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SUMMARY

The temporal switch from progenitor cell proliferation
to differentiation is essential for effective adult tissue
repair. We previously reported the critical role of
Notch signaling in the proliferative expansion of myo-
genic progenitors in mammalian postnatal myogene-
sis. We now show that the onset of differentiation is
due to a transition from Notch signaling to Wnt signal-
ing in myogenic progenitors and is associated with an
increased expression of Wnt in the tissue and an
increased responsiveness of progenitors to Wnt.
Crosstalk between these two pathways occurs via
GSK3b, which is maintained in an active form by
Notch but is inhibited by Wnt in the canonical Wnt sig-
naling cascade. These results demonstrate that the
temporal balance between Notch and Wnt signaling
orchestrates the precise progression of muscle pre-
cursor cells along the myogenic lineage pathway,
through stages of proliferative expansion and then
differentiation, during postnatal myogenesis.

INTRODUCTION

Muscle regeneration in response to injury requires a careful or-

chestration of the activation and proliferation of muscle progen-

itor cells and their subsequent differentiation into multinucleated

myotubes to form new muscle tissue. We have previously shown

that activation of the Notch signaling pathway is essential for the

early phases of this process, controlling activation of resident

muscle stem cells (satellite cells) and promoting the proliferation

of an intermediate progenitor cell population characterized by

expression of high levels of Pax3 (Conboy and Rando, 2002;

Boutet et al., 2007). However, little is known about the signaling

pathways that control the transition from proliferation to differen-

tiation in this population. Wnt signaling has been shown to be

necessary for muscle formation during embryogenesis (Cossu

and Borello, 1999) and has also been shown to have an essential

role in myogenic differentiation (Anakwe et al., 2003; Petropou-

los and Skerjanc, 2002) and myogenic stem cell fate in the adult

(Brack et al., 2007).
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Although it has been suggested that Wnt may indirectly affect

muscle regeneration by inducing a subpopulation of CD45+ cells

to adopt myogenic potential and, thus, potentially participate in

myogenesis (Polesskaya et al., 2003), the physiologic role of

CD45+ cells in muscle regeneration is uncertain (Sherwood

et al., 2004; Zammit et al., 2002). We sought to determine if

Wnt signaling may play an important role in postnatal myogene-

sis, akin to that in development, by acting directly on the bona

fide muscle stem cells and their progeny to control myogenic lin-

eage progression and therefore muscle regeneration.

In the current study, we show that Wnts act directly on myo-

genic progenitors, and the activation of this signaling cascade

results in the transition of progenitors from the proliferative

phase to the differentiation phase during postnatal myogenesis.

Furthermore, we show that the increase in Wnt signaling reflects

a critical transition from high Notch activation to high Wnt activa-

tion and that this molecular switch is essential for effective mus-

cle regeneration. Importantly, the balance between these path-

ways is reflected by the state of activation of GSK3b, which is

maintained in the active state by Notch signaling and inactivated

by Wnt signaling. Thus, GSK3b is a pivotal determinant of cell

fate in muscle stem cell progeny, integrating inputs from the

Notch and Wnt signaling pathways.

RESULTS

Wnt Signaling Is Increased in Myogenic Progenitors
Progressively during Lineage Progression
and Muscle Regeneration
To investigate if active Wnt signaling was present in regenerating

muscle, we analyzed a downstream target of Wnt signaling,

Axin2 (Jho et al., 2002), in uninjured and regenerating muscle

(see Figure S1A available with this article online). Axin2 was up-

regulated in regenerating muscle. In order to assess the potential

role of canonical Wnt signaling in muscle progenitor cells during

postnatal myogenesis, we used the TOPGAL reporter mouse

(DasGupta and Fuchs, 1999). There was no detectable evidence

of Wnt signaling in uninjured muscle, but there was a striking

increase in Wnt signaling in many mononucleated cells within

regenerating muscle at 2 and 5 days after injury (Figure 1A). By

costaining for the myogenic lineage marker MyoD and for

b-galactosidase as an indication of active Wnt signaling, we

were able to confirm, both in vivo (Figure 1A, insert) and in vitro
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Figure 1. Active Wnt Signaling Increases Progressively during Myo-

genic Lineage Progression and Muscle Regeneration

(A) Cross-sections of muscle from TOPGAL reporter mice after focal injury.

X-gal reactivity (blue) was observed in mononucleated cells in injured areas

at 2 days (left panel) and 5 days (right panel) of regeneration. (Insert, sections

stained for MyoD [green], b-galactosidase [red], and DAPI [blue]. MyoD+/

b-gal+ cells [arrows] were observed in regenerating areas, demonstrating myo-

genic cells signaling through the canonical Wnt pathway. Nonmyogenic cells

that were responsive to Wnt [MyoD�/ b-gal+; arrowhead] were also present.)
(Figure 1B), that most myogenic progenitors in the regenerating

muscle were signaling through the canonical Wnt pathway. To

further investigate if myogenic progenitors signal via Wnt during

postnatal myogenesis, we isolated mononucleated cells from

myofiber explants. Approximately 92% of mononucleated cells

from fiber explants were positive for both Pax7 and Syndecan-

4 (sensitive and, in combination, specific markers of the myo-

genic lineage) as determined by FACS analysis (Figure 1C),

allowing for direct assessment of Wnt signaling in this popula-

tion. The levels of Wnt signaling increased in the satellite cell

progeny progressively with time in culture (Figure 1D and

Figure S1B).

We also analyzed the state of activation of GSK3b, a compo-

nent of the canonical Wnt signaling cascade, as an indication of

active Wnt signaling in myogenic progenitors. Dephosphoryla-

tion of GSK3b at tyrosine 216 is necessary for GSK3b to phos-

phorylate b-catenin and thereby promoting for canonical Wnt

signaling (Hagen et al., 2002; Yuan et al., 1999). FACS analysis

demonstrated that the fraction of myogenic cells with detectable

phosphorylated GSK3b at tyrosine 216 (GSK3bpY216) was rela-

tively high (indicative of low Wnt signaling) 1 day after injury (Fig-

ure 1E), a time when Notch signaling is high (Conboy and Rando,

2002). There was a progressive decline in the levels of

GSK3bpY216 from day 1 to day 4 (Figure 1E), consistent with in-

creased Wnt signaling seen by reporter gene expression in the

TOPGAL mice.

To test for the pattern of expression of canonical Wnts and

their receptors in muscle, we performed real-time qRT-PCR on

isolated myofiber explants with associated satellite cells after 1

or 4 days in culture. We observed an increase in canonical

Wnts after 4 days in culture, the largest increase being in Wnt

3A (Figure S1C). The Wnt receptors, Frizzled-1 and Frizzled-2,

also increased, as did Axin2. Therefore, ligand, receptor, and

a downstream target were all induced in preparations consisting

of only myofibers and activated myogenic progenitors. When the

myogenic progenitors were dissociated from the myofibers dur-

ing this time course and analyzed for ligand (Wnt3A) and receptor

(Frizzled-1) expression, an increase only in Frizzled-1 was de-

tected (Figure S1D). These data demonstrate that there is an

(B) Wnt signaling in myogenic progenitors. Myogenic progenitors isolated from

regenerating muscle (3 days after injury) of TOPGAL mice were stained for

b-gal (red), MyoD (green), and DAPI (blue). Confirming results in vivo (insert,

[A]), myogenic cells were actively signaling through the Wnt cascade

(MyoD+/ b-gal+ cells).

(C) Mononucleated cells freshly isolated from bulk myofiber explants cultured

for 1 day were analyzed for Syndecan-4 (Syn4) and Pax7 expression by FACS.

Isotype controls are shown in the left panel. In these representative FACS

plots, 92% of cells were positive for both Syn4 and Pax7, demonstrating

a very high proportion of myogenic cells.

(D) Increased Wnt signaling during myogenic lineage progression. Myofibers

from TOPGAL mice were maintained in proliferation medium for 1–5 days. Pu-

rified myogenic progenitor cells were stripped off the fibers (see Figure 1B) and

analyzed for b-gal activity. The levels of b-gal activity are presented relative to

the levels at day 1, demonstrating increased Wnt signaling during lineage pro-

gression in myogenic progenitors. Error bars, SEM. (*p < 0.05, **p < 0.01)

(E) Cells stripped off myofibers after 1–4 days in culture were analyzed for

Syndecan-4 and GSK3bpY216 expression by FACS. GSK3bpY216 is the active

form of GSK3b (GSK3b*) that declines when the canonical Wnt signaling cas-

cade is activated. Data are presented as the percentage Syndecan-4+ cells

that are GSK3b*+ (*p < 0.05).
Cell Stem Cell 2, 50–59, January 2008 ª2008 Elsevier Inc. 51
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increased Wnt responsiveness of myogenic progenitors coinci-

dent with an increased expression of Wnt in the tissue during

the process of muscle regeneration.

Wnt Signaling Promotes Myogenic Lineage Progression
and Premature Muscle Differentiation
Mononucleated cells isolated from single fiber cultures yield

a very pure myogenic population of cells (Rosenblatt et al.,

1995; Zammit et al., 2002). Nearly 100% of cells expressed

both Pax7 and MyoD 2 days after isolation and Desmin 3 to

4 days after isolation (Figures 2A and 2B). Over time in culture,

there was a progressive increase in the fraction of cells express-

ing Myogenin and Desmin and a decline in the fraction of cells

expressing Myf5 (Figures 2A and 2B). This expression pattern

was used to determine the state of differentiation in the myo-

genic progenitors when Wnt signaling was manipulated.

We used recombinant Wnt3A protein and a GSK3 inhibitor to

activate canonical Wnt signaling. In response to both treatments,

we observed an increase in Wnt reporter activity in myogenic

progenitors (Figure S2A). Furthermore, treatment of the cells

with Wnt3A resulted in an increase in the percentage of myo-

blasts expressing active b-catenin (Figure S2B) and nuclear

Figure 2. Expression of Myogenic Markers during Lineage Progres-

sion

(A) Single fibers were cultured and satellite cell progeny were immunostained

with a panel of antibodies (Pax7, MyoD, Desmin, and Myogenin) at different

times in culture. Nuclei were visualized with DAPI (blue).

(B) The percentages of cells expressing indicated proteins as determined in (A)

were quantified after various times in culture.
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localization of b-catenin, which was not observed in proliferating

myoblasts under control conditions (Figure S2C).

We analyzed the effects of activation of the Wnt signaling path-

way on myogenic lineage progression. Myogenic progenitors

were isolated from regenerating muscle 2 days after injury. Rela-

tively few of the myogenic cells expressed Desmin (�10%), as

determined by FACS analysis (Figure 3A). During a further

2 days in culture, the fraction of myogenic cells expressing Des-

min increased substantially (to�45%). Strikingly, in cells treated

with Wnt3A, there was a much greater increase in the percentage

of myogenic progenitors expressing Desmin (to �75%).

Single fibers were isolated from uninjured muscle, activated for

2 days, and either maintained overnight in control medium or

treated overnight with either exogenous Wnt3A or a GSK3 inhib-

itor to activate the Wnt pathway. Progenitor cells were then ana-

lyzed for the state of myogenic differentiation (see Figures 2A and

2B). Activation of Wnt signaling accelerated myogenic lineage

progression in progenitors activated ex vivo. After treatment

with Wnt3A or the GSK3 inhibitor, a larger percentage of cells

expressed high levels of Desmin (Figure 3B and Figure S3A).

There was also a lower percentage of cells expressing Myf5 (Fig-

ure S3B), concomitant with a decrease in proliferation (Figure

S3C). Thus, Wnt signaling is not only upregulated during myo-

genic lineage progression, but can promote myogenic commit-

ment and lineage progression in satellite cell progeny.

In order to confirm that these studies in vitro reflected the be-

havior of myogenic progenitors in vivo, Wnt3A was injected into

tibialis anterior muscles after freeze injury during the early prolif-

erative phase of myogenic progenitors (2 days after injury). The

muscles were analyzed 2 and 3 days later to determine the effect

of Wnt3A on myogenic lineage progression and early myogenic

differentiation. On day 4 after injury, myotubes in Wnt3A-treated

muscles were larger than in control muscles at this time point

(Figure 3C), and there was a greater number of nascent myo-

tubes compared to control muscles (Figure 3D), effects that

could be mimicked by injection of a GSK3 inhibitor (data not

shown). These findings reflect a premature induction of progen-

itor cell differentiation in vivo, are consistent with the effects

observed in vitro, and confirm that Wnt signaling facilitates line-

age progression and leads to accelerated differentiation during

postnatal myogenesis in vivo. However, this promotion of differ-

entiation did not result in an enhancement of muscle regenera-

tion. Between 4 and 5 days of regeneration, there was an in-

crease in the number of nascent fibers formed in control

muscles, whereas in Wnt-treated muscles, there was almost no

increase in fiber number (Figure 3D), an effect of the premature

differentiation and thus depletion of myogenic progenitors. The

end result was that there were large areas of injured muscle de-

void of new myofiber formation in Wnt-treated muscles

(Figure 3E). Therefore, the enhancement of differentiation by

exogenous Wnt3A during the early, proliferative phase was ulti-

mately detrimental to effective tissue regeneration.

Inhibition of Endogenous Wnt Signaling
Prevents Myogenic Lineage Progression
As a test of the role of endogenous Wnt signaling in satellite cell

activation and lineage progression, we added the soluble Wnt

inhibitor, sFRP3, to single fiber cultures at two different times

during myogenic lineage progression. Wnt was inhibited either
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early (day 2), when satellite cell progeny are rapidly expanding, or

later (day 3.5), when most progeny have progressed to further

commitment and differentiation (Zammit et al., 2004). When

sFRP3 was added early, no effect on cell fate was observed

compared to controls (Figure 4A). By contrast, inhibition of Wnt

produced a phenotype when added late, resulting in cultures

with a less differentiated phenotype. Therefore, endogenous

Wnt signaling acts directly on myogenic progenitors to promote

the progression from early, proliferating progenitors to more dif-

ferentiated progenitors.

We wanted to determine whether this temporal pattern of Wnt

activity in satellite cell progeny was observed in vivo during mus-

cle regeneration. Wnt was inhibited by an intramuscular sFRP3

injection either during the proliferative phase (day 2) or the differ-

entiation phase (day 3.5). There was no observable phenotype if

Wnt was inhibited during the proliferative phase. By contrast,

when the inhibitor was injected later, both the number and size

Figure 3. Exogenous Wnt Promotes Myogenic Lineage Pro-

gression and Differentiation

(A) Mononucleated cells freshly isolated from a regenerating muscle

(2 days after injury) were fixed for analysis or treated with Wnt

(100 ng/ml) or control (0.1% BSA) in proliferating conditions for

2 days. Cells were analyzed for Syndecan-4 (Syn4) and Desmin ex-

pression by FACS. Isotype controls are shown in the left panel. Rep-

resentative FACS plots are shown.

(B) Exogenous Wnt3A (100 ng/ml) or control solution was added over-

night to single fiber cultures 2 days after isolation, and cells were an-

alyzed for Desmin expression (quantitative analysis shown in the right

panel; mean ± SEM) (*p < 0.05).

(C) Cross-sections of muscles after 4 days of regeneration treated with

either Wnt3A (10 ml of 100 ng/ml) or control solution (10 ml of 0.1%

BSA) 1.5 to 2 days after injury. Left, sections stained for embryonic

myosin heavy chain (eMHC, green) to identify newly formed myo-

tubes. Right, quantitative analysis of fiber size in control and Wnt3A-

treated muscles. Fiber size in regenerating area is relative to fiber

size in uninjured area and normalized to control muscles (mean ±

SEM) (*p < 0.05).

(D) Quantitative analyses of nascent fiber number normalized to cross-

sectional area of regenerating tissue in control and Wnt3A-treated

muscles analyzed after 4 and 5 days regeneration (mean ± SEM)

(*p < 0.05; **p < 0.001).

(E) Muscles were injected as in (C) and analyzed 5 days after injury.

Muscle cryosections were stained with H&E.

of nascent myotubes was decreased (Figures 4B and

4C). These data confirm that Wnt, acting directly on myo-

genic progenitors, is essential for normal muscle regener-

ation and that there is a critical temporal switch from early

Notch signaling to later Wnt signaling.

Because of the possibility that changes in endogenous

Wnt signaling could affect regeneration by acting on other

cells besides satellite cell progeny, we tested for Wnt sig-

naling in inflammatory cells that infiltrate areas of muscle

damage. Specifically, we tested for evidence of active

Wnt signaling in CD45+ cells, since it has been shown

that a subpopulation of CD45+ cells may respond to exog-

enous Wnt to adopt a myogenic fate (Polesskaya et al.,

2003). We found no evidence of active Wnt signaling in

the bulk population of CD45+ cells in resting or injured

muscle, all of which were lineage+ immune cells and

showed no evidence of a proliferative response to Wnt (Figure S4).

These data suggest that there is no significant contribution of

CD45+ cells to the population of progenitor cells that actively

regenerate muscle and that the effects of Wnt signaling described

here are not a reflection of any subpopulation of CD45+ cells.

The Notch Pathway Feeds into the Wnt Cascade
via GSK3b in Adult Myogenic Progenitors
To further characterize this temporal switch between Notch and

Wnt signaling, we used a soluble Jagged fusion protein (Jag-

ged1-Fc) to inhibit Notch signaling and a g-secretase inhibitor,

which has been shown to block Notch signaling in different cell

types, including myogenic progenitors (Dahlqvist et al., 2003). In-

hibition of Notch signaling promoted myogenic lineage progres-

sion both in vitro and in vivo (Figures 5A and 5B), thus confirming

previous results that Notch signaling maintains an early lineage

fate (Conboy and Rando, 2002; Conboy et al., 2003). However,
Cell Stem Cell 2, 50–59, January 2008 ª2008 Elsevier Inc. 53
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when the Notch inhibitor was injected during the differentiation

phase in vivo (Figure 5B), the effects were negligible, indicating

a functional decline in Notch signaling at a time when Wnt signal-

ing is increasing. This suggests a functional antagonism between

these two pathways.

In order to test for crosstalk between the Notch and Wnt sig-

naling pathways in myogenic progenitors, we first examined

readouts of Wnt signaling in cells in which Notch signaling was

altered. When Notch signaling was inhibited during the early pro-

liferative phase, we observed a premature increase in Wnt sig-

naling (Figure 6A), comparable to that seen in response to exog-

enous Wnt3A or GSK3 inhibition (Figure S2A), suggesting that

active Notch might suppress Wnt signaling during this phase. In-

deed, direct activation of Notch using an activating antibody in

Wnt3A-treated myoblasts led to fewer cells expressing detect-

able nuclear-localized b-catenin (Figure 6B).

We next asked whether GSK3b, which is inactive in the pres-

ence of Wnt signaling and targets b-catenin for degradation,

was regulated by Notch signaling. We used antibodies that recog-

nize GSK3b when phosphorylated at serine 9 (GSK3bpS9) or at ty-

rosine 216 (GSK3bpY216); these are readouts of inactive and active

GSK3b, respectively (Wang et al., 1994). Inhibition of Notch re-

sulted in a decline in GSK3bpY216 comparable to that seen in re-

sponse to Wnt3A (Figure 6C). Conversely, GSK3bpS9 staining

was increased when Notch was inhibited (Figure 6D), suggesting

that both inhibition of Notch and activation of Wnt signaling ap-

pear to inactivate GSK3b. Furthermore, direct activation of Notch

led to a significant increase in GSK3bpY216 compared to controls

as detected by FACS analysis (Figure S5). When Notch was acti-

vated in cells treated with Wnt 3A, the Wnt-induced inactivation

of GSK3b was partially inhibited (Figure 6E). Therefore, there is

Figure 4. Temporal Regulation of Wnt Signaling Is Necessary

for Lineage Progression and Effective Muscle Regeneration

(A) sFRP3 (30 ng/ml) was added overnight to single fiber cultures to in-

hibit Wnt either 2 days (‘‘early’’) or 3.5 days (‘‘late’’) after isolation. The

fraction of cells expressing an early myogenic lineage marker (Myf5) or

late myogenic lineage markers (Desmin and Myogenin) were quanti-

fied (mean ± SEM). Histograms showing the state of myogenic lineage

progression, depending upon the timing of inhibition of Wnt signaling,

are shown (*p < 0.05).

(B) Injured muscle was injected with sFRP3 (10 ml of 30 ng/ml) or 0.1%

BSA (10 ml) either 2 days (‘‘Early’’) or 3.5 days (‘‘Late’’) after injury. Mus-

cles were analyzed after 5 days of regeneration by immunostaining for

eMHC (green) and DAPI (blue).

(C) Muscles treated as in (B) were analyzed by determining the number

of eMHC+ fibers in a normalized field from the regenerating area (left

histogram) and fiber size relative to control (right histogram; data ex-

pressed as mean ± SEM) in H&E-stained cryosections (*p < 0.05,

**p < 0.001).

clearly crosstalk between the Notch and Wnt cascade

reflected by the divergent regulation of GSK3b activation.

A Temporal Balance between Notch
and Wnt Signaling Is Necessary for Effective
Muscle Repair In Vivo
To investigate the balance between the Notch and Wnt

pathways in vivo, we activated these pathways individu-

ally or together during the phase of progenitor cell prolif-

eration. Activation of the Wnt pathway promoted differentiation,

albeit prematurely, reflected by the decreased fiber number and

larger fiber size (Figures 6F and 6G). Conversely when Notch was

activated, there was a marked inhibition of myogenesis both in

terms of number and size of nascent fibers, consistent with the

role of Notch in inhibition of lineage progression (Figure 5). Strik-

ingly, this block of myogenesis by enhanced Notch signaling

could be rescued by activation of the Wnt pathway via GSK3b

inhibition. These data further illustrate the fine balance between

Notch and Wnt signaling that is necessary for effective regener-

ation with GSK3b as a key nodal point at which these two path-

ways interact.

DISCUSSION

The results presented here reveal molecular regulatory pathways

involved in cell fate determination during postnatal myogenesis,

and provide new insights into functional and molecular interac-

tions between Notch and Wnt signaling pathways. We have

previously shown that Notch activity is necessary during early

activation and proliferation of satellite cells (Conboy et al.,

2003). The results of the current study demonstrate that Wnt sig-

naling is activated in myogenic progenitors later during lineage

progression, leading to the generation of fusion-competent myo-

blasts. Moreover, the effects of exogenous activators and inhib-

itors of Wnt signaling on adult myogenesis strongly suggest that

the Wnt pathway is a key regulator of myogenic commitment and

terminal differentiation, consistent with findings during avian

wing development (Anakwe et al., 2003).

The upregulation of Axin2 suggests that Wnts are present and

actively signaling in regenerating muscle. Previous reports have
54 Cell Stem Cell 2, 50–59, January 2008 ª2008 Elsevier Inc.
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suggested some Wnts are expressed in regenerating muscle

and that the muscle fibers are the source of Wnt (Polesskaya

et al., 2003). A quantitative analysis of Wnt transcripts in regen-

erating muscle demonstrated that Wnts, such as Wnt5A, are ex-

pressed in uninjured muscle but appear to decrease during the

first 24 hr after injury, a time when the muscle tissue is degener-

ating, then are restored as the muscle is healed (Zhao and Hoff-

man, 2004). We observed an increase in transcript levels of

Wnt3A in myofibers isolated and placed in culture for 4 days.

The current data are consistent with expression of Wnts being

low during the early phase of regeneration, perhaps even reflect-

ing a decrease from resting levels consistent with previous

results (Zhao and Hoffman, 2004), when progenitor expansion

is occurring and then increase in injured muscle to promote myo-

genic lineage progression. However, as important as the level of

ligand expression is the presence of their cognate receptors. We

have demonstrated that, during lineage progression, myogenic

progenitors express both receptors and downstream targets of

Wnt, arguing strongly that myogenic progenitors are signaling

through canonical Wnt signaling.

During muscle repair, the progenitor cells responsible for the

regenerative response are derived almost solely from the satel-

lite cell population (Zammit et al., 2002; Collins et al., 2005). It

has been reported that repeated daily injections of exogenous

Wnt promoted the myogenic conversion of CD45+ cells (Pole-

sskaya et al., 2003), but the physiological significance of these

rare cells in the process of muscle regeneration in vivo is

unknown. With daily injections of Wnt inhibitors, fewer desmin-

expressing cells were isolated from the regenerating muscle.

This is consistent with our data and our conclusion that inhibition

Figure 5. Inhibition of Notch Signaling Early during Satellite Cell

Activation Promotes Myogenic Lineage Progression

(A) After 2 days in culture, myogenic cells from single fiber cultures were

treated overnight with a g-secretase inhibitor (L-685,458) (2 mM) to inhibit

Notch signaling. Cells were immunostained for Myf5 and Desmin. Left, repre-

sentative image of Desmin staining; right, quantitative analysis (mean ± SEM)

(*p < 0.05, **p < 0.01).

(B) Injured muscle was injected with either a control solution (0.1% BSA [10 ml])

or a solution containing Jagged1-Fc (10 ml, 100 mg/ml) either 2 days (‘‘early’’) or

3.5 days (‘‘late’’) after injury. Muscles were analyzed after 5 days of regenera-

tion by H&E staining of cryosections. Early inhibition caused premature differ-

entiation, resulting in fewer but larger myotubes.
of Wnt signaling prevents myogenic lineage progression, but is

likely due to the effects of the inhibitors on myogenic progenitors

rather than on CD45+ cells present in the regenerating tissue. In

fact, our studies show that daily injections of Wnt actually inter-

fere with, rather than enhance, muscle regeneration because of

the negative effects on early phases of myogenesis. Further-

more, our studies of resting and injured muscle suggest that

any CD45+ cells, responding to Wnt and adopting myogenic

properties, are likely to make only a very minor contribution, at

most, to muscle regeneration.

The timing of the regulation of the Wnt pathway is consistent

with the hypothesis that low Wnt activity is essential during pro-

liferative expansion of tissue-specific progenitor cells and that

increased Wnt activity promotes the progression of those cells

along the myogenic lineage (Figures 3A and 4A). Thus, a fine tun-

ing of the temporal pattern of Wnt signaling activity might regu-

late the expansion versus fusion of myoblasts. Consistent with

this prediction, exogenous Wnt added early during the prolifera-

tive phase of regeneration promoted premature differentiation;

there were more nascent fibers and they were larger. This had

a detrimental effect on muscle regeneration as areas of the injury

area were devoid of nascent fibers (Figure 3E). Indeed, a high

level of Wnt signaling in quiescent and early activated satellite

cells during aging leads to progenitors losing their myogenic

fate and acquiring a fibrogenic fate (Brack et al., 2007). There-

fore, low Wnt signaling is required for the generation of adequate

numbers of myogenic progenitors. Inhibition of Wnt at this early

stage had negligible effects on the regenerative response (Fig-

ure 4), consistent with the relatively low level of Wnt signaling

in young myogenic progenitors. By contrast, inhibition of Wnt af-

ter the proliferation phase resulted in a delay of lineage progres-

sion and terminal differentiation. This pattern was opposite to

that of the Notch signaling pathway (Figure 5), where there was

impaired regeneration in vivo when Notch was inhibited early

but not late. Although levels of active Notch may continue to

be elevated at these late time points, the increase in expression

of Numb would inhibit active Notch signaling, consistent with the

absence of any detectable effects of Notch inhibitors at these

time points. Thus, cell-fate determination along the myogenic lin-

eage is controlled by a precise balance between the (early) Notch

and (later) Wnt signal transduction pathways. The mechanisms

whereby Wnt promotes myogenic lineage progression and dif-

ferentiation and the downstream targets of Wnts that are acti-

vated or repressed during this process remain to be determined.

Interestingly, b-catenin can enhance the transcriptional activity

of the myogenic regulatory factors and thereby induce myosin

heavy-chain expression in P19 cells and promote differentiation

in myogenic cells (Pan et al., 2005; Pan et al., 2006). The binding

of b-catenin to myogenic determination genes is reminiscent of

b-catenin’s ability to bind to tissue-specific determination genes

during development (Olson et al., 2006).

The temporal balance between early Notch and later Wnt sig-

naling required for effective lineage progression and muscle re-

generation is controlled in part by Notch signaling feeding into

the Wnt cascade. We observed that Notch inhibition promoted

active signaling via the canonical Wnt cascade (Figure 6A),

whereas Notch activation inhibited the nuclear localization of

b-catenin observed in the presence of Wnt signaling (Fig-

ure 6B). Our results indicate GSK3b as a focal point of the
Cell Stem Cell 2, 50–59, January 2008 ª2008 Elsevier Inc. 55
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Figure 6. Crosstalk between Wnt and Notch Signaling

Ensures the Correct Balance for Normal Muscle Regener-

ation

(A) Myofiber-associated progenitors were stripped off myofibers

after 2 days in growth conditions. Cells were incubated in Wnt3A

(100 ng/ml) or the g-secretase inhibitor L-685,458 (5 ng/ml) over-

night. b-gal activity was measured and normalized to total protein

content, and the activity levels in the treated samples are presented

relative to control levels (mean ± SEM) (*p < 0.05, **p < 0.01).

(B) Primary myoblasts were treated with an activating Notch anti-

body or control IgG for 1 hr and subsequently plated for 17 hr in

media (5% horse serum in DMEM) containing Wnt (60 ng/ml) or

BSA (0.2%) as a control. The cultures were then analyzed for nu-

clear localization of b-catenin (red) by immunohistochemistry.

Representative images are shown on the left (arrows indicate

b-catenin+ nuclei; asterisk denotes b-catenin� nucleus). Quanti-

tive analysis is shown on the right (mean ± SEM) (*p < 0.05).

(C) Western blotting was performed on extracts from progenitor

cells to test for changes in the levels of active GSK3b (‘‘GSK3b*’’,

determined as the level of GSK3b (pY216)) when the Wnt pathway

was activated by exogenous Wnt3A or the Notch pathway was in-

hibited by the g-secretase inhibitor, as in (A). Actin was used as

a loading control. Blots from replicate experiments were quanti-

fied, after normalization to Actin, to determine to the ratios of

GSK3b*/total GSK3b. The ratios were reduced to 41% ± 7% of

control by Wnt activation and 51% ± 10% of control by Notch

inhibition.

(D) Primary myoblasts were incubated in Wnt3A (60 ng/ml), the

g-secretase inhibitor, or control solution for 17 hr. Cells were

stained with a GSK3bS9 (green) antibody which reacts with the

serine 9 phosphorylated form of GSK3b and is a readout of the in-

active form of the enzyme. DAPI stains nuclei blue.

(E) Primary myoblasts were treated with control IgG or Notch

activating antibody, followed by incubation in Wnt3A or control

solution, and then analyzed by immunohistochemistry for

GSK3bS9 (green). Wnt3A treatment increased levels of GSK3bS9,

and this was partially prevented by incubation with the Notch ac-

tivating antibody. DAPI stains nuclei blue.

(F) Two and a half days after injury, muscles were injected with

either 10 ml of 0.1% BSA (‘‘Control’’), the GSK3 inhibitor

(0.35 ng/ml) to activate the Wnt pathway (GSK3inhib), the activat-

ing Notch antibody (1:4 dilution) to activate the Notch pathway

(Notch*), or both (Notch* + GSK3inhib). Five days after injury, cry-

osections were stained with H&E to assess the effectiveness of

muscle regeneration under these different conditions.

(G) Quantitation of results from experiments as described in (D) by

determining the fiber number (left panel) and fiber size (right panel;

normalized to control values) in regenerating muscles under the

different conditions (mean ± SEM) (*p < 0.05, **p < 0.001).
crosstalk between Notch and Wnt pathways that is functionally

significant for the cell-fate determination in adult tissue repair.

Consistent with these findings, genetic screening of Notch

gain-of-function alleles in Drosophila identified the GSK3b

homolog, Shaggy, to be downstream of Notch signaling (Ruel

et al., 1993). It was shown that active GSK3b can phosphorylate

Notch-1 and -2 (Foltz et al., 2002; Espinosa et al., 2003), again

suggesting that this may represent a point of direct interaction

between Notch and Wnt signaling (Wesley, 1999; Axelrod

et al., 1996). GSK3b is a regulator that is at the crossroads of
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multiple signaling pathways, including those initiated by calcium

fluxes, G protein-coupled receptor activation, and Hedgehog

signaling, and participates in such diverse cellular glycogen

metabolism to cell-cycle regulation to tissue patterning (Doble

and Woodgett, 2003). We show that the antagonistic nature of

Notch and Wnt pathways is mediated by reciprocal effects on

the activation status of GSK3b in myogenic progenitor cells

(Figure 6B). GSK3b is inactivated by Wnt (Kim and Kimmel,

2000; Ding et al., 2000; Patel et al., 2004), although the precise

mechanism remains elusive. We show that GSK3b is active in
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undifferentiated progenitors (Figure 1E), at a time when Notch

signaling is high (Conboy and Rando, 2002), and Wnts and their

receptors are low in the tissue. Furthermore, when Notch signal-

ing was directly activated, there was a corresponding increase in

the activation of GSK3b represented by increased phosphoryla-

tion at Y216 (Figure S5). When Notch signaling was maintained

in vivo (Figures 6C and 6D), which presumably maintained

GSK3b activity high, the addition of a GSK3 inhibitor was suffi-

cient to restore the balance and, more importantly, the normal

regeneration process.

The promotion of myogenic lineage progression by exogenous

Wnt was associated with a decrease in tyrosine phosphorylation

at residue 216 of GSK3b, consistent with previous results show-

ing the important role of the phosphorylation state of this residue

for b-catenin stabilization and, thus, downstream Wnt signaling

(Yuan et al., 1999; Hagen et al., 2002). We also observed an in-

crease in serine phosphorylation at residue 9 of GSK3b after

Wnt treatment, consistent with GSK3b being less active. Ding

et al. reported that phosphorylation of GSK3b at serine 9 in

CHO cells was not affected by a brief (10 min) treatment with

Wnt-conditioned media (Ding et al., 2000). There are many tech-

nical differences between that study and our studies presented

here to account for this difference. For example, the duration

of exposure to Wnt could be important. We did not observe

changes in GSK3bS9 even after 2 hr in Wnt3A, but changes

were evident after approximately 7 hr. Activation of Notch signal-

ing increased phosphorylation of tyrosine 216 of GSK3b whereas

dephosphorylation of this residue was observed following treat-

ment of the cells with a Notch inhibitor. Consistent with the recip-

rocal effects of Notch and Wnt on GSK3b activity, activation of

Notch inhibited the increase of serine 9 phosphorylation due to

Wnt3A treatment. The regulation of the phosphorylation status

of GSK3b by Notch could involve the regulation of both kinases

and phosphatases that act on GSK3b (Kim et al., 2002). How-

ever, we cannot exclude the possibility that there are other points

of crosstalk between the Notch and Wnt pathways, upstream of

GSK3b, that fine tune the balance between these two function-

ally antagonistic pathways in myogenic progenitors.

We present a model of the balance between Notch and Wnt

signaling in satellite cell progeny, and the normal temporal

switch that occurs during lineage progression (Figure S6). This

balance serves to assure the production of the appropriate num-

bers of myogenic progenitors and to precisely regulate their cell

fate during postnatal myogenesis. During initial activation and

proliferation of satellite cells, Wnt signaling is low and the Notch

pathway is activated. Low Wnt signaling is due to both low se-

cretion of Wnt in the injured tissue, low expression of Wnt recep-

tors on myogenic progenitors, and repression of Wnt signaling

via Notch activation, reflecting the convergence of these two

pathways on the regulation of GSK3b activity in these cells.

Low Wnt signaling is necessary for myogenic progenitors to

maintain their fate soon after activation (Brack et al., 2007).

Once adequate numbers of progenitors have been generated,

Wnt signaling increases in the progenitors, whereas Notch activ-

ity begins to decrease because of the upregulation of Numb

(Conboy and Rando, 2002), consistent with the finding that

ectopic Wnt3A leads to the increase in Numb levels in somite

cultures from the chick (Holowacz et al., 2006). Due to the

crosstalk between the Notch and Wnt cascade via GSK3b, the
inhibition of Notch signaling would facilitate the activation of

Wnt signaling further. The crosstalk between these two path-

ways via GSK3b is suitable for a rapid temporal switch to activate

the Wnt pathway and repress the Notch pathway, thus enabling

the rapid differentiation and fusion of myoblasts into nascent my-

otubes. These studies also highlight a role of Wnt to promote lin-

eage progression rather than to maintain cells in a stem cell

stage (Reya and Clevers, 2005). We have recently shown that

Wnt can also cause myogenic progenitors to convert to a fibro-

genic fate if Wnt signaling is activated during quiescence or early

activation of adult myogenic stem cells (Brack et al., 2007).

Therefore, apparently opposing actions of Wnt signaling may re-

flect differential effects depending on the cellular context. More

generally, understanding the reciprocal roles of Notch and Wnt

signaling during muscle regeneration is essential for therapeutic

approaches that aim to regulate expansion versus differentiation

of myogenic progenitor cells to enhance tissue repair.

EXPERIMENTAL PROCEDURES

Animals

Two- to four-month-old C57BL/6 mice were obtained from Jackson Laborato-

ries (Bar Harbor, ME). TOPGAL mice were kindly provided by Elaine Fuchs

(Rockefeller University, NY). Animals were housed and handled in accordance

with the guidelines of Veterinary Medical Unit of the VA Palo Alto Health Care

System and the Administrative Panel on Laboratory Animal Care of Stanford

University.

Reagents

Antibodies to the following proteins (and sources) used were: Pax7 (DSHB);

Myogenin, total b-catenin, GSK3bpY216, and total GSK3b (PharMingen/Beck-

ton-Dickinson, San Jose, CA); actin and desmin (Sigma, St. Louis, MO); acti-

vated Notch-1 (Abcam, Cambridge, MA); activated (nonphosphorylated)

b-catenin and phospho-H3 (Upstate Biotechnology, Lake Placid, NY); and

GSK3bpS9 (Cell Signaling, Danvers, MA); b-galactosidase (Covance, Denver,

PA). The anti-Notch activating antibody used for in vivo injections was from

Upstate Biotechnology (hybridoma clone 8G10). The chicken polyclonal

Syndecan-4 antibody, eMHC antibody, and Myf5 antibody were generously

provided by Brad Olwin (University of Colorado), Grace Pavlath (Emory

University), and Dr. Steve Konieczny (Purdue University), respectively. Fluoro-

phore secondary conjugates used for immunofluorescence detection were

donkey-anti-chicken Alexa488, goat-anti-mouse APC, goat-anti-mouse

Alexa546, goat anti-rabbit Alexa488, and donkey-anti-rat Alexa488 (Molecular

Probes). Recombinant Jagged1-Fc, sFRP3, and Wnt3A proteins were from

R&D Systems (Minneapolis, MN). Inhibitors of g-secretase (L-685,458) and

GSK3 (BIO) were from Calbiochem (San Diego, CA).

Single Fiber Cultures, Explant Cultures, and Satellite Cell Isolation

Single fiber cultures, explant cultures, and satellite cell isolations were per-

formed as previously described were prepared as described previously

(Chargé et al., 2002; Conboy and Rando, 2002). Details are presented in the

Supplemental Data.

Muscle Injury and Modulation of Notch

and Wnt Signaling in Regenerating Muscle

Injury to whole muscle was made by injection of barium chloride (50 ml, 1.2%)

into 30 sites in the lower limb. Focal injuries to tibialis anterior muscles were

made by applying a metal probe, 4 mm in diameter, that had been cooled

on dry ice directly to the exposed muscle surface for 10 s. To modulate Wnt

or Notch signaling, 10 ml of treatment (Wnt3A, sFRP3, GSK3 inhibitor, Jag-

ged1-Fc) or control solution was introduced into the muscle surrounding the

injury site by direct intramuscular injection at different times after the initial

injury. To activate Notch signaling, 10 ml of activating anti-Notch antibody

supernatant at a 1:4 dilution or an isotype-matched hamster IgG was injected

as previously described (Conboy et al., 2003). The GSK3 inhibitor and
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activating Notch antibody were mixed in an aliquot immediately before inject-

ing into the injured muscle for experiments when they were to be added in

combination. To activate the Notch pathway in vitro, primary myoblasts

were incubated with activating anti-Notch antibody supernatant or isotype-

matched hamster control antibody as described previously (Conboy et al.,

2003). Cells were subsequently plated on ECM coated dishes in 5% HS/

DMEM and cultured for 1 hr at 37�C, 5% CO2 and then isolated and prepared

for FACS analysis.

Histology and Immunofluorescence

Muscles were dissected and embedded for cryostat sectioning as previously

described (Conboy and Rando, 2002). Immunofluorescence was performed

on fixed cells (4% PFA, 10 min) after permeabilization with 0.2% Triton

X-100 in PBS (PBT) for 10 min and block with 5% goat serum (GS) in PBT. Cells

were incubated in primary antibodies overnight at 4�C at the following dilu-

tions: Myf5 (1/200), Pax7 (1/3), Desmin (1/120), Myogenin (1/100), phospho-

H3 (1/400), and BrdU (1/500). Cells were washed and blocked in 5% GS/

PBS and then incubated with fluorophore-conjugated antibody (Alexa goat

anti-mouse546 and goat anti-rabbit488 at 1/1500) and DAPI to visualize nuclei

for 1 hr at room temperature.

Analysis of Fiber Size and Fiber Number in Injured Area

At different times after muscle injury, the cross-sectional area of every regen-

erating muscle fiber (denoted by central nucleation) was quantified in the mid-

region of the injury using Axiovision AC software (Zeiss) and normalized to

cross-sectional areas of adjacent noninjured muscle fibers in H&E stained sec-

tions. The numbers of fibers were counted in the regenerating area within a nor-

malized size field of view (203 objective). A minimum of three sections per

muscle was analyzed.

Fluorescent Activated Cell Sorting

Cells were fixed with 4% PFA. For detection of single antibodies, cells were

permeabilized with 5% FBS in 0.1% Triton X-100. Fixed cells were then

stained with primary antibodies or with isotype-matched control antibodies

for 1 hr at room temperature followed by incubation with fluorochrome-labeled

secondary antibodies (1/1000, goat anti-mouse Alexa 546, Molecular Probes)

for 1 hr at room temperature. For double antibody labeling experiments, the

primary antibodies were sequentially applied. Cells were blocked in 10% Blo-

kHen (Aves Labs, Tigard, OR) for 30 min and stained with the Syndecan-4 an-

tibody (1/500) for 1 hr. Cells were washed and blocked in 5% GS in 0.1% PBT

for 15 min. Secondary antibody (1/1500; goat-anti-chick Alexa 488, Molecular

probes) was applied for 1 hr. Cells were then washed and fixed in 4% PFA for

5 min. The second antibody (goat anti-mouse APC) was then applied using the

same protocol as single antibody labeling. Cells were analyzed by FACSca-

liber (Beckton-Dickinson).

Western Blotting

For western analysis, cells were lysed in RIPA buffer (50 mM Tris-HCl, 1 mM

EDTA, 1 mM EGTA, 150 mM NaCl, 1% NP-40) containing 90 mg/ml PMSF,

20 mg/ml aprotinin, and 20 mg/ml leupeptin (Sigma). Immunoblotting was per-

formed as previously described (Conboy et al., 2003).

Detection of b-Galactosidase in TOPGAL mice

For histological analysis, muscle sections were fixed in 0.2% glutaraldehyde

for 10 min, and stained with X-gal. For biochemical analysis, muscle was ho-

mogenized in 0.1% SDS in RIPA buffer and analyzed for total protein (BCA

kit, Pierce) and b-gal activity (Galacto-light, Tropix).

Real Time RT-PCR

RNA was isolated from muscle using TRIZOL reagent (Invitrogen) and cDNA

was synthesized using Superscript First Strand Synthesis System for RT-

PCR (Invitrogen) according to manufacturer’s instructions. Relative quantita-

tion by real-time PCR was carried out using SYBR-green detection of PCR

products in real time using the MyiQ single-color detection system (Biorad).

In each experiment, GAPDH gene was amplified as the reference standard.

Each real-time PCR reaction (25 ml) contained 2 ml of cDNA, 10 ml of 2X

SYBR Green Master Mix (Applied Biosystems Inc. Foster City, CA), including
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Amplitaq polymerase (Perkin-Elmer), and primers (available on request) at

a final concentration of 20 pM.

Gene expression was quantitated using an ABI SYBR green PCR detection

system (Applied Biosystem). All reactions were performed using the following

thermal cycler conditions: 95�C for 10 min followed by 45 cycles of a three step

reaction, denaturation at 95�C for 30 s, annealing at 60�C for 2 min, and exten-

sion and data collection at 72�C for 30 s.

Statistical Analysis

A minimum of 3 and up to 5 replicates was done for experiments presented.

Data are presented as means and standard errors of the mean. Comparisons

between groups were done using Kruskall Wallis comparison and a Dunn’s

multiple comparison post hoc test. Differences were considered statistically

significant at the p < 0.05 level.

Supplemental Data

The Supplemental Data include Supplemental Experimental Procedures and

six figures and can be found with this article online at http://www.

cellstemcell.com/cgi/content/full/2/1/50/DC1/.
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