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MicroRNAs are potent regulators of gene expression and modulate multiple cellular processes
including proliferation, differentiation and apoptosis. A number of microRNAs have been shown
to be regulated by p53, the most frequently mutated gene in human cancer. It is has been demon-
strated that some mutant p53 proteins not only lose tumor suppressor activity, but also acquire
novel oncogenic functions that are independent of wild-type p53. In this review, we highlight recent
evidences suggesting that some mutant p53 proteins regulate the expression of specific microRNAs
to gain oncogenic functions and identify a gene network regulated by the microRNAs downstream
of mutant p53.

� 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

MicroRNAs (miRNAs) are an abundant class of small �22
nucleotides (nt) endogenous non-coding RNAs. Mammalian
miRNAs mostly act to post-transcriptionally inhibit gene expres-
sion by binding to the 30 untranslated region (UTR) of target
mRNAs, typically inhibiting mRNA stability and/or translation.
Because the binding of mammalian miRNAs to target mRNAs
occurs via partial complementarity, a single miRNA can regulate
the expression of hundreds of mRNAs [1,2]. Moreover, a given
mRNA can be concurrently regulated by multiple miRNAs, and an
estimated 60% of the human genome is regulated by miRNAs [3].

A majority of miRNAs are transcribed by RNA pol II producing a
primary transcript (pri-miRNA) [4,5]. The pri-miRNA is cleaved
by Drosha, a double-stranded RNA endonuclease, to generate a
precursor miRNA (pre-miRNA). Pre-miRNAs (�70 nt) are exported
to the cytoplasm via Exportin 5 and processed by the RNase III
enzyme Dicer to generate a �22 nt RNA duplex consisting of the
mature miRNA and the passenger strand [6]. The passenger strand
is usually degraded and the mature miRNA is incorporated into the
RNA-induced silencing complex (RISC) which binds to target
mRNAs. The regulatory activity of miRNAs is necessary for numer-
ous cellular processes, and, moreover, perturbation of miRNA
expression often has pathological consequences [7–9].

Genome-wide down-regulation of miRNA expression is fre-
quently observed in human cancers suggesting that most miRNAs
may function as tumor suppressors. Examples of tumor suppressor
miRNAs include the let-7 family, the miR-15-16 cluster, and the
p53-target miR-34a. Expression of multiple let-7 family members
is down-regulated in several cancers including breast, ovarian,
lung and colon cancer, often due to chromosomal deletion of the
let-7 loci [10]. let-7 inhibits proliferation and tumorigenesis by
repressing a number of oncogenes such as RAS, MYC and HMGA2,
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and is itself negatively regulated by MYC [11–15]. The miR-15-16
cluster has potent anti-proliferative effects, and its locus at
13q14 is frequently deleted in chronic lymphocytic leukemia and
prostate cancer [16,17]. The miR-34 family is transcriptionally reg-
ulated by p53 [18–20]. Like p53 itself, miR-34 exerts tumor sup-
pressive functions by inhibiting cell proliferation and inducing
apoptosis, and miR-34 expression is silenced in some tumors due
to homozygous deletion or loss of p53 signaling [21–24].

Although most miRNAs act as tumor suppressors, some includ-
ing the miR-17�92 cluster, miR-21 and miR-155 are up-regulated
in cancer, suggesting oncogenic functions [9,25,26]. The expression
of the miR-17�92 polycistron is transcriptionally up-regulated by
MYC and this cluster promotes cell proliferation and survival
[14,27]. The expression of this cluster of miRNAs is significantly
increased in several cancer types such as lung cancer and lympho-
mas due to genomic amplification of its locus at 13q31 [28–30].

Wild-type p53 functions as a sequence-specific transcription
factor that is activated during the stress response such as DNA dam-
age [31–34]. Activation of p53 leads to transcriptional up-regulation
of a battery of genes that control cell cycle progression, senescence,
apoptosis and metabolic adaptation [35,36]. The TP53 gene, which is
located on chromosome 17p13.1, is the most frequently mutated
gene in human cancer with more than 50% of all tumors exhibiting
mutation at this locus [37,38]. Unlike most tumor suppressor genes
that are inactivated through biallelic deletion or truncation muta-
tions, a majority of mutations in TP53 are missense mutations
resulting in the production of a full-length mutant p53 protein
[39]. Because these missense mutations are mainly located in the
DNA binding domain of p53, the mutant p53 protein is unable to
transactivate most of its target genes resulting in loss of tumor sup-
pressor functions. However, it is also known that in addition to loss
of tumor suppressor activity, mutant p53 proteins acquire novel
oncogenic functions to modulate a wide variety of phenotypes such
as increase cell growth, migration, invasion, metastasis, genomic
instability and chemoresistance [40–46].

Interestingly, soon after the discovery of the TP53 gene p53 was
believed to function as an oncogene [47–52]. Ten years later, it was
found that the early studies demonstrating oncogenic functions of
p53 were actually performed with mutated versions of p53 that
were isolated from tumor cells [53,54]. In other words, the first
10 years on p53 accidentally described the function of mutant
p53 in tumor biology instead of wild-type p53. More recently, con-
vincing evidence in support of mutant p53’s oncogenic functions
has come from studies in mouse models. Mice harboring tumor
derived hot spot p53 mutants develop more invasive tumors than
p53 null mice [55–57]. In addition to these studies that established
the gain-of-function properties of mutant p53, several reports
demonstrated oncogenic functions of mutant p53 including activa-
tion of growth promoting genes such as EGFR, MDR1, MYC and
PCNA [46,58–63].

Although knowledge of the mechanisms of mutant p53 gain-
of-function remains incomplete, mutant p53 activity has been
attributed to diverse mechanisms, including both transcriptional
and post-transcriptional mechanisms through interactions with
other cellular proteins [33,64]. The most studied mutant p53 inter-
acting proteins are the p53 family members, p63 and p73. Like
wild-type p53, p63 and p73 regulate tumor biology by regulating
transcription of effector genes [65–68]. In addition to p63 and
p73, mutant p53 has also been shown to regulate gene transcrip-
tion by interacting with other sequence-specific transcription fac-
tors including NF-Y [69], E2F1 [70] and VDR [71]. Finally, although
most p53 hot spot mutations abolish the ability of p53 to bind
DNA, some gain-of-function p53 mutations result in a protein with
an intact but structurally altered DNA binding domain, causing
changes in sequence specificity and transactivation of non-canon-
ical target genes [72,73].
MiRNAs have been shown to regulate all the biological pro-
cesses regulated by mutant p53. Therefore, connecting the miRNA
pathway with the mutant p53-regulated pathways is important
from a cancer perspective. Indeed, recent studies have shown that
mutant p53 can regulate gene expression and exert oncogenic
effects through specific miRNAs. Here, we review the mechanisms
by which mutant p53 gains diverse oncogenic functions through
miRNAs.

2. The following sections discuss the regulation of miRNA
expression by mutant p53 and how miRNAs function
downstream of mutant p53 to mediate oncogenic functions

2.1. miRNAs up-regulated by mutant p53

2.1.1. miR-128-2
Two recent studies have shown that mutant p53 transcription-

ally up-regulates the expression of specific miRNAs. In the first
study, the expression of ectopic mutant p53R175H was induced
in H1299 cells (p53 null) and the effect on the abundance of select
miRNAs was examined by RT-qPCR [74]. This study showed that
mutant p53R175H increased the expression of miR-128-2 by acti-
vating transcription of its host gene, ARPP21. Chromatin immuno-
precipitation assays (ChIP) suggested that mutant p53 was
recruited to the promoter of ARPP21. The authors identified E2F5,
a transcription repressor, as a direct target of miR-128-2 and
showed that miR-128-2 binds to the E2F5 30UTR to inhibit its
expression. Because E2F5 represses p21 (CDKN1A) transcription,
down-regulation of E2F5 through miR-128-2 causes an increase
in p21 protein levels and cytoplasmic accumulation. Although
nuclear p21 is strongly associated with growth arrest, cytoplasmic
p21 exhibits anti-apoptotic effects by binding to and preventing
the cleavage of pro-caspase 3. Thus, the anti-apoptotic functions
of miR-128-2 were shown to be mediated by repression of E2F5,
which results in cytoplasmic p21 accumulation, leading to the
anti-apoptotic inhibition of pro-caspase 3 cleavage. In sum, this
study demonstrated that up-regulation of miR-128-2 by mutant
p53 contributes to mutant p53 associated chemoresistance by
inhibiting apoptosis.

2.1.2. miR-155
In another study, mutant p53 was shown to induce EMT

through miR-155. Neilsen et al. [75] used RT-qPCR to identify miR-
NAs over-expressed in mesenchymal breast cancer cell lines and
found a significant relationship between miR-155 and epithelial-
mesenchymal transition (EMT). Expression of miR-155 induced cell
migration, invasion and associated significantly with up-regulation
of EMT-promoting genes. Over-expression of the p53 mutants
p53R248Q or p53R282W enhanced miR-155 levels while knock-
down of endogenous mutant p53 in BT-549 (p53R249S) down-reg-
ulated miR-155, suggesting that miR-155 is a mutant p53 target in
breast cancer cells. The authors went on to show that in the
absence of mutant p53, p63 binds directly to the consensus p63-
response element in the promoter of miR-155 host gene to nega-
tively regulate miR-155 expression, indicating that mutant p53
enhances miR-155 expression by inhibiting p63. Furthermore, they
identified ZNF652, a zinc-finger DNA-binding transcription repres-
sor, as a downstream target of the miR-155/mutant-p53 axis. miR-
155 negatively regulated ZNF652 expression by binding to its
30UTR. ZNF652 is an epithelial marker and plays an important role
in suppressing cell invasion. The authors hypothesized that
ZNF652 suppresses invasion and metastasis by down-regulating
genes involved in EMT. Using ChIP assays, the authors demon-
strated that ZNF652 was recruited to regulatory elements
upstream of a subset of EMT-related genes, including TGFB1, TGFB2,
TGFBR2, EGFR, SMAD2 and VIM. Silencing ZNF652 increased the
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expression levels of these genes, suggesting that their expression is
repressed by ZNF652. Importantly, loss of ZNF652 expression was
found to be associated with increased cancer invasion and
metastasis in breast cancer in vivo. Taken together, this study
demonstrated that mutant p53 up-regulates miR-155 to enhance
invasion and metastasis through repression of ZNF652. This study
therefore suggests that miR-155 targeted therapies can be utilized
to inhibit the metastatic potential of mutant p53-expressing breast
cancers.

2.2. miRNAs down-regulated by mutant p53

2.2.1. miR-223
In addition to up-regulating miRNA expression, we and others

have shown that mutant p53 down-regulates select miRNAs to
promote oncogenic characteristics. In a recent study [76],
miR-223 was identified as a mutant p53-repressed miRNA through
RT-qPCR screening for miRNAs that had previously been shown to
belong to a cancerous gene-expression signature [7]. The authors
induced mutant p53R175H in H1299 cells and showed that miR-
223 was down-regulated by mutant p53. Regulation of miR-223
by mutant p53 was also examined in a more physiological setting
following knockdown of mutant p53 in cell lines that express
endogenous mutant p53. Both transient and stable knockdown of
endogenous mutant p53 in SW480 (colorectal cancer) or MDA-
MB-468 and MDA-MB-231 cells (breast cancer) resulted in
increased miR-223 expression. ChIP assays at the miR-223 pro-
moter confirmed direct regulation of miR-223 by mutant p53.
Because mutant p53 does not bind DNA in a sequence-specific
manner the authors performed a bioinformatic analysis for other
transcription factors that could bind to the miR-233 promoter
region recognized by mutant p53. This in silico analysis identified
various binding sites for ZEB1, a transcription repressor that plays
an important role in EMT. Consistent with this finding, the authors
provided evidence that ZEB1 binding to miR-223 promoter was
necessary for p53 binding to the same region.

As a downstream target of mutant p53, miR-223 antagonizes
mutant p53 oncogenic functions and chemoresistance in particu-
lar. Over-expression of miR-223 sensitized cells to apoptosis in
response to treatment with the chemotherapeutic drugs cisplatin
and 5-flourouracil. Over-expression of miR-223 significantly
reduced the protein levels of STMN1 (a key microtubule-regulating
gene) in multiple cell lines. In addition, siRNA knockdown of
STMN-1 increased cell death, sensitizing mutant p53 expressing
cells to DNA damage. These results suggest that a mutant p53/
ZEB1 axis represses miR-223, causing derepression of the miR-
223 target STMN1, resulting in increased chemoresistance.

2.2.2. miR-130b
In a recent study, Dong et al. [77] found that forced expression

of some hot spot p53 mutants induced EMT in HEC-50 cells
(endometrial cancer, p53-null). Conversely, stable knockdown of
mutant p53 in HEC-1 cells, which express endogenous mutant
p53R248Q, resulted in a shift to an epithelial-like morphology,
pointing to a role for mutant p53 in inducing EMT. Significantly,
the authors found that mutant p53 correlated with increased
ZEB1 expression while silencing mutant p53 resulted in
decreased ZEB1 levels. In addition to the aforementioned interac-
tion with mutant p53 at the miR-223 promoter, ZEB1 is a well
known effector of EMT, suggesting that ZEB1 may be important
for multiple facets of mutant p53 gain-of-function, including
EMT induction.

In order to determine whether increased ZEB1 expression was
due to altered miRNA regulation, the authors used an array-based
method to investigate changes in miRNA expression following
over-expression of the p53 mutants p53R273H, p53R175H and
p53C135Y in the p53-null HEC-50 cells. Out of 188 miRNAs
assayed, 23 were significantly down-regulated by mutant p53. Of
these 23 candidate miRNAs, the authors focused on miR-130b
because it was predicted to bind to the 30UTR of ZEB1 mRNA.
MiR-130b inhibited ZEB1 via its 30UTR. Additionally, ChIP-PCR
assays confirmed direct regulation of miR-130b by mutant p53 in
EC cells. Introduction of miR-130b decreased invasion of HEC-50
cells and concomitantly reduced the mRNA levels of EMT-related
genes including SNAI1, BM1-1, KLF4, while increasing E-cadherin
expression. Conversely, in HEC-1 cells, depletion of miR-130b
enhanced cell invasion. Interestingly, the authors found that
wild-type p53 could also bind to the miR-130b promoter to up-
regulate its expression. Thus, wild-type p53 and mutant p53 exert
opposite effects on miR-130b expression, suggesting that missense
mutations in p53 may play an important role in EC tumorigenesis,
in part, by dysregulating miR-130b expression. This study demon-
strates that in wild-type p53 expressing cells, miR-130b directly
represses ZEB1, opposing EMT and invasive phenotypes. However,
in the context of gain-of-function p53 mutations, mutant p53 trig-
gers EMT by indirectly inducing ZEB1 expression through negative
regulation of miR-130b.

2.2.3. miR-27a
Using an inducible mutant p53R273H system and miRNA

microarrays, a recent study [78] identified miR-27a as a direct
transcriptional target of mutant p53 in H1299 cells. Mutant p53
directly binds to the promoter of miR-27a and represses miR-27a
transcription. EGFR 30UTR was identified as a downstream target
of miR-27a. The authors showed that induction of mutant
p53R273H caused a prolonged activation of ERK1/2 phosphoryla-
tion following stimulation with EGF. This effect depended on the
negative regulation of EGFR by miR-27a. Using over-expression
and knockdown approaches, they demonstrated that mutant p53
promoted cell growth in vitro and tumorigenesis in vivo by the reg-
ulation of miR-27a and EGFR expression.

2.2.4. let-7i
Recently, we have identified the tumor suppressor miRNA let-

7i as a downstream target of mutant p53 [79]. Using small RNA
deep sequencing from H1299 cells stably expressing mutant
p53R273H and the empty vector transfected cells, we found 38
up-regulated and 3 down-regulated miRNAs. let-7i was abundant
in the control cells and significantly down-regulated in
p53R273H-expressing H1299 cells. We hypothesized that let-7i
is a potential effecter of mutant p53. Stable knockdown of endog-
enous mutant p53 increased let-7i levels in MDA-MB-231, HT-29
and DLD1 cells. The derepression of let-7i expression suggests
that regulation of let-7i by mutant p53 is physiologically relevant.
Moreover, let-7i expression negatively correlated with mutant
p53 status in the NCI-60 panel and in breast cancer patients sug-
gesting clinical relevance and role of mutant p53/let-7i axis in
many types of cancers. Using ChIP-PCR and promoter luciferase
assays, we found that mutant p53 associates with p63 at the
let-7i promoter to inhibit transactivation of let-7i by p63.
Over-expression of let-7i significantly decreased migration and
invasion of mutant p53 cells in vitro, and reintroduction of let-
7i dramatically reduced metastatic colonization of MDA-MB-231
cells. Using microarray and 30UTR luciferase analysis, we identi-
fied the genome-wide mRNAs directly down-regulated by let-7i.
A subset of let-7i targets included the oncogenes E2F5, LIN28B,
MYC and NRAS and these were up-regulated upon let-7i knock-
down and down-regulated when mutant p53 was knocked down
in multiple cell lines. Taken together, this study demonstrates
that mutant p53 acquires novel oncogenic functions by negatively
regulating let-7i expression and modulating the expression levels
of a subset of oncoproteins.
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2.2.5. miR-205
A recent study identified miR-205 as a downstream target of

mutant p53 through inhibition of p63 [80]. Over-expression of
the metastasis suppressor p63 dramatically increased the expres-
sion of miR-205 whereas p63 knockdown reduced miR-205 levels
in prostate cancer cells. Promoter luciferase and ChIP assays dem-
onstrated that p63 directly binds to the miR-205 promoter to up-
regulate its transcription. The author showed that up-regulation
of miR-205 by p63 was essential for the inhibition of EMT associ-
ated genes such as ZEB1 and VIM. Mutant p53 inhibited expres-
sion of both p63 and miR-205. Re-introducing miR-205 or
silencing mutant p53 in a cell line that expresses endogenous
mutant p53 reduced cell migration. Consistent with their results
from cell lines, the authors found that the expression of p63
(DNp63) or miR-205 inhibited lung metastasis in vivo in mice.
Importantly, loss of the p63/miR-205 axis was associated with
increased risk of metastasis and poor clinical outcome in human
prostate cancer.
Table 1
MiRNAs regulated by mutant p53.

Name Mechanisms Targets

Up-regulated
miR-128-2 Direct binding to promoter E2F5
miR-155 Releases repression by p63 ZNF652

Down-regulated
miR-223 Interacts with ZEB1 and associates with promoter STMN-1
miR-130b Direct binding to promoter ZEB1, Snai1, BMI-1
miR-27a Direct binding to promoter EGFR
let-7i Interacts with p63 and associates with promoter E2F5, LIN28B, MYC

miR-205 Inhibit p63 transcriptional activity ZEB1

MutTranscriptional activation 

miR-128-2 

miR-155 

m

let-7i 

Fig. 1. Mutant p53 regulates miRNAs to regulate a gene network. Mutant p53 activates
interacting partners such as p63 or ZEB1. Altered expression of these miRNAs results in
chemoresistance including MYC, LIN28B, NRAS, ZEB1 and E2F5.
Collectively, the studies described above suggest that miRNAs
are key downstream effectors of mutant p53. Gene expression
changes mediated by mutant p53-regulated miRNAs contribute
to mutant p53 gain-of-function properties such as chemoresis-
tance and induction of EMT (Table 1).

2.3. Global regulation of miRNA biogenesis by mutant p53

Two recent studies have shown that mutant p53 can also
regulate global miRNA biogenesis. In the first study [81], the
authors showed that in response to DNA damage, wild-type p53
post-transcriptionally enhances the expression of several miRNAs
including miR-16-1, miR-143, and miR-145. Wild-type p53
associates with the microprocessor complex by interacting with
the DEAD-box RNA helicase p68, which in turn, promotes the pro-
cessing of pri-miRNAs in the nucleus. In contrast, tumor-derived
p53 mutants p53R273H, p53R173H and p53C135Y ablate the
ability of Drosha to bind to p68. RNA-ChIP assays revealed that
Biological activities References

Chemoresi stance Anti-apoptosis Donzelli et al. (2012) [74]
Cell invasion Metastasis Neilsen et al. (2013) [75]

Chemoresi stance Masciarelli et al. (2014) [76]
and KLF4 EMT, cell invasion Dong et al. (2013) [77]

Cell growth, tum ori genesis Wang etal. (2013) [78]
and NRAS Cell invasion,

migration and tum ori genesis
Subramanian et al. (2014) [79]

EMT Tucci et al. (2012) [80]

ant p53 Transcriptional repression 

iR-223 

miR-130b 

miR-27a 

miR-205 

or inhibits the expression of distinct miRNAs either directly or indirectly through
decreased expression of genes that play key roles in tumor progression, EMT and
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over-expression of mutant p53 inhibits the interaction between
Drosha, p68 and primary miRNAs, which leads to inhibition of miR-
NA biogenesis.

In another recent study [45], the authors found that depletion of
p63 decreased Dicer expression. However, over-expression of p63
did not promote Dicer expression. Because of the well-known rela-
tionship between mutant p53 and p63, the authors hypothesized
that Dicer down-regulation may be a consequence of mutant p53
gain-of-function. Indeed, over-expression of p53R273H decreased
Dicer mRNA and protein levels in H1299 cells. Conversely, siRNA
knockdown of endogenous mutant p53 up-regulated Dicer in
HT29 (colorectal cancer) and A431 (squamous cell carcinoma)
cells, suggesting that mutant p53 negatively regulates Dicer by
inhibiting p63. They also provided evidence that p53R273H over-
expression phenocopied loss of Dicer by reducing the expression
of several miRNAs including miR-203, miR-130b, and miR-206,
indicating that mutant p53 impairs the production of mature miR-
NAs by reducing the level of Dicer.

As summarized (Fig. 1), miRNAs regulated by mutant p53 mod-
ulate a network of gene products. The genes regulated by mutant
p53-regulated miRNAs interact with each other, either directly or
indirectly. Mutant p53 can up-regulate oncogenic miRNAs and
down-regulate tumor suppressive miRNAs by directly binding
to the miRNA promoters, as well as through other mutant
p53-interacting proteins. Collectively, these studies suggest that
miRNAs are important effectors of mutant p53 and play a role in
mediating mutant p53 gain-of-function.

2.4. Future perspectives

Accumulating evidence in vitro and in vivo has established that
some p53 mutant proteins exert oncogenic functions. This gain-of-
function not only involves the direct, transcriptional regulation of a
subset of tumor-associated genes distinct from the set of canonical
p53 targets, but it also entails regulation of miRNA expression and
biogenesis. Only a handful of miRNAs have so far been identified
as direct targets of mutant p53, but as miRNAs are themselves pow-
erful regulators of gene expression, the effects of miRNA dysregula-
tion by mutant p53 are profound. Several miRNAs have shown to be
necessary for the oncogenic activity of mutant p53, while other
miRNAs are down-regulated in order to de-activate tumor suppres-
sive pathways. Because missense mutations in TP53 occur at a high
frequency in human cancers, developing strategies to block the
oncogenic effects of mutant p53 will be an important step for the
treatment of human cancers. Although the mutant p53 protein is
expressed in many cancers, the effects of mutant p53 proteins are
mediated through their interaction with other cellular proteins.
Therefore, depending on these interactions, a specific mutant p53
protein may have oncogenic functions in one cell-type but not in
another cell-type. Another possibility is that the same mutant p53
protein may exert oncogenic functions through different interacting
partners in a cell-type dependent manner. In order to achieve this
goal, an improved understanding of the complex effects of miRNAs
on mutant p53 gain-of-function in mutant p53 mouse models and
mutant p53-regulated miRNA knockouts in cell lines is essential
in understanding the physiological function of miRNAs in mutant
p53 signaling and to allow new advances for therapeutic manipula-
tion of miRNA regulation regulated by mutant p53. In sum, the
mutant p53-regulated transcriptome is complex and a consequence
of direct regulation by mutant p53, indirect regulation through
specific mutant p53-interacting proteins at target gene promoters
and post-transcriptional regulation through miRNAs. It is likely that
the recently discovered long non-coding RNAs shown to act as
potent regulators of gene expression in the Rb and p53 pathways
[82–85] may also play a role in mutant p53 gain-of-function.
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