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Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is
a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ
induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In
primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD
or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free
survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant
(BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired
BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH)
were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced over-
expression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram
(DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates
CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is
expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Multiple myeloma (MM) is the second most prevalent hema-
tological malignancy in the United States [1]. The currently avail-
able frontline chemotherapeutic drugs have shown excellent dis-
ease remissions and improved the relative 5-year survival rate [2].
Unfortunately, the majority of MM patients rapidly develop drug-
resistant disease and incurs uniform mortality [3]. The proteasome
inhibitor bortezomib (BTZ, Velcade) is a frontline MM drug that
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provides excellent remissions, however, resistance to BTZ can arise
[4]. Interestingly, BTZ treatment increases oxidative stress in cer-
tain cancers including MM [5–8] and induces ROS-mediated c-Jun
NH2-terminal kinase (JNK) activation and MM cell apoptosis [9].
However, the effects of BTZ on antioxidant defense systems and
therapy resistance in MM remains unclear. A deeper under-
standing on unique biochemical targets in drug-resistant MM
disease can therefore provide avenues for designing innovative
drug combinations to improve survival and remission rates in MM.

Clinical studies suggest that MM patients have increased sys-
temic oxidative stress [10–13]. An up-regulation of cellular anti-
oxidant defense systems can offer protection against endogenous
and therapy-induced oxidative stress [14]. Superoxide dismutases
(SODs) constitute an important part of the free-radical scavenger
system and function as the first line of defense against oxidative
damage by catalyzing the dismutation of superoxide anions
(O2

��), yielding hydrogen peroxide (H2O2) and O2 [15,16]. Copper–
zinc superoxide dismutase (CuZnSOD or SOD1) comprises �90% of
the total SOD levels in mammalian cells and is mainly localized in
the cytoplasm as well as the nucleus, peroxisomes, and the inter-
membrane space of the mitochondria [17,18]. Emerging evidence
suggests that SOD1 may regulate cancer progression and oxidative
stress resistance via different mechanisms [19,20] and serve as
a novel target for cancer therapy [17,21]. Resistance to the
-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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prooxidant drug imexon has been linked to increased CuZnSOD
protein levels in MM [22].

In the current study, we analyzed the gene expression level of
CuZnSOD in primary human samples and found a positive corre-
lation between SOD1 expression and MM disease progression and
prognostic clinical outcome. In MM cell line model, a concerted
up-regulation of CuZnSOD and the H2O2-detoxifying enzyme
glutathione peroxidase (GPx-1) was linked to BTZ resistance. The
copper chelating drug disulfiram (DSF, Antabuse) was utilized to
inhibit CuZnSOD activity; DSF is a clinically approved drug for
aversion therapy in alcoholics and is being repurposed as an anti-
cancer drug [23]. We demonstrate that DSF reversed BTZ re-
sistance and increased BTZ cytotoxicity in MM and provide the
preclinical rationale to combine DSF with BTZ for improving
therapy responses in MM.
Methods

Microarray analysis of SOD1 expression and clinical prognosis in
primary human samples

The gene expression profiling (GEP) data of total therapy (TT)
2 trial was analyzed for transcriptional expression of CuZnSOD.
Human samples of normal plasma cells (NPC, n¼22), or mono-
clonal gammopathy of undetermined significance (MGUS, n¼44),
or MM patients with overt MM disease requiring therapy (n¼351)
were run on the Affymetrix U133Plus2.0 microarray (Santa Clara,
CA) [24,25]. These data are deposited in the NIH Gene Expression
Omnibus (accession number GSE2658). SOD1 expression was also
analyzed in MM patients treated under an NIH-sponsored clinical
trial (UARK 98-026) utilizing induction regimen followed by
melphalan-based tandem auto-transplantations, consolidation
chemotherapy, and maintenance treatment. In this study, the 70-
gene model was used to identify high-risk and low-risk group of
MM patients where high-risk group comprised of patients with
shorter durations of complete remission, overall survival (OS), and
event-free survival (EFS) [24]. Cox proportional hazard models
were used to estimate OS and EFS hazard ratios and 95% con-
fidence interval (CI) for SOD1 as a continuous variable. SOD1 ex-
pression was categorized by high and low using the upper (Q4)
and lower quartiles (Q1, Q2, and Q3) and Kaplan–Meier curves
were created (Biostatistics Core, UI).

Cell culture and development of BTZ-resistant MM cell lines

Human MM cell lines RPMI-8226 (8226), MM.1S, and U266B1
were obtained from the American Type Culture Collection (ATCC,
Manassas, VA). The properties of these cell lines are outlined in
Supplementary Table 1. All cell lines were routinely grown in RPMI
1640 medium (Gibco, Invitrogen, Carlsbad, CA) supplemented with
10% fetal bovine serum (Gibco), 100 U/ml penicillin (Gibco),
100 mg/ml streptomycin (Gibco), and 50 mM β-mercaptoethanol at
37 °C and 5% CO2. The BTZ-resistant (BR) MM.1S subline
(MM.1SBR) was established by stepwise increasing BTZ (LC la-
boratories, Woburn, MA) concentration over a period of 3 months;
using a similar approach we have successfully established the BTZ-
resistant 8226 subline (8226BR) [26]. These BR cells were adapted
to a final concentration of 20 nM BTZ. Stable genotype of BR cells
was confirmed by BTZ washout experiment for 2 weeks followed
by dose response assays with BTZ.

Cell titer blue (CTB) viability assay

Cells were seeded in a black, clear bottom 96-well plates at a
density of 1�104 cells/100 ml media for 24 h. Cells were then
exposed to BTZ (5, 15, 30 nM) and/or N-acetylcysteine (NAC, 5 mM,
Sigma-Aldrich, St. Louis, MO), and/or DSF (5 mM, Sigma-Aldrich)
for 48 h after which 20 ml of the redox sensitive dye (resazurin,
Promega, Madison, WI) was added. Plates were incubated at 37 °C
for 2.5 h and cell viability was analyzed by measuring fluorescence
(λex¼560 nm, λem¼590 nm, Infinite M200 plate reader, Tecan US,
Inc.). All treatments were performed in triplicate and the
mean7SD was determined.

Clonogenic survival assay

Cells were seeded overnight in 6-well plates (1�105 cells/ml),
and treated with BTZ (5, 15, 30 nM) and/or DSF (5 mM, Sigma-Al-
drich) for 24 h. Clonogenic cell survival was determined using the
limiting dilution method [27]. The plating efficiency (PE), survival
fractions, and normalized survival fraction (NSF) was calculated for
each cell population as described before [28,29]. Clonogenic assays
for 8226, 8226BR and U266 cell lines were not performed as they
displayed poor plating efficiency (data not shown).

20S proteasome activity

Cells were grown at a density of 7.5�105/ml for 24 h. Cells
were collected, washed with cold PBS, and lysed in 50 mM Hepes,
5 mM EDTA, 150 mM NaCl, and 1% Triton X-100 (pH 7.5). Protein
estimation was done using Bradford reagent. 20S proteasome ac-
tivity was determined by using an activity kit (EMD Millipore,
Temecula, CA) that uses a 20S substrate (LLVY) conjugated to the
fluorophore 7-amino-4-methylcoumarin (AMC). The 20S protea-
some activity was measured by AMC fluorescence (λex¼380 nm,
λem¼460 nm) and expressed as relative fluorescence intensity
(RFI). Assay was calibrated using standard solutions of AMC and
lactacystin was used to determine assay specificity.

Antioxidant enzyme assays

For measurement of antioxidant enzyme activities, cells were
seeded in media at a density of 7.5 105 cells/ml for 24 h. Cells were
then washed with cold phosphate buffered saline (PBS, 137 mM
NaCl, 10 mM phosphate and 2.7 mM KCl, pH 7.4). Whole cell
homogenates were made by adding DETAPAC buffer (50 mM po-
tassium phosphate buffer pH¼7.8 with 1.34 mM diethylene-
triaminepenta–acetic acid) to cell pellets following one freeze–
thaw cycle. Superoxide dismutase (SOD): This assay is based on the
reduction of nitroblue tetrazolium (NBT) modified by Spitz and
Oberley [30]. NaCN (5 mM, 30 min) was added to measure MnSOD
activity. CuZnSOD activity was determined by subtracting MnSOD
activity from the total SOD activity. Activity data are presented as
units (U) of SOD activity per milligram of protein. Glutathione
peroxidase (GPx)-1: GPx-1 activity was determined by incubating
cell lysates with GSH, glutathione reductase (GR), and NADPH in a
cuvette for 5 min at room temperature (RT). 2.5 mM H2O2 was
added to the cuvette and oxidation of NADPH was measured at
340 nm for 5 min. 1 unit of GPx activity is defined as 1 mM of
NADPH oxidized per min and is expressed as milliunits (mU) per
milligram of protein [31]. Effective GPx activity was calculated as
described by Li et al. [32]. Catalase: Catalase activity was de-
termined by measuring the decay of H2O2 at 240 nm in potassium
phosphate buffer and expressed as milli-k units (mkU) per milli-
gram of protein [33].

Glutathione (GSH) assay

Cells were seeded in media at a density of 7.5�105 cells/ml for
24 h. Cells were then pelleted (800 g for 5 min at 4 °C), rinsed once
with cold PBS and re-suspended in 5% sulfosalicylic acid (SSA,
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Sigma-Aldrich). The 5,5′-dithiobis-2-nitrobenzoic (DTNB) acid re-
cycling assay was used to quantify GSH and oxidized GSH (GSSG)
levels in supernatants [34]. Briefly, supernatants were treated with
2-vinylpyridine (Sigma-Aldrich) for 2 h to measure GSSG, or left
alone for total GSH estimations. NADPH, DTNB, ddH2O, GR, and
sample/blank were mixed in a 1 ml cuvette; absorbance was
measured for a span of 2.5 min. Sample data were normalized to
protein content as determined by bicinchoninic acid protein assay.

Western blot analysis

Cells were grown at a density of 7.5�105/ml for 24 h. Cells
were collected, washed with cold PBS, and lysed in radio-
immunoprecipitation assay (RIPA) buffer containing protease and
phosphatase inhibitors [26,28,29]. Protein estimation was per-
formed using Bradford reagent. Equal amounts of protein were
electrophoresed in a 12% reducing SDS-PAGE gel. Proteins were
transferred to PVDF membranes; non-specific binding was blocked
with 5% non-fat milk in TBST buffer (4 mM Tris base, 10 mM NaCl,
pH 7.5, 0.1% Tween-20), and incubated with the indicated primary
antibody at 4 °C overnight. Antibodies against CuZnSOD (gift from
Dr. Oberley, University of Iowa, IA), poly ADP-ribose polymerase
(PARP, full-length, Cell Signaling Technology, Danvers, MA), and
actin (Cell Signaling Technology) were used. Blots were then in-
cubated for 1 h at RT with HRP-tagged secondary antibody and
developed using an enhanced chemiluminescence assay (Thermo
Scientific, Waltham, MA). Bands were visualized by auto-
radiography and protein expression was quantified using ImageJ
1.38� software (http://rsbweb.nih.gov/ij/index.html).

Detection of intracellular reactive oxygen species (ROS)

Steady-state levels of intracellular prooxidants were measured
using fluorescent probe dye carboxy – 2′,7′-dichlorodihydro-
fluorescein diacetate (H2DCF-DA, Molecular probes, Eugene, OR) as
described before [28,29]. After treatment, cells were collected,
washed, and labeled with oxidation-sensitive H2DCF-DA probe
(10 mg/ml, 15 min at 37 °C) in PBS. As a positive control for
H2DCF-DA oxidation, cells were treated with menadione (100 mM
for 2 h, Sigma-Aldrich); menadione is a quinone-containing com-
pound that forms semiquinones and increases ROS levels [35].
After labeling cells were kept on ice and analyzed using a FACScan
flow cytometer (Becton Dickinson, λex¼495 nm, λem¼530 nm).
Intracellular levels of prooxidants (presumably O2

��) were esti-
mated using the redox-sensitive fluorescent probe dihy-
droethidium (DHE, Molecular probes) [28,29]. Briefly, cells were
collected, washed, and labeled with DHE (10 mM, 40 min at 37 °C)
in PBS containing 5 mM pyruvate. For positive control, cells were
incubated with antimycin A (10 mM, Sigma-Aldrich) along with the
probe; treatment with antimycin A generates mitochondrial O2

��

by inhibiting electron transport between cytochrome b and c [36].
After labeling the cells were kept on ice and analyzed using a
FACScan flow cytometer (λex¼405 nm, λem¼585). For measuring
H2DCF-DA and DHE oxidation, the mean fluorescence intensity
(MFI) of 10,000 cells was analyzed in each sample and corrected
for by unlabeled cells. The MFI was normalized to control for each
cell line to determine the relative MFI.

Quantitative real-time PCR (qPCR)

For qPCR analysis, total RNA was isolated using the RNeasy kit
(Qiagen, Valencia, CA) and quantified. cDNA was synthesized from
400 ng of total RNA, using the iScript cDNA synthesis kit (Bio-Rad
Laboratories, Hercules, CA) and subjected to qPCR analysis with
the following primers (5′-3′, sense and antisense respectively):
SOD1, TGGTGTGGCCGATGTGTCTA and TTCATGGACCACCAGTGTGC,
amplicon length 88 bp; SOD2, GCCTGCACTGAAGTTCAATGG
and GCTTCCAGCAACTCCCCTTT, amplicon length 105 bp; CAT,
TTCGGTTCTCCACTGTTGCTG and AATTTCACTGCAAACCCACGA,
amplicon length 76 bp; GPX1, AACGATGTTGCCTGGAACTTTG and
GAAGCGGCGGCTGTACCT, amplicon length 79 bp; and 18S,
CCTTGGATGTGGTAGCCGTTT and AACTTTCGATGGTAGTCGCCG,
amplicon length 105 bp. Primers were designed using the Uni-
versal Probe Library Assay Design Center software (Roche, Basel,
Switzerland). The assay was performed using synthesized cDNA
(20 ng), primers (100 mM each), and 2� SYBR Green/ROX PCR
master mix. Results were analyzed using ABI 7500 software v2.0.5.
The CT values for the target genes in all of the samples were
normalized on the basis of the abundance of the 18S transcript,
and the fold difference (relative abundance) was calculated using
the formula 2�ΔΔCT as previously described [26,29].

Caspase-3 activity

Apoptosis was measured using a caspase-3 fluorescence assay
(Cayman Chemical, Ann Arbor, MI) as previously described [26,28].
Caspase-3 activity is expressed as units per milligram of total
protein.

Statistical analysis

GraphPad Prism 6.04 software (GraphPad Software, San Diego,
CA) was used for data handling, analysis, and presentation. Sta-
tistical significance was determined using either two-tailed un-
paired t test or one-way ANOVA with Tukey post-test with con-
fidence interval 95%. For calculating the half maximal inhibitory
concentration (IC50) with 95% confidence intervals, the nonlinear
regression log (BTZ) vs. normalized response variable slope option
was used. For Kaplan–Meier survival curves, all statistical tests
were two-sided and assessed for significance with the SAS
9.3 software package (Cary, NC). Po0.05 was considered to be
statistically significant.
Results

Retrospective analysis of GEP data from NPC, MGUS, and MM
clinical trials showed that SOD1 expression increases in MGUS
and MM cells (NPCoMGUSoMM; Po0.05; Fig. 1A). Specifically,
MGUS (73407365, raw expression values) and MM (10,7757
202) showed a 1.6- and 2.4-fold increase compared to NPC
(44867205) in SOD1 expression, respectively (Fig. 1A). When
gene expression was analyzed in high-risk and low-risk group of
MM patients; high-risk patients exhibited 1.4-fold increased SOD1
expression relative to low-risk patients (13,8387450 and
10,2437210, respectively, Po0.05) (Fig. 1B). Next, survival ana-
lysis methods were used to estimate and compare the impact of
the SOD1 expression on the OS and EFS for MM patients. When
looking at SOD1 as a continuous variable, the death risk increased
1.3 times or 32% (CI¼1.2, 1.6, Po0.05) and the risk of an event
increased 1.2 times or 17% (CI¼1.0,1.4, Po0.05) with each 3789
unit increase in SOD1. For OS, the risk of death for MM patients
with high SOD1 levels was 1.5 times higher than for patients with
low levels (Fig. 1C). Similarly, for the EFS, the risk of an event for
MM patients with high SOD1 level was noted as 2.0 times greater
than for patients with low levels (Fig. 1D). To further validate our
finding we queried the TT3 data set (thalidomideþBTZ), however,
unlike the results from the TT2 cohort, a correlation between SOD1
expression and survival was not present. These results may be
explained by the short median follow-up of 12 months compared
to a median follow-up of 36 months for the TT2 cohort, suggesting
that the effects from SOD1 occurs later in disease progression.

http://rsbweb.nih.gov/ij/index.html


Fig 1. Increased SOD1 expression in MM associates with disease progression and poor prognosis. GEP data for SOD1 was compared from a single probeset (Affymetrix
ID 200642) using (A) NPC (n¼22), MGUS (n¼44), or MM patients samples (n¼351), (B) MM patients with low-risk (n¼254) vs. high-risk (n¼47) disease. nPo0.001 vs. NPC
or low risk MM, #Po0.005 vs. MGUS. Kaplan–Meier curves were generated for (C) overall survival and (D) event free survival.
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Overall, retrospective analysis of primary samples shows that in-
creased SOD1 expression portends poor prognosis in MM.

We used a well-established human MM cell line (MM.1S) to
determine if BTZ-mediated cytotoxicity was primarily rendered via
increased oxidative stress. The causal role of redox perturbations
in cell killing was assessed using the non-specific thiol antioxidant
N-acetylcysteine (NAC) [28,29]. BTZ treatment (15 and 30 nM)
decreased cell viability and NAC abrogated BTZ-mediated cell
killing, indicating that oxidative stress and BTZ sensitivity are
potentially linked in MM (Fig. 2A). Based on the protective role of
NAC on BTZ-mediated cytotoxicity in MM.1S cell line (Fig. 2A) and
clinical data showing increased SOD1 expression with poor MM
prognosis (Fig. 1), we hypothesized that BTZ resistance in MM is
associated with adaptation to oxidative stress via up-regulation of
antioxidant defense systems. To test this hypothesis, we estab-
lished an in vitro platform by utilizing human MM cell lines
(MM.1S, 8226, and U266) and their BR counterparts (MM.1SBR and
8226BR); the 8226 and 8226BR pair has developed and published
[26]. The dose response curves for BTZ for drug-naïve cells showed
BTZ cytotoxicity pattern as MM.1So8226oU266 with MM.1S
being the most sensitive (Fig. 2B). When adaptive BTZ resistance
was assessed, the MM.1SBR and 8226BR cells showed decreased
BTZ cytotoxicity relative to drug naïve MM.1S and 8226 counter-
parts (Fig. 2B). Also, when exposed to BTZ (30 nM), the BR cells
(adapted to 20 nM BTZ) showed a trend towards increased cyto-
toxicity relative to BTZ (15 nM) suggesting that the BR cells remain
sensitive to BTZ treatment at higher BTZ concentrations. Clono-
genic survival assays were performed to confirm a differential BTZ
cytotoxicity in MM.1S and MM.1SBR cells. MM.1S cells showed
significant clonogenic killing with BTZ (15 and 30 nM) while
MM.1SBR cells were relatively resistant to BTZ (Fig. 2C).

Oxidative stress induces both necrotic as well as a more phy-
siologically relevant apoptotic cell death [37]. To determine if BTZ-
induced oxidative stress mediates apoptosis in MM cell lines, we
analyzed the activation of caspase-3 and proteolytic cleavage of
PARP after incubation with 15 nM BTZ for 24 h. BTZ treatment
showed caspase-3 activation in MM.1S and 8226 cells (by ap-
proximately 2-fold) but not in BTZ-resistant cell lines (MM.1SBR,
8226BR, and U266, Fig. 2D). Interestingly, MM.1SBR cells displayed
a 40% decrease in caspase-3 activity that may be due to adaptation
of these cells to 20 nM BTZ. The caspase inhibitor (Ac-DEVD-CHO)
completely abrogated BTZ-induced apoptosis showing the speci-
ficity of the caspase-3 assay (data not shown). To further confirm
BTZ-mediated apoptosis in BR cells, PARP Western blot analysis
was performed. BTZ treatment resulted in decrease PARP cleavage
in BTZ adapted cells (MM.1SBR and 8226BR) relative to the drug
naïve counterparts; also BTZ-mediated PARP cleavage was more
prominent in MM.1S cells relative to 8226 cell lines (Fig. 2E).
Overall, caspase-3 and PARP results indicate that BTZ treatment
induces caspase-dependent apoptosis in BTZ-sensitive and not
BTZ-resistant (intrinsic and adapted) MM cell lines.

Studies have shown that in vitro adaptation of cancer cell lines
to BTZ renders resistance via multiple mechanisms [38] and fre-
quently includes point mutations in the gene encoding the pro-
teasome β5 subunit (PSMB5) [39–41], or shift from im-
munoproteasome β5 subunit (β5i) to mutant β5 subunit
[39,42,43]. Also, sensitivity to proteasome inhibitors has been
correlated with proteasome workload with MM cell lines with
intrinsic sensitivity to BTZ displaying higher protein synthesis but
low proteasome activity [44]. To further characterize the me-
chanism of BTZ resistance in MM cell line panel, we evaluated
basal proteasome activity in the cell line panel. The drug naïve MM
cell lines (MM.1S, 8226, and U266) displayed similar levels of
endogenous proteasome activity (Fig. 2F). However, BTZ-resistant
variants (MM.1SBR, 8226BR) showed decrease in basal proteasome
activity compared to the their drug-naïve counterparts (Fig. 2F).



Fig 2. In vitro model for evaluating BTZ resistance in MM. Cell viability was assessed using CTB assay and normalized to untreated control cells. (A) MM.1S cells were treated
with BTZ (15 or 30 nM) in the presence or absence of NAC (5 mM) for 48 h. nPo vs. control, #Po0.05 vs. respective BTZ concentration. (B) Drug-naïve (MM.1S, 8226, U226)
and BR variants (MM.1SBR, 8226BR) cells were treated with BTZ (5, 15, or 30 nM) for 48 h. Po0.05 vs. MM.1S, #Po0.05 vs. 8226. (C) Clonogenic survival of MM.1S and
MM.1SBR cells treated with BTZ (5, 15, or 30 nM) for 24 h and normalized to untreated control cells. nPo0.05 vs. control MM.1S cells, #Po0.05 vs. MM.1S at 15 nM BTZ, ϕ

Po0.05 vs. MM.1SBR at 15 nM BTZ. MM cells were treated with/without BTZ (15 nM) for 24 h and (D) caspase-3 activity was determined, nPo0.05 vs. control for respective
cell lines and (E) Western blot analysis of total protein lysates was performed with anti-PARP antibodies. FL indicates full length PARP. β-Actin levels were used as loading
control. (F) Endogenous 20S proteasome activity was measured in cell lysates and expressed and RFI. nPo0.05 vs. drug naïve cells. All error bars depict the standard
deviation of 3 independent experiments.
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Cumulatively, Fig. 2 shows that BTZ-mediated cytotoxicity is pri-
marily rendered by increased oxidative stress and the selected
panel of MM cell lines provides a model system to study redox
manipulation strategies in overcoming BTZ resistance in MM.

In mammalian cells, ROS-scavenging systems include enzy-
matic antioxidants (i.e. superoxide dismutases, glutathione
Fig 3. BTZ resistance is associated with altered endogenous antioxidant levels in MM cel
and 8226BR), enzyme activities of (A) CuZnSOD, (B) GPx-1, and (C) GSH levels were
calculated for MM cells using data shown in B and C. nPo0.05 vs. MM.1S. All error bar
peroxidases, catalase) as well as non-enzymatic antioxidants (i.e.
glutathione and thioredoxin systems) [45]. We utilized the cell line
model to determine if intrinsic- and adaptive-resistance to BTZ
was associated with an altered expression of key cellular anti-
oxidants. We first measured SOD activity in BTZ naïve and BTZ
adapted cell lines (Fig. 3A). BTZ naïve cells displayed a positive
l lines. In drug naïve cells (MM.1S, 8226, and U266) and adapted BR cells (MM.1SBR
measured. nPo0.05 vs. MM.1S, #Po0.05 vs. 8226. (D) Effective GPx activity was
s depict the standard deviation of 3 independent experiments.
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correlation between CuZnSOD activity and intrinsic BTZ resistance
(MM.1So8226oU266, 19.373.1, 53.777.6, and 63.77
8.1 U mg protein�1, respectively). A similar increase in CuZnSOD
activity was found in BR cells compared to parental cells where
MM.1SBR (36.373.5 U mg protein�1) and 8226BR (70.07
5.6 U mg protein�1) cells showed 1.9- and 1.3-fold increase in
CuZnSOD activity relative to MM.1S and 8226 cells, respectively.
MnSOD activity did not alter significantly with intrinsic or ac-
quired resistant to BTZ (Supplementary Fig. S1A).

We next measured GPx-1 activities in the MM cell line panel.
Interestingly, 8226 and U266 cells displayed 2-fold increase in
GPx-1 activity (21.873.4 and 17.875.1 mU mg protein�1, re-
spectively) compared to MM.1S cells (8.072.1 mU mg protein�1)
and the BR cells showed a trend towards increased GPx-1 activity
relative to drug naïve counterparts (Fig. 3B). Catalase activity was
decreased in acquired BTZ-resistant cells compared to drug naïve
cells (Supplementary Fig. S1B). We also compared the endogenous
GSH levels in our panel of MM cell lines. A positive correlation
between GSH levels and intrinsic BTZ resistance (MM.1So8226
oU266, 23.173.4, 34.974.1, and 48.272.7 nmol mg protein�1,
respectively) was observed (Fig. 3C). The BR cells however did not
show differences in GSH levels compared to their drug naïve
counterparts (Fig. 3D). As GPxs reduce H2O2 to H2O using GSH as
the reducing agent, effective GPx activities were calculated and
found to increase with intrinsic but not with acquired resistance to
BTZ (Fig. 3D).

We performed qPCR analysis for endogenous mRNA expression
of various antioxidant enzymes. In agreement with activity data,
compared to MM.1S cells, the intrinsic BTZ-resistant lines (8226
and U266) exhibited increased SOD1 and GPX1 expression (Sup-
plementary Fig. 1C). Interestingly, with MnSOD profiling, SOD2
expression increased in both 8226 and U266 cell lines (Supple-
mentary Fig. 1C) but no changes in the protein expression (data
not shown) or enzyme activity were observed (Supplementary
Fig. 1A). Overall, our results show that BTZ resistance (both in-
trinsic and acquired) correlates with increased CuZnSOD levels
that are accompanied by increased GPx-1 levels. MM cell lines
with intrinsic BTZ resistance also showed increased GSH levels and
are in agreement with another published report in MM where
manipulation of GSH metabolism with buthionine sulfoximine (a
potent and specific inhibitor of glutamate cysteine ligase) sensi-
tized 8226 and U266 cell lines to BTZ [6].

Our published studies show that MM cells are more susceptible
to oxidative stress-induced cell death relative to normal cells
(bone marrow stromal cells and hematopoietic stem/progenitor
Fig 4. BTZ-mediated ROS production is suppressed in BTZ resistant cells. MM cell line
oxidation was determined by flow cytometry. Untreated cells were used to quantify basa
oxidative stress. Error bars represent the standard deviation of 3 independent experime
cells) [28,29]. Based on the up-regulation of antioxidant expres-
sion in BTZ-resistant MM cell lines (Fig. 3) we hypothesized that
an increased removal of ROS (O2

�� and H2O2) may promote BTZ
resistance via counteracting BTZ-mediated oxidative stress and
cytotoxicity in MM. For this, we compared the BTZ-mediated
changes in the steady-state prooxidant levels in MM cell lines with
intrinsic and adaptive BTZ resistance. Using oxidative sensitive
fluorescent probes (H2DCF-DA and DHE) the steady-state levels of
prooxidants were measured after BTZ treatment (15 nM, 24 h) and
compared to controls. In MM.1S cells, BTZ treatment resulted in
2-fold increase in H2DCF-DA oxidation (Fig. 4A) and a 1.5-fold
increase in DHE oxidation (Fig. 4B). Notably, BTZ treatment did not
perturb the intracellular redox equilibrium of MM.1SBR, 8226,
8226BR and U266 cells. These results indicate that cellular adap-
tation to oxidative stress, presumably via the up-regulated ex-
pression of antioxidant pathways, is linked to BTZ resistance.

As increased CuZnSOD gene expression and enzyme activity is
associated with poor clinical prognosis and in vitro resistance to
BTZ, we hypothesized that targeting SOD1 would selectively in-
duce MM cell killing by increasing their susceptibility to ROS-in-
ducing chemotherapies. To test this hypothesis we first de-
termined if SOD1 overexpression would decrease BTZ cytotoxicity
in MM cells. For this, the MM.1S cell line was transduced with Ad-
SOD1 and increased CuZnSOD protein (�2.5 fold, Fig. 5A) and
activity levels (�1.5 fold, Fig. 5B) were confirmed. Clonogenic
assays show that relative to MM.1S cells, enforced overexpression
of CuZnSOD expression inhibits BTZ cytotoxicity and increases
clonogenic survival (�2.5 fold, Fig. 5C). These results suggest
CuZnSOD as a molecular target to increase BTZ cytotoxicity in MM.

We next determined if pharmacological inhibition of CuZnSOD
activity sensitizes MM cell lines to BTZ treatment. For this we used
the small molecule inhibitor disulfiram (DSF) that binds to copper
to form DSF–Cu complexes; in cancer cells DSF has been shown to
increase oxidative stress-induced cytotoxicity. DSF treatment
(5 mM, 24 h) inhibited CuZnSOD activity by �65% in MM.1SBR and
�40% in both 8226BR and U266 cells (Fig. 6A); no DSF-mediated
alterations to MnSOD activity were noted (data not shown). Next,
DSF was combined with BTZ and cell viability was determined. For
all cell lines, combination of DSF with BTZ induced more potent
cytotoxicity compared to treatments with DSF or BTZ alone
(Fig. 6B). Clonogenic assays in MM.1S/MM.1SBR pair confirmed
that combination treatment of DSF with BTZ was highly effective
in inducing cell killing of MM.1S cells and significantly restored
BTZ cytotoxicity in MM.1SBR cells (Fig. 6C). Furthermore, DSF en-
hanced BTZ cytotoxicity in the Ad-SOD1-transduced BTZ-sensitive
s were cultured with/without BTZ (15 nM) for 24 h and (A) H2DCF-DA or (B) DHE
l oxidation while either menadione or antimycin A was used as a positive control for
nts. nPo0.05 vs. control group.



Fig 5. Overexpression of SOD1 promotes BTZ resistance. MM.1S cell line was transduced with recombinant adenovirus (MOI¼100) expressing GFP or SOD1. CuZnSOD
expression was determined by (A) Western blot and (B) activity assays. (C) Clonogenic survival of MM.1S cells (control or cells overexpressing GFP or SOD1) after BTZ
treatment (15 nM, 24 h). nPo0.05 vs. BTZ treatment on control or GFP expressing cells. Error bars represent the standard deviation of 3 independent experiments.

Fig. 6. DSF augments BTZ cytotoxicity in MM cell lines. (A) MM cell lines were treated with DSF (5 mM, 24 h) and CuZnSOD activity was measured. nPo0.05 vs. control cells.
Cell lines were treated with DSF (5 mM) and/or BTZ (15 nM) and (B) cell viability was measured at 48 h. Po0.05 vs. DSF, #Po0.05 vs. DSF, or (C) clonogenic survival assays
were performed. nPo0.05 vs. BTZ, #Po0.05 vs. DSF. (D) Clonogenic survival of MM.1S cells that were either transduced with Ad-SOD1 or Ad-GFP or left alone (wild type,
WT), and treated with DSF and/or BTZ. nPo0.05 vs. DSF, #Po0.05 vs. BTZ. All error bars represent the standard deviation of 3 independent experiments.
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MM.1S cell line (Fig. 6D). Overall, these results provide evidence
that CuZnSOD is the target for DSF-mediated BTZ sensitization in
MM.
Discussion

Compared to normal cells, cancer cells frequently exhibit al-
tered oxidative metabolism and intrinsic oxidative stress [46].
Therefore, redox-directed therapies that increase prooxidant le-
vels, deplete low molecular weight antioxidants, or inhibit anti-
oxidant enzymes have offered avenues to selectively induce cy-
totoxicity in cancer cells [14]. MM patients show parameters of
oxidative stress [10–13] and manipulation of cellular redox para-
meters to augment therapeutic responses have provided en-
couraging results in B-cell malignancies [47]. Our published results
show that oxidative stress-inducing drug combinations result in
selective cytotoxicity in MM cells [28,29]. Notably, a correlation
between cancer cell adaptation to oxidative stress and chemo-re-
sistance has been documented [48]. Studies have shown that
overexpression of catalase promotes chemo-resistance in lym-
phoma cells [49] and resistance to imexon drug in MM is linked to
increased CuZnSOD protein levels [22]. In this study we report for
the first time, a role of cellular antioxidant network in therapy
resistance in MM.

Using the frontline anti-MM drug BTZ, that perturbs redox
homeostasis in MM [5,6], we have evaluated the role of the anti-
oxidant network in intrinsic and acquired BTZ resistance. To
emulate intrinsic BTZ-resistance seen in MM patients, we have
utilized a well-established panel of human MM cell lines (MM.1S,
8226, U266) that display differential sensitivity towards BTZ
[50,51]. Also, to understand the role of the antioxidant network in
BTZ resistance, we adapted MM cell lines to 20 nM BTZ (8226BR
and MM.1SBR) as BTZ concentration ranges from 1 to 100 nM in
patients within the first 24 h [52]. Many groups have taken a si-
milar approach of exposing MM cell lines to serially increased drug
concentrations to develop cells with acquired resistance to pro-
teasome inhibitors [39,42,53,54]. We noted a decrease in basal
proteasome activity in MM.1SBR and 8226BR cells that could be
linked to decreased BTZ sensitivity compared to their drug-naïve
counterparts. A similar decrease in proteasome activity was re-
ported for BTZ adapted MM cell lines 8226.BR and ANBL-6.BR over
their parental counterparts 8226 and ANBL-6 cells, respectively
[55]. Different mechanisms of BTZ resistance have been suggested
including PSMB5 mutations, however, these proteasome subunit
mutations and proteasome activity differences have not been fully
confirmed in primary MM samples [56–58]. In the present study,
we have not analyzed proteasome mutations and composition as a
determinant in acquired resistance to BTZ. Also, the cross-re-
sistance profile of MM.1SBR and 8226BR cells remains to be ana-
lyzed towards various proteasome inhibitors.

One of the mechanisms proteasome inhibitors can induce cy-
totoxicity is through the generation of ROS [59]. Hence, modula-
tion of antioxidants to overcome resistance towards proteasome
inhibitors in cancer cells is logical. In preclinical models of neu-
rodegeneration, increased GPx or thioredoxin expression pro-
moted cytoprotection against proteasome inhibitors [60–62]. In
amyotrophic lateral sclerosis, loss of CuZnSOD activity has been
suggested to contribute to formation of protein aggregates that are
degraded by proteasome pathway [63]. Our results show that BTZ
resistance is associated with increased CuZnSOD activity in MM.
The drug naïve MM cell lines (MM.1S, 8226, U266) exhibit a dif-
ferential expression of CuZnSOD protein [22] with highest mRNA
and activity levels in the U266 cell line. A protective role of
CuZnSOD in BTZ-resistant MM cells may be attributed to (i) BTZ-
mediated inhibition of the 26S proteasome activity which
increases cellular oxidative stress [64] and/or (ii) drug resistance
may be associated with defects in mitochondrial respiratory chain
resulting in a more robust production of O2

�� [65]. In BTZ-re-
sistant cell lines, we noticed increased expression of both SOD1
and SOD2, however only SOD1 activity was increased. The mi-
tochondrial manganese-containing superoxide dismutase
(MnSOD, SOD2) is an established oxidative stress-inducible gene
that plays a critical role in the development and progression of
cancer [66]. An inducible expression of SOD1 is feasible as multiple
ROS-inducible transcription factor binding sites are mapped in the
SOD1 promoter region [67]. Also, both CuZnSOD and MnSOD ac-
tivity are influenced by post-translational mechanisms and could
partially explain a more prominent role of CuZnSOD in BTZ re-
sistance in MM [68].

Studies have shown that a balance between the first and sec-
ond step antioxidant enzymes is critical in maintaining survival
against oxidative stress [69]. A coordinated increased expression of
CuZnSOD with H2O2-metabolizing enzymes (i.e. GPxs and cata-
lase) can aid in maintaining the net redox state of the malignant
cells generated from intracellular metabolism and/or chemother-
apy. Interestingly, increased SOD1 in trisomy 21 is accompanied by
increased GPx activity [70]. In this report we show that BTZ-re-
sistant MM cells exhibit a concerted up-regulation of CuZnSOD
and GPx-1. GPx-1 activity was measured as it is the ubiquitously
expressed isoform of GPx that contributes to most of the cellular
GPx activity [71]. Also, studies have shown that CuZnSOD over-
expression results in a compensatory increase in GPx-1 [70,72,73]
and transfection of GPx-1 can overcome CuZnSOD mediated cy-
totoxicity [74,75]. It has been shown that secreted GPxs (GPx7 and
GPx8) are located in the endoplasmic reticulum (ER) and associate
with the peroxide-producing Ero1α to facilitate protein disulfide
isomerase (PDI) in oxidative refolding of a reduced denatured
protein [76]. It remains to be seen if an increased expression of
secreted GPxs in BTZ resistant cells is linked to less severe BTZ-
mediated unfolded protein response (UPR) and cytotoxicity.

BTZ-resistant cells also showed increased GSH levels which
constitute the most abundant cellular thiol redox buffer and pro-
vides electrons for enzymes such as GPxs [77]. Also, multidrug and
radiation-resistance in tumors, as compared with normal tissues,
appears to be associated with higher GSH levels in cancer cells
[78]. Notably, like other prooxidant drugs i.e. imexon and arsenic
trioxide [22,79], BTZ treatment has also been shown to decrease
intracellular GSH levels [6] and could account for the decrease in
GSH levels seen in the BR cells relative to their drug-naïve coun-
terparts. Also, in the present study we have not assessed the role
of thioredoxin-dependent peroxidases that may be involved in
metabolizing H2O2 and other hydroperoxides in MM cell lines with
acquired BTZ-resistance.

Copper is one of the essential trace elements for all organisms
and plays a crucial role in redox reactions via regulating cu-
proenzymes like CuZnSOD [80]. Copper chelators like thiocarba-
mates (DSF and its metabolite diethyldithiocarbamate, DDC), and
the choline tetrathiomolybdate (ATN-224) has been tested for
cancer therapy [21,81,82]. DSF is used for the treatment of alco-
holism for the past five decades and shown to have anti-cancer
activity via increasing oxidative stress. DSF can also target other
pathways i.e. inhibition of drug efflux pump P-glycoprotein, p53-
dependent apoptosis, ubiquitin–proteasome system, aldehyde
dehydrogenases, and canonical NF-κB signaling [83,84]. Our study
shows that DSF-mediated increases in BTZ cytotoxicity in MM can
be attributed to inhibition of CuZnSOD activity as enforced over-
expression of SOD1 rescued BTZ cytotoxicity in MM cells. We
postulate that DSF-mediated inhibition of CuZnSOD activity re-
lative to GPx-1 activity could result in accumulation of superoxide
radical that act as primary as well as secondary ROS, damaging
macromolecules and inducing cytotoxicity in MM cells.
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In this study, we have not combined DSF with exogenous
copper as (i) DSF alone shows potent cytotoxicity with no 20S
proteasome activity in MM cell lines [85,86], and (ii) our goal is to
integrate DSF with anti-MM drugs in the clinic in the near future
that may not require copper supplementation. Our published
studies have shown that BTZ displays acceptable toxicity pattern
towards normal hematopoietic cells [87] as also reported for DSF
[88]. Also, DSF has been successfully combined with cisplatin in
clinical trials [89]. We therefore postulate that inclusion of DSF
with other frontline anti-MM drugs would augment cytotoxic ef-
fects of oxidative stress inducing drugs without unacceptable
toxicity towards normal hematopoiesis.

Taken together, our data suggest a role of up-regulated anti-
oxidant network in intrinsic and acquired BTZ resistance in MM.
We propose that combination of a well-tolerated and clinically
established drug DSF can be further developed for combination
therapies in MM to circumvent and potentially inhibit BTZ re-
sistance and improve survival outcomes of MM patients.
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