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Abstract

In this paper, we investigate the existence and uniqueness of solutions for the following class of multi-
order fractional differential equations

D
γ1,δ1
β1

· · ·Dγn,δn

βn
u(t) :=

n∏
i=1

D
γi,δi

βi
u(t) := D

γi,δi

βi ,n
u(t) = f

(
t, u(t)

)
, t ∈ [0,1],

u(0) = 0,

n∑
i=1

δi � 1, γi > 0, βi > 0, 1 � i � n,

where D
γi,δi

βi ,n
denotes the generalized Erdélyi–Kober operator of fractional derivative of order δi . Moreover,

some properties concerning the positive, maximal, minimal, and continuation of solutions are obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, much attention has been paid to the existence and uniqueness of solutions for frac-
tional differential equations of the type
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Dδu = f
(
t, u(t)

)
, u(δ−1)(t0) = u0, (1)

where 0 < δ � 1 and Dδ denotes Riemann–Liouville fractional derivative of order δ, see [1–4].
Hadid [1] used Schauder fixed-point theorem to obtain local existence, and Tychonov’s fixed-
point theorem to obtain global existence of solution of the above fractional differential equation.
Momani [3] proved local and global uniqueness theorems for (1), by using Bihari’s and Gronwal-
l’s inequalities. The existence, uniqueness, and structural stability of solutions of the fractional
differential equation (1) have been investigated in [4].

In this paper we consider differential equations involving more general operator of fractional
differentiation, called Erdélyi–Kober fractional derivatives:

D
γ1,δ1
β1

· · ·Dγn,δn

βn
u(t) :=

n∏
i=1

D
γi,δi

βi
u(t) := D

γi,δi

βi ,n
u(t) = f

(
t, u(t)

)
, t ∈ [0,1],

u(0) = 0,

n∑
i=1

δi � 1, γi > 0, βi > 0, 1 � i � n, (2)

where D
γi,δi

βi ,n
denotes the generalized Erdélyi–Kober operator of fractional derivative of order δi ,

βj and γi , 1 � i � n, are arbitrary constants and δi is a parameter describing the order of the
fractional derivative. The general response expression contains parameters describing the order
of the fractional derivative that can be varied to obtain various responses. In the case of δi = δ,
βj = 1 and γi = 0, the fractional differential equation reduces to the fractional differential equa-
tion (1). The additional parameters γi , βi allow more generality and these operators have found
a large number of applications in analysis, mathematical physics and other disciplines [5].

In order to proceed, we give some basic definitions and theorems [5–9] which are used further
in this paper.

Definition 1.1. (See [5–9].) The Erdélyi–Kober operator of fractional integration of order δ is
defined as

I
γ,δ
β f (t) = t−β(γ+δ)

�(δ)

t∫
0

(
tβ − τβ

)δ−1
τβγ f (τ) dτβ = 1

�(δ)

1∫
0

(1 − σ)δ−1σγ f
(
tσ 1/β

)
dσ,

and the Erdélyi–Kober operator of fractional derivative is defined as

D
γ,δ
β f (t) = [(

t−γ Dδtγ+δ
)
f

(
t1/β

)]
t→tβ

,

where 0 < δ < 1, γ ∈ R and β > 0.

Definition 1.2. (See [5–9].) The generalized fractional calculus is based on commutative com-
positions of Erdélyi–Kober operator:

I
(γi ),(δi )

(βi ),n
f (t) =

[
n∏

i=1

I
γi ,δi

βi

]
f (t)

=
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]
f

(
tσ

1/β1
1 · · ·σ 1/βn

n

)
dσ1 · · ·dσn.
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Definition 1.3. (See [5–9].) The generalized Erdélyi–Kober operator of fractional derivative is
defined as

D
(γi),(δi )

(βi ),n
f (t) := DηI

(γi+δi ),(ηi−δi )

(βi ),n
f (t),

where

Dη =
[

n∏
i=1

ηi∏
j=1

(
1

βj

x
d

dx
+ γi + j

)]
,

and

ηi =
{ [δi] + 1, if δi noninteger,

δi, if δi integer, i = 1, . . . , n.

Srivastava et al. [10] generalized this operator in order to include some important functions.
For example, the Bessel function and Poisson function can be reduced to this operator [7]. For
more details on the mathematical properties of the Erdélyi–Kober fractional derivatives and in-
tegrals, see [5–10].

Theorem 1.1. (See [11].) Let U be a convex subset of Banach space E and T :U → U be a
compact map. Then T has at least one fixed point in U .

Definition 1.4. A Banach space B endowed with a closed cone K is an ordered Banach space
(B,K) with a partial order � in B as follows: x � y if y − x ∈ K .

Definition 1.5. For x, y ∈ B, the order interval 〈x, y〉 is defined as 〈x, y〉 = {z ∈ B: x � z � y}.

Theorem 1.2. (See [12].) Let (B,K) be an ordered Banach space. Let U1,U2 be open subsets
of B with 0 ∈ U1 and U1 ⊂ U2 and let F :K ∩ (U2 \U1) → K be completely continuous. Further
suppose either

(i) ‖Fu‖ � ‖u‖ for u ∈ K ∩ ∂U1 and ‖Fu‖ � ‖u‖ for u ∈ K ∩ ∂U2, or

(ii) ‖Fu‖ � ‖u‖ for u ∈ K ∩ ∂U1 and ‖Fu‖ � ‖u‖ for u ∈ K ∩ ∂U2.

Then F has a fixed point.

Theorem 1.3. (See [13].) Let (B,K) be an ordered Banach space, [u0, v0] ⊂ B, and T : [u0, v0] →
[u0, v0] an increasing continuous operator. If K is a normal cone and T is completely continu-
ous, then T has a fixed point which lies in [u0, v0].

Theorem 1.4. (See [13].) Assume that K is a closed subset of a Banach space E. Let F be
a contraction mapping with Lipschitz constant (k < 1) from K to itself. Then F has a unique
fixed point x∗ in K . Moreover, if x0 is an arbitrary point in K and xn is defined by xn+1 = Fxn

(n = 0,1, . . .), then limn→∞ xn = x∗ ∈ K and d(xn, x
∗) � (kn/(1 − k))d(x1, x0).

2. Existence and uniqueness theorems

In this section, we begin by proving the existence and uniqueness of solution for Eq. (2) using
Schauder fixed-point Theorem 1.1 and Banach fixed-point Theorem 1.4, respectively.
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Lemma 2.1. Assume that the continuous function u(t) is in Cp for all t ∈ [0,1). Then

I
(γi ),(δi )

(βi ),n
D

(γi),(δi )

(βi ),n
u(t) = u(t),

D
(γi),(δi )

(βi ),n
I

(γi ),(δi )

(βi ),n
u(t) = u(t).

Proof. One can verify that the unique solution for the differential equation D
(γi),(δi )

(βi ),n
u(t) = 0 is

u(t) = ∏n
i=1 ci t

−βi(γi+1), ci ∈ R (generalization of Lemma 2.1 in [9]). Then

I
(γi ),(δi )

(βi ),n
D

(γi),(δi )

(βi ),n
u(t) = u(t) +

n∏
i=1

ci t
−βi(γi+1).

By continuity of u(t) in [0,1) it implies that ci = 0, for all i = 1, . . . , n. Hence we obtain the
first law. The second one comes from the assumption of the lemma and in view of [7, Theo-
rem 1.5.5]. �

Let B := C[0,1] be the Banach space endowed with the max norm, U be a nonempty closed
subset of B defined as U = {u ∈ B: ‖u‖ � l, l > 0}, and A :U → U be the operator defined as

Au(t) =
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× f
(
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
dσ1 · · ·dσn. (3)

To facilitate our discussion, let us first state the following assumption:

Assumption A.

(1) t ∈ [0,1], and l > 0,

(2) Ω :=
n∏

i=1

�(γi + 1)

�(γi + δi + 1)
,

(3) f : [0,1] × [−l, l] → R is a given continuous function such that Ω‖f ‖ < l.

The properties of the operator A are discussed in the next lemma.

Lemma 2.2. Let Assumption A hold. Then the operator A is completely continuous.

Proof. For u ∈ U , we find

∣∣Au(t)
∣∣ �

1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× ∣∣f (
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))∣∣dσ1 · · ·dσn

� ‖f ‖
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]
dσ1 · · ·dσn = Ω‖f ‖ < l.

Therefore A maps U to itself. Moreover, A(U) is bounded operator.



R.W. Ibrahim, S. Momani / J. Math. Anal. Appl. 334 (2007) 1–10 5
Now, we prove that A is continuous. Since f is continuous function in a compact set [0,1] ×
[−l, l], then it is uniformly continuous there. Thus given ε > 0, we can find μ > 0 such that
‖f (t, u) − f (t, v)‖ < ε

Ω
when ‖u − v‖ < μ. Then

∣∣Au(t) − Av(t)
∣∣ �

1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× ∣∣f (
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
− f

(
tσ

1/β1
1 · · ·σ 1/βn

n , v
(
tσ

1/β1
1 · · ·σ 1/βn

n

))∣∣dσ1 · · ·dσn

�
∥∥f (t, u) − f (t, v)

∥∥ 1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]
dσ1 · · ·dσn

= Ω
∥∥f (t, u) − f (t, v)

∥∥ < ε.

Now, we shall prove that A is equicontinuous. Let u ∈ U and t1, t2 ∈ [0,1]. Then

∣∣Au(t1) − Au(t2)
∣∣ �

1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× ∣∣f (
t1σ

1/β1
1 · · ·σ 1/βn

n , u
(
t1σ

1/β1
1 · · ·σ 1/βn

n

))
− f

(
t2σ

1/β1
1 · · ·σ 1/βn

n , u
(
t2σ

1/β1
1 · · ·σ 1/βn

n

))∣∣dσ1 · · ·dσn � 2Ω‖f ‖
which is independent of u i.e. A is relatively compact. The Arzela–Ascoli Theorem implies that
A is completely continuous. The proof is therefore complete. �

Now, we give the main results of this section.

Theorem 2.1. Let Assumption A hold. Then (2) has at least one solution.

Proof. We need only to prove that the operator A has a fixed point. Since A is completely
continuous (Lemma 2.2), that is, A is compact on the set U . Hence, in view of Theorem 1.1,
A has a fixed point, which is a solution for Eq. (2). The proof is complete. �
Theorem 2.2. Let Assumption A be satisfied and ‖f (t, u) − f (t, v)‖ < L‖u − v‖, where L is
a constant such that ΩL < 1. Then Eq. (2) has a unique solution.

Proof. We need only to prove that the operator A has a unique fixed point.

∣∣Au(t) − Av(t)
∣∣ �

1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× ∣∣f (
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
− f

(
tσ

1/β1
1 · · ·σ 1/βn

n , v
(
tσ

1/β1
1 · · ·σ 1/βn

n

))∣∣dσ1 · · ·dσn

�
∥∥f (t, u) − f (t, v)

∥∥ 1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]
dσ1 · · ·dσn

< ΩL‖u − v‖.



6 R.W. Ibrahim, S. Momani / J. Math. Anal. Appl. 334 (2007) 1–10
Then in view of Theorem 1.4, A has a unique fixed point which is corresponding to the unique
solution for Eq. (2). �
3. Positive solution theorems

Here we use Theorem 1.2 to study the existence of positive, continuous solution for Eq. (2).
For this purpose, we shall illustrate the following assumption:

Assumption B. For t ∈ [0,1],
(1) f : [0,1] × [0,∞) → [0,∞) is a given continuous function.

(2) there exist two distinct positive constants m and M such that m � f � M.

Let K ⊂ B be a cone defined by K = {u ∈ B: u(t) � 0, 0 � t � 1}. Then (B,K) forms an
ordered Banach space. Let A :K → K be the operator defined as in Eq. (3), then we have the
following lemma.

Lemma 3.1. Let Assumption B be satisfied. Then A is completely continuous.

Proof. The operator A is a bounded mapping (see proof of Lemma 2.2). We proceed to prove
that A :K → K is continuous. Let u ∈ K , where ‖u‖ � l. Let S = {v ∈ K: ‖u − v‖ < r1}.
Then ‖v‖ < l + r1 := r , ∀v ∈ S. Since f is continuous on [0,1] × [0, r], then it is uniformly
continuous there. Hence, given ε > 0, ∃μ > 0 (μ < r1) such that ‖f (t, u) − f (t, v)‖ < ε/Ω ,
for ‖u − v‖ < μ, 0 � t � 1. If ‖u − v‖ < μ then v ∈ S and ‖v‖ � r . As v ∈ S ⊂ K , ‖v‖ � r ,
similarly ‖u‖ � r . So we have ‖Au−Av‖ < ε, hence A is continuous. Then, A has a fixed point
(see Lemma 2.2). �

Then we have the following results.

Theorem 3.1. Let Assumption B hold. Then (2) has at least one positive solution.

Proof. Let U1 = {u ∈ B: ‖u‖ � Ωm} and U2 = {u ∈ B: ‖u‖ � ΩM}. For u ∈ K ∩ ∂U2, we
have 0 � u(t) � ΩM , t ∈ [0,1]. Since f (t, u) � M , we have

Au(t) =
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× f
(
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
dσ1 · · ·dσn

� M

1∫
0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]
dσ1 · · ·dσn = ΩM.

Hence ‖Au‖ � ‖u‖. On the other hand, for u ∈ K ∩ ∂U1, we have 0 � u(t) � Ωm, t ∈ [0,1].
Since m � f (t, u), we have Au(t) � Ωm. Thus ‖Au‖ � Ωm = ‖u‖, and in view of Theo-
rem 1.2, A has a fixed point in K ∩ (U2 \ U1), which corresponds to the positive solution for
Eq. (2). Hence the proof is complete. �
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Theorem 3.2. Let f : [0,1]× [0,∞) → [0,∞) be continuous and f (t, .) increasing for each t ∈
[0,1]. Let there exist uo, vo satisfying D

γi,δi

βi ,n
uo � uo, D

γi,δi

βi ,n
vo � vo and 0 � uo � vo, 0 � t � 1.

Then (2) has a positive solution.

Proof. Let u,v ∈ K such that u < v, then we have

Au(t) =
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× f
(
tσ

1/β1
1 · · ·σ 1/βn

n , u
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
dσ1 · · ·dσn

�
1∫

0

· · ·
1∫

0

[
n∏

i=1

(1 − σi)
δi−1σ

γi

i

�(δi)

]

× f
(
tσ

1/β1
1 · · ·σ 1/βn

n , v
(
tσ

1/β1
1 · · ·σ 1/βn

n

))
dσ1 · · ·dσn

= Av(t).

Therefore Au(t) � Av(t), ∀t , then Au � Av. As ∃uo, vo such that 0 � uo � vo with Auo � uo,
Avo � vo, in view of Theorem 1.3, A is compact and has a fixed point in 〈u,v〉. Hence
A : 〈uo, vo〉 → 〈uo, vo〉 is compact, by Theorem 1.3, A has a fixed point w ∈ 〈u,v〉, which is
the positive solution. This proves the theorem. �

In the following theorems, let the function f be continuous, increasing and have finite limit
as u → ∞, then in view of Theorem 3.2, Eq. (2) has a positive solution.

Theorem 3.3. Let f : [0,1] × [0,∞) → [0,∞) be continuous and f (t, .) increasing for each
t ∈ [0,1]. If 0 < limu→∞ f (t, u) < ∞, ∀t ∈ [0,1], then (2) has a positive solution.

As a consequence of Theorem 3.3, the following theorem holds.

Theorem 3.4. Let f : [0,1] × [0,∞) → [0,∞) be continuous and f (t, .) increasing for each
t ∈ [0,1]. If 0 � lim‖u‖→∞ max0�t�1

f (t,u)
‖u‖ < ∞, then (2) has a positive solution.

In general we have the following theorem.

Theorem 3.5. Let f (t, u(t)) = c + Mu(t), where c and M are positive constants. Then (2) has
a positive solution.

Theorem 3.6. Let f : [0,1] × [0,∞) → [0,∞) be continuous and ‖f (t, u) − f (t, v)‖ <

L‖u − v‖, ∀u,v ∈ [0,∞) such that ΩL < 1. Then (2) has unique solution which is positive.

Proof. Let u,v ∈ K , so we have∣∣Au(t) − Av(t)
∣∣ � Ω

∥∥f (t, u) − f (t, v)
∥∥ < ΩL‖u − v‖.

Then by Theorem 1.4, A has a unique fixed point (positive solution) in K . �
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4. Maximal and minimal solutions theorem

In this section, we consider the existence of maximal and minimal solutions for Eq. (2).

Definition 4.1. Let m be a solution of Eq. (2) in [0,1], then m is said to be a maximal solution
of (2), if for every solution u of (2) existing on [0,1], the inequality u(t) � m(t), t ∈ [0,1], holds.
A minimal solution may be define similarly by reversing the last inequality.

Theorem 4.1. Let f : [0,1] × [0,∞) → [0,∞) be a given continuous and non-decreasing func-
tion in u. Assume that there exist two positive constants μ,ν (μ < ν) such that

μ

Ωf (t,μ)
< 1 <

ν

Ωf (t, ν)
.

Then there exists a maximal and minimal solution of Eq. (2) on [0,1].

Proof. The integral equation of Eq. (2) is

u(t) = I
(γi ),(δi )

(βi ),n
f

(
t, u(t)

)
. (4)

Consider the fractional order integral equation

u(t) = ε + I
(γi ),(δi )

(βi ),n
f

(
t, u(t)

)
, t ∈ [0,1], ε > 0. (5)

Then by Lemma 2.1, Eq. (5) is a solution of Eq. (2) in (μ, ν), t ∈ [0,1], for some positive
constants μ,ν such that

μ

ε + Ωf (t,μ)
< 1 <

ν

ε + Ωf (t, ν)
.

Now, let 0 < ε2 < ε1 � ε. Then we have uε2(0) < uε1(0). Thus we can prove that

uε2(t) < uε1(t), ∀t ∈ [0,1]. (6)

Assume that it is false. Then there exist a t1 such that

uε2(t1) = uε1(t1) and uε2(t) < uε1(t), ∀t ∈ [0, t1).

Since f is monotonic non-decreasing in u, it follows that f (t, uε2(t)) � f (t, uε1(t)). Conse-
quently, using Eq. (5), we get

uε2(t1) = ε2 + I
(γi ),(δi )

(βi ),n
f

(
t1, uε2(t1)

)
< ε1 + I

(γi ),(δi )

(βi ),n
f

(
t1, uε1(t1)

) = uuε1
(t1),

which contradicts the fact that uε2(t1) = uε1(t1). Hence the inequality (6) is true. That is, there
exists a decreasing sequence εn such that εn → 0 as n → ∞ and limn→∞ uεn(t) exists uniformly
in [0,1]. We denote this limiting value by m(t). Obviously, by the uniform continuity of f (see
Lemma 3.1), the equation

uεn(t) = I
(γi ),(δi )

(βi ),n
f

(
t, uεn(t)

)
,

yields that m is a solution of Eq. (2). To show that m is a maximal solution of Eq. (2), let u be
any solution of Eq. (2) in [0,1]. Then

u(t) < ε + I
(γi ),(δi )

(βi ),n
f

(
t, u(t)

) = uε(t).

Since the maximal solution is unique (see [14] and [15]), it is clear that uε(t) tends to m(t) uni-
formly in [0,1] as ε → 0, which proves the existence of maximal solution for Eq. (2). A similar
argument holds for the minimal solution. �
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5. The continuation theorem

In this section, we study the continuation of solution of Eq. (2) when 0 < δi � 1, and for the
case (βi = 1, γi = 0), ∀i = 1, . . . , n, then D

(γi),(δi )

(βi ),n
reduces to the multi-order Riemann–Liouville

fractional derivative operator Dδi (see [5–9]). Hence we have the equation

Dδi u(t) = f
(
t, u(t)

)
. (7)

The evolution equation corresponding to Eq. (7) is

Du(t) = f
(
t, u(t)

)
, D = d

dt
. (8)

Then we have the following properties.

Lemma 5.1. Let f (t, u(t)) be continuous function, then

lim
δi→p

I
(δi )
1,n f

(
t, u(t)

) = Ipf
(
t, u(t)

)
,

Proof. Without the loss of generality, let n = 1. We have

∣∣I δf
(
t, u(t)

) − Ipf
(
t, u(t)

)∣∣ =
∣∣∣∣∣

1∫
0

(
(1 − σ)δ−1

�(δ)
− (1 − σ)p−1

�(p)

)
f (tσ ) dσ

∣∣∣∣∣
� ‖f ‖

1∫
0

∣∣∣∣
(

(1 − σ)δ−1

�(δ)
− (1 − σ)p−1

�(p)

)∣∣∣∣dσ

but since

(1 − σ)δ−1

�(δ)
→ (1 − σ)p−1

�(p)
, as δ → p, p = 1,2,3, . . . ,

we get the result. �
Theorem 5.1. If the solution u1 of Eq. (8) exists, and if uδ is the solution of Eq. (2), then

lim
δi→1

uδi
(t) = u1(t).

Proof. Since uδ(t) = I
(δi )
1,n f (t, uδ(t)) and u1(t) = If (t, u1(t)), then∣∣uδ(t) − u1(t)

∣∣ = ∣∣I (δi )
1,n f

(
t, uδ(t)

) − I
(δi )
1,n f

(
t, u1(t)

) + I
(δi )
1,n f

(
t, u1(t)

) − If
(
t, u1(t)

)∣∣
�

∣∣I (δi )
1,n f

(
t, uδ(t)

) − I
(δi )
1,n f

(
t, u1(t)

)∣∣ + ∣∣I (δi )
1,n f

(
t, u1(t)

) − If
(
t, u1(t)

)∣∣
� ΩL‖uδ − u1‖ + ∣∣I (δi )

1,n f
(
t, u1(t)

) − If
(
t, u1(t)

)∣∣.
Thus

‖uδ − u1‖ �
|I (δi )

1,n f (t, u1(t)) − If (t, u1(t))|
1 − ΩL

where ΩL < 1 (Uniqueness Theorem). Then in view of Lemma 5.1, we have ‖uδ − u1‖ → 0 as
δi → 1, and hence the proof is complete. �
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