabilizes the native
fold [104,105,107]. The self-interaction can be overcome by com-
petition with a cognate peptide ligand binding to the PDZ domain
and/or ezrin interacting with the ezrin-binding domain, and can
further be regulated by phosphorylation of the C-terminal domain.

PDZ domains may thus be negatively regulated by intramolecu-
lar interactions with their C-terminal tails [45,104–108], but there
are also studies suggesting regulatory effects exerted by N-
terminal stretches. For example, the PDZ domains of syntenin-1
appear to be negatively regulated by the N-terminal domain,
although the exact molecular details are not known [109,110].

4.4. Phosphoregulation

A commonly reported regulatory mechanism of PDZ interactions
is phosphorylation of Ser/Thr/Tyr residues in PDZ-binding motives.
Phosphorylation often occurs at the �2 position of a type 1 binding
motif and interferes with PDZ–peptide interactions. For example,
phosphorylation of Ser411 at the �2 position of the b2-adrenergic
receptor by G-protein-coupled-receptor kinase-5 disrupts the
interaction with NHERF1 and controls the recycling of the receptor
[111]. Other residues in PDZ-binding motifs may be phosphorylated
with similar effects, as shown for syndecan-1 where Tyr �1 phos-
phorylation confers a loss of interaction with syntenin-1 [112]
and connexin-43 for which phosphorylation of Ser �9 or �10
disrupts the interaction with ZO-1 PDZ2 [77,113,114]. However,
there are also reports on enhanced binding upon phosphorylation
of PDZ-binding motifs, or in the proximity of such motifs, and some
PDZ domains thus interact with phosphopeptides. For example,
phosphorylation significantly increases the interaction between
the PDZ domain of LIM domain-binding protein 3 and C-terminal
peptides derived from the calsarcin/myozenin and myotilin family
[115] and phosphorylation of ephrinB ligands at Ser �9 triggers
binding to GRIP [116].

Interestingly, phosphorylation of PDZ binding motifs may have
a switch-like function on PDZ function, simultaneously turning
‘‘on’’ the interaction with one domain while switching of the
interaction with other domains. In the case of X11 a, such a behav-
ior is manifested in a single protein, as a Tyr �1 phosphorylation of
its C-terminus confers a switch from the autoinhibited closed con-
formation where the C-terminal interacts with the PDZ1 to an open
conformation where the C-terminal is recognized by the PDZ2
[106]. The prevalence of phosphorylation switches was highlighted
in a recent study by Akiva et al. [26]. They scanned the available
proteomic data of PDZ-interactions in mouse [20] for cases where
single phosphomimetic amino acid substitutions (Ser/Thr/Tyr to
Asp/Glu) conferred inverse affinities for two PDZ domains. The
study identified 81 potential phosphorylation switches, which sug-
gests this to be a common regulatory mechanism [26]. Indeed, it
was early on observed that phosphorylation of PDZ binding motifs
may have differential effects on PDZ interactions, as exemplified by
the report on phosphorylation of the C-terminus of B class ephrins
that was shown to confer loss of interaction with syntenin-1 but
have little effect on the interaction with PTP-BAS PDZ5 [117]. It
should further be noted that also other posttranslational modifica-
tions can regulate PDZ interactions. An interesting case is the inter-
action between PTEN and DLG2 that was reported to be negatively
regulated by phosphorylation, but positively regulated by acetyla-
tion [118].

PDZ function can also be down-regulated by phosphorylation of
PDZ domains. For example, the peptide binding of DLG1 PDZ1 is
diminished by Ca2+/calmodulin-dependent protein kinase II phos-
phorylation of a Ser232 adjacent to the carboxylate-binding loop
[119], and phosphorylation of Ser77 in a2 of NHERF1 PDZ1 confers
a loss of peptide binding [120]. In addition, the function of PICK1
PDZ has been proposed to be down-regulated by phosphorylation
of either Ser77 or Thr82. The phosphomimetic mutation of Thr82
at the N-terminal end of a2 disrupts the interaction between PICK1
PDZ and GluR2 [121] and phosphorylation of Ser77 in the b5-a2
loop affects the clustering of eYFP-PICK1 in COS7 cells, although
no effect was observed on peptide binding [122]. Interestingly,
Thr82 and Ser77 are in vicinity of the positive charge cluster that
has been proposed to be of importance for the interaction between
PICK1 PDZ and lipid membranes [84] and it is possible that their
phosphorylations influence the lipid binding, although no experi-
mental data are available to clarify this point.

Finally, PDZ function can also be regulated by phosphorylation
outside the canonical domain boarders, as previously discussed
for the INAD PDZ4–PDZ5 supramodule [71]. The phosphorylation
of Tyr397 in the C-terminal non-canonical a3 of PDS-95 PDZ3 pro-
vides an interesting example of how the dynamics of PDZ domains
can be phosphoregulated. The dynamics of PDZ3 of PSD-95 is
dampened by the packing of a3 against the PDZ domain, which
enhances its peptide binding affinity by a altering the dynamic
properties of the domain [29,30]. Phosphorylation of Tyr397 in
a3 initiates a rapid equilibrium of docked and undocked conforma-
tions, with the undocked conformation having reduced ligand
binding affinity [123].

4.5. Alternative splicing

PDZ interaction are often regulated by alternative splicing of
PDZ proteins or their interacting proteins, as extensively reviewed
by Sierralta and Mendoza [124]. Typically, PDZ domains or PDZ
binding motifs are deleted from different isoform resulting in
variable subcellular localizations and functions [124,125]. For
example, the protein usherin exists in multiple isoforms in murine
inner ear of which one is transmembrane and harbors a PDZ-
binding motif that interacts with the PDZ protein whirlin [126].
Whirlin in turn exist as a long isoform containing three PDZ
domains of which the first two interact with usherin and a short
isoform that only holds one PDZ domain that does not interact
with usherin [127,128].
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Alternative splicing within PDZ domains is considerably less re-
ported. However, PTP-BAS PDZ2 exist as two functionally distinct
isoforms a and b, with the difference between the two isoform
being the insertion of five amino acids in the b2–b3 loop. The ex-
tended loop region folds back onto b2–b3, which leads to a de-
creased peptide binding affinity. Interestingly, the extended loop
region does not interfere with the modest PIPs binding but confers
instead a slight increase in PIPs affinity and the alternative splicing
may thus tune the preference for the distinct ligands [91].
4.6. Competition and viral hijacking

The competition between distinct PDZ proteins can be used for
dynamic regulation of cell signaling. For example, the small protein
TIP-1 that is almost entirely composed of a PDZ domain competes
with CASK and other PDZ containing scaffolds with type binding I
specificity to negatively regulate their function [129]. The compe-
tition between TIP-1 and CASK for the potassium channel Kir2.3
leads to uncoupling of Kir2.3 from its basolateral membrane-
anchoring complex and confers a shift towards endosomal target-
ing of the channel. Another case involves the expression and the
activity of CFTR in colon cancer cells that is positively regulated
by interactions with NHERF1 but negatively regulated by interac-
tions with shank2 [130]. Finally, MAGI-3 competes with NHERF2
for binding to LPA receptor type 2 and phospholipase C-b3, with re-
ciprocal effects such that NHERF2 promotes migration and inva-
sion of colon cancer cells, while MAGI-3 inhibits these processes
[131].

Another form of competition for PDZ interaction is the viral
hijacking of PDZ proteins, a topic that was extensively reviewed
recently [132,133]. The PDZ-binding motifs in a cell are often
sub-optimized to allow for rapid changes of cell signaling and viral
proteins can therefore rewire cell signaling by presenting C-termi-
nal motifs of higher affinities. The first examples of viral hijacking
of PDZ protein were given by the three oncoproteins adenovirus
type 9 E4-ORF1, human T-lymphotropoic virus type 1 Tac and
high-risk human papillomavirus E6 and has since then emerged
as a common theme among viruses [132,134–136]. More recent re-
ports include the hijacking of polarity protein PALS1 by the SARS
Coronavirus E protein, which alters tight junction formation and
epithelial morphogenesis [137], and a study by Accardi and co-
workers reporting on cooperation between E6 and E7 from human
papillomavirus type 16 in the targeting of NHERF1 [138].
5. Concluding remarks

The PDZ domain is a highly versatile interaction module with
the main function of recognizing C-terminal peptide ligands, but
with an extended functionality of interacting with alternative li-
gands such as internal peptide stretches, other PDZ domains and/
or membrane lipids. The plasticity of PDZ–ligand interactions has
made it one of the most common modular domains in multicellular
organisms [5,6]. The last two decades have seen an intense re-
search on PDZ domains with numerous experimental and compu-
tational studies tackling the fine details of the function of isolated
PDZ domains and/or the biology of PDZ proteins. It has become
clear that at least a subset of PDZ proteins act as dynamic regula-
tors of cell signaling rather than static docking sites. In a cellular
context, PDZ interactions depend on several factors such as the
intrinsic specificity of the domain, the availability of ligands, the
cooperative effects with other interaction partners and the dy-
namic regulation of the PDZ protein and its ligands. For a better
understanding of the biology of PDZ proteins it will be crucial to
gain a better understanding of the synergy and/or competition be-
tween different binding partners and the regulatory mechanisms
governing these interactions. In particular, it will be interesting
to follow future studies regarding the interplay between peptide
and lipid signaling, the importance of PDZ–PDZ interactions in
the organization of multi-protein scaffolds and the biological
importance of the suggested phosphorylation switches. In addi-
tion, it will be interesting to follow the efforts being made towards
the goal of developing highly specific inhibitors of PDZ proteins
through the use of bidentate inhibitors targeting PDZ tandems
rather than isolated PDZ domains [139–141].
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