
Computers and Mathematics with Applications 64 (2012) 3008–3020

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On recent developments in the theory of boundary value problems for
impulsive fractional differential equations✩

JinRong Wang a, Yong Zhou b,∗, Michal Fec̆kan c,d

a Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, PR China
b Department of Mathematics, Xiangtan University, Xiangtan, Hunan 411105, PR China
c Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina,
842 48 Bratislava, Slovakia
d Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

a r t i c l e i n f o

Keywords:
Impulsive fractional differential equations
Boundary value problems
Solutions

a b s t r a c t

This paper is motivated from some recent papers treating the boundary value problems
for impulsive fractional differential equations. We first make a counterexample to show
that the formula of solutions in cited papers are incorrect. Second, we establish a general
framework to find the solutions for impulsive fractional boundary value problems, which
will provide an effective way to deal with such problems. Third, some sufficient conditions
for the existence of the solutions are established by applying fixed point methods.
Meanwhile, data dependence is obtained by using a new generalized singular Gronwall
inequality. Finally, three examples are given to illustrate the results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The first definition of the fractional derivative was introduced at the end of the nineteenth century by Liouville and
Riemann, but the concept of non-integer derivative and integral, as a generalization of the traditional integer order
differential and integral calculus wasmentioned already in 1695 by Leibniz and L’Hospital. Fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various materials and processes. In consequence,
the subject of fractional differential equations is gaining much importance and attention. For more details on basic theory
of fractional differential equations, one can see the monographs of Diethelm [1], Kilbas et al. [2], Miller and Ross [3],
Podlubny [4] and Tarasov [5], and the Refs. [6–17].

This paper is strongly motivated from the recent research papers [18–28] treating the boundary value problems for
impulsive differential equationswith fractional derivative. After reading these papers carefully, one can see that the concept
of piecewise continuous solutions used are not appropriate. To support our claims, we consider a simple boundary problem
for impulsive fractional differential equations
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cDq

0,tu(t) :=
cDq

t u(t) = h(t), t ∈ J ′ := J \ {t1, . . . , tm} , J := [0, 1],

∆u(tk) = Ik(u(t−k )), ∆u′(tk) = Jk(u(t−k )), k = 1, 2, . . . ,m,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

(1)

where cDq
t is the Caputo fractional derivative of order q ∈ (1, 2) with the lower limit zero, u0 ∈ R, h: J → R is continuous,

Ik, Jk: R → R and tk satisfy 0 = t0 < t1 < · · · < tm < tm+1 = 1, u(t+k ) = limϵ→0+ u(tk + ϵ) and u(t−k ) = limϵ→0− u(tk + ϵ)
represent the right and left limits of u(t) at t = tk.

If we use Lemma 2.2 in [18], then problem (1) is equivalent to the following integral equation

u(t) =



1
Γ (q)

 t

0
(t − s)q−1h(s)ds

+(1 − t)


1

Γ (q)

 1

tk
(1 − s)q−1h(s)ds +

1
Γ (q − 1)

 1

tk
(1 − s)q−2h(s)ds

+


0<tk<1


1

Γ (q)

 tk

tk−1

(tk − s)q−1h(s)ds + Ik(u(t−k ))



+


0<tk<1

(2 − tk)


1

Γ (q − 1)

 tk

tk−1

(tk − s)q−2h(s)ds + Jk(u(t−k ))


,

for t ∈ [0, t1),
...

1
Γ (q)

 t

tk
(t − s)q−1h(s)ds

+(1 − t)


1

Γ (q)

 1

tk
(1 − s)q−1h(s)ds +

1
Γ (q − 1)

 1

tk
(1 − s)q−2h(s)ds

+


0<tk<1


1

Γ (q)

 tk

tk−1

(tk − s)q−1h(s)ds + Ik(u(t−k ))



+


0<tk<1

(2 − tk)


1

Γ (q − 1)

 tk

tk−1

(tk − s)q−2h(s)ds + Ik(u(t−k ))



+


0<tk<1


1

Γ (q)

 tk

tk−1

(tk − s)q−1h(s)ds + Ik(u(t−k ))



+


0<tk<1

(t − tk)


1

Γ (q − 1)

 tk

tk−1

(tk − s)q−2h(s)ds + Jk(u(t−k ))


,

for t ∈ (tk, tk+1], k = 1, 2, . . . ,m.

(2)

Then one can say that a function u ∈ PC1(J, R) is called a solution of problem (1) if u satisfies Eq. (2). Unfortunately, the
above formula is false. The reader will find an interesting counterexample which has been made to support our claims in
Section 3.

Due to the above comments, we discuss boundary value problems for impulsive differential equations with Caputo
fractional derivative and seek a correct formula of the solution for such kind of problems. In the present paper, we consider
the boundary value problems for the following impulsive fractional differential equations

cDq
t u(t) = f (t, u(t)), t ∈ J ′, q ∈ (1, 2),

∆u(tk) = yk, ∆u′(tk) = ȳk, k = 1, 2, . . . ,m,

u(0) = 0, u′(1) = 0,

(3)

where yk, ȳk ∈ R.
We try to seek a correct formula of solutions for problem (3). After the strict proof, we find that the formula of solutions

for problem (3) should be
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u(t) =



1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds

−


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds +

m
k=1

ȳk


t, for t ∈ [0, t1),

1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds

+ȳ1(t − t1) + y1 −


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds +

m
k=1

ȳk


t, for t ∈ (t1, t2],

...

1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds +

k
i=1

ȳi(t − ti) +

k
i=1

yi

−


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds +

m
k=1

ȳk


t, for t ∈ (tk, tk+1], k = 1, 2, . . . ,m.

The rest of this paper is organized as follows. In Section 2, we give some notations, recall some concepts and preparation
results. In Section 3, we make a counterexample to verify that the current formula of the solutions for such problems is
not correct. In Section 4, we establish a general framework to find the solutions for impulsive fractional boundary value
problems, which provide an effective way to deal with such problems. In Section 5, we give main results, the first existence
and uniqueness result is based on the Banach contraction principle, the second existence and data dependence results are
based on Krasnoselskii’s fixed point theorem and a generalized Gronwall inequality withmixed integral term (Lemma 2.10).
Three examples are given in Section 6 to demonstrate the application of our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
We define PC(J, R) := {u: J → R: u ∈ C(tk, tk+1], R), k = 0, . . . ,m and there exist u(t−k ) and u(t+k ), k = 1, . . . ,m,

with u(t−k ) = u(tk)} with the norm ∥u∥PC := sup{|u(t)|: t ∈ J}. Denote PC1(J, R) := {u ∈ PC(J, R): u̇ ∈ PC(J, R)}. Set
∥u∥PC1 := ∥u∥PC + ∥u̇∥PC . It can be seen that endowed with the norm ∥ · ∥PC1 , PC1(J, R) is also a Banach space.

For measurable functions µ: J → R, define the norm

∥µ∥Lp(J) =




J
|µ(t)|pdt

 1
p

, 1 ≤ p < ∞,

inf
mes(J̄)=0

{ sup
t∈J−J̄

|µ(t)|}, p = ∞.

Let Lp(J, R) be the Banach space of all Lebesgue measurable functions µ: J → R with ∥µ∥Lp(J) < ∞.
Let us recall the following known definitions. For more details, see [2].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f : [0, ∞) → R is defined as

Iγt f (t) =
1

Γ (γ )

 t

0

f (s)
(t − s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0, ∞), where Γ (·) is the gamma function.

Definition 2.2. The Riemann–Liouville derivative of order γ with the lower limit zero for a function f : [0, ∞) → R can be
written as

LDγ
t f (t) =

1
Γ (n − γ )

dn

dtn

 t

0

f (s)
(t − s)γ+1−n

ds, t > 0, n − 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ for a function f : [0, ∞) → R can be written as

cDγ
t f (t) =

LDγ


f (t) −

n−1
k=0

tk

k!
f (k)(0)


, t > 0, n − 1 < γ < n.
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Remark 2.4. (i) If f (t) ∈ Cn
[0, ∞), then

cDγ
t f (t) =

1
Γ (n − γ )

 t

0

f (n)(s)
(t − s)γ+1−n

ds = In−γ
t f (n)(t), t > 0, n − 1 < γ < n.

(ii) The Caputo derivative of a constant is equal to zero.

Moreover, we need the following known results.

Lemma 2.5. For q > 0, the general solution of fractional differential equation cDq
t u(t) = 0 is given by

u(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1

where ci ∈ R, i = 0, 1, 2 · · · n − 1 (n = [q] + 1) and [q] denotes the integer part of the real number q.

Remark 2.6. In view of Lemma 2.5, it follows that

Iq(cDq
t u)(t) = u(t) + c0 + c1t + c2t2 + · · · + cn−1tn−1

where ci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [q] + 1.

Definition 2.7. A function u ∈ PC1(J, R) is said to be a solution of problem (3) if u(t) = uk(t) for t ∈ (tk, tk+1) and
uk ∈ C([0, tk+1], R) satisfies cDq

t uk(t) = f (t, uk(t)) a.e. on (0, tk+1) with the restriction of uk(t) on [0, tk) is just uk−1(t)
and the conditions ∆u(tk) = yk, ∆u′(tk) = ȳk, k = 1, 2, . . . ,m with u(0) = 0, u′(1) = 0.

To obtain the data dependence results of solution to problem (3), we need a new generalized Gronwall inequality with
mixed integral term. Recalling a generalized Gronwall inequality which appeared in our earlier work [29].

Lemma 2.8 ([29, Lemma 2]). Let u ∈ C(J, R) satisfy the following inequality:

|u(t)| ≤ a + b
 t

0
|u(θ)|λ1dθ + c

 1

0
|u(θ)|λ2dθ, t ∈ J,

where λ1 ∈ [0, 1], λ2 ∈ [0, 1), a, b, c ≥ 0 are constants. Then there exists a constant M∗ > 0 such that

|u(t)| ≤ M∗.

Remark 2.9. For λ1 < 1 we can takeM∗ to be the unique positive solution ofM∗
= a + bM∗λ1 + cM∗λ2 . Using the classical

Gronwall inequality, for λ1 = 1 we can takeM∗ to be the unique positive solution ofM∗
=

a + cM∗λ2


eb.

Using Lemma 2.8, we can obtain the following generalized Gronwall inequality with mixed integral term.

Lemma 2.10. Let u ∈ C(J, R) satisfy the following inequality:

|u(t)| ≤ a + b
 t

0
(t − s)q−1

|u(s)|λ1ds + c
 1

0
(1 − s)q−2

|u(s)|λ2ds, (4)

where q ∈ (1, 2), a, b, c ≥ 0 are constants, λ1 ∈ [0, 1 −
1
p ], λ2 ∈ [0, 1 −

1
p ), and for some p > 1 such that p(q − 2) + 1 > 0.

Then there exists a constant M∗ > 0 such that

|u(t)| ≤ M∗.

Proof. It follows from (4) and Hölder inequality that

|u(t)| ≤ a + b
 t

0
(t − s)p(q−1)ds

 1
p
 t

0
|u(s)|

λ1p
p−1 ds

 p−1
p

+ c
 1

0
(1 − s)p(q−2)ds

 1
p
 1

0
|u(s)|

λ2p
p−1 ds

 p−1
p

≤ a + b


1
p(q − 1) + 1

 1
p
 t

0
|u(s)|

λ1p
p−1 ds + c


1

p(q − 2) + 1

 1
p
 1

0
|u(s)|

λ2p
p−1 ds

≤ a + b
 t

0
|u(s)|

λ1p
p−1 ds + c


1

p(q − 2) + 1

 1
p
 1

0
|u(s)|

λ2p
p−1 ds.

Applying Lemma 2.8, there exists a constantM∗ > 0 such that

|u(t)| ≤ M∗.

The proof is completed. �
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Remark 2.11. ConstantM∗ can be determined by using Remark 2.9.

Theorem 2.12 ([30, Theorem 2.1]). Let X be a Banach space and W ⊂ PC(J, X). If the following conditions are satisfied:

(i) W is uniformly bounded subset of PC(J, X);
(ii) W is equicontinuous in (tk, tk+1), k = 0, 1, 2, . . . ,m, where t0 = 0, tm+1 = T ;
(iii) W(t) = {u(t): u ∈ W, t ∈ J \ {t1, . . . , tm}}, W(t+k ) = {u(t+k ): u ∈ W} and W(t−k ) = {u(t−k ): u ∈ W} is a relatively

compact subsets of X,

then W is a relatively compact subset of PC(J, X).

3. A counterexample

In this section, we make a counterexample to illustrate that the current formula of solutions for impulsive fractional
boundary value problems is not correct.

Let us consider the following counterexample:
cD

3
2
t u(t) = t, t ∈ (0, 1] \


1
2


,

∆u

1
2


= 1, ∆u′


1
2


= 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0.

(5)

As a special case of Eq. (1), the solution of Eq. (5) is given by

u(t) =
1

Γ
 3
2

  t

1
2

(t − s)
3
2 −1sds + (1 − t)


1

Γ
 3
2

  1

1
2

(1 − s)
3
2 −1sds +

1
Γ
 3
2 − 1

  1

1
2

(1 − s)
3
2 −2sds

+
1

Γ
 3
2

  1
2

0


1
2

− s
 3

2 −1

sds + 1 +


2 −

1
2


1

Γ
 3
2 − 1

  1
2

0


1
2

− s
 3

2 −2

sds + 1



+
1

Γ
 3
2

  1
2

0


1
2

− s
 3

2 −1

sds + 1 +


t −

1
2


1

Γ
 3
2 − 1

  1
2

0


1
2

− s
 3

2 −2

sds + 1


, for t ∈


1
2
, 1


.

Note that

Γ


1
2


=

√
π, Γ


5
2

+ 1


=
15

√
π

8
, Γ


3
2

+ 1


=
3
√

π

4
, Γ


1
2

+ 1


=

√
π

2
.

Meanwhile,

1
Γ
 3
2

  t

1
2

(t − s)
3
2 −1sds =


t −

1
2

 1
2 (2t − 1)(4t + 3)

15
√

π
,

1
Γ
 3
2 − 1

  t

1
2

(t − s)
3
2 −2sds =


t −

1
2

 1
2 4t + 1

3
√

π
,

1
Γ
 3
2

  1

1
2

(1 − s)
3
2 −1sds =

7
√
2

30
√

π
,

1
Γ
 3
2 − 1

  1

1
2

(1 − s)
3
2 −2sds =

5
√
2

6
√

π
,

and

1
Γ
 3
2

  1
2

0


1
2

− s
 3

2 −1

sds =

√
2

15
√

π
,

1
Γ
 3
2 − 1

  1
2

0


1
2

− s
 3

2 −2

sds =

√
2

3
√

π
.
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Therefore,

u(t) =


t −

1
2

 1
2 (2t − 1)(4t + 3)

15
√

π

+ (1 − t)


7
√
2

30
√

π
+

5
√
2

6
√

π
+ 1 +

√
2

15
√

π
+


2 −

1
2

 √
2

3
√

π
+ 1



+

√
2

15
√

π
+ 1 +


t −

1
2

 √
2

3
√

π
+ 1



=

2

t −

1
2 (2t − 1)(4t + 3) + 46

√
2 + 90

√
π − (39

√
2 + 45

√
π)t

30
√

π
, (6)

for 1
2 < t ≤ 1.
On the other hand, it comes from Remark 2.6 that we can suppose that a general solution u of the first equation of (5) on

0, 1
2


can be given by

u(t) =
1

Γ
 3
2

  t

0
(t − s)

3
2 −1sds + a + bt, for t ∈


0,

1
2


,

and a general solution u of the first equation of (5) on
 1
2 , 1


can be given by

u(t) =
1

Γ
 3
2

  t

0
(t − s)

3
2 −1sds + c + dt, for t ∈


1
2
, 1


.

Then,

u′(t) =
1

Γ
 3
2 − 1

  t

0
(t − s)

3
2 −1−1sds + b, for t ∈


0,

1
2


,

u′(t) =
1

Γ
 3
2 − 1

  t

0
(t − s)

3
2 −1−1sds + d, for t ∈


1
2
, 1


.

The 2nd and 3rd conditions of (5) imply the next linear system

−a −
b
2

+ c +
d
2

= 1, (7)

−b + d = 1, (8)
a + b = 0, (9)

28
15

√
π

+ c + 2d = 0, (10)

which has a solution

a =
5
2

+
28

15
√

π
, (11)

b = −
5
2

−
28

15
√

π
, (12)

c = 3 +
28

15
√

π
, (13)

d = −
3
2

−
28

15
√

π
. (14)

So the solution of (5) is given by

u(t) =


8

15
√

π
t
5
2 +

5
2

+
28

15
√

π
−


5
2

+
28

15
√

π


t, for 0 ≤ t <

1
2
,

8
15

√
π
t
5
2 + 3 +

28
15

√
π

−


3
2

+
28

15
√

π


t, for

1
2

< t ≤ 1.
(15)

Consequently, u given by (6) does not satisfy (5).
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4. Formula of solutions

In this section, we give a correct formula of solutions to boundary problem for impulsive fractional differential equations
cDq

t u(t) = h(t), t ∈ J ′, q ∈ (1, 2),
∆u(tk) = yk, ∆u′(tk) = ȳk, k = 1, 2, . . . ,m,
u(0) = 0, u′(1) = 0,

(16)

where yk, ȳk ∈ R.

Lemma 4.1. Let q ∈ (1, 2) and h: J → R be continuous. A function u given by

u(t) =



1
Γ (q)

 t

0
(t − s)q−1h(s)ds −


1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds +

m
k=1

ȳk


t, for t ∈ [0, t1),

1
Γ (q)

 t

0
(t − s)q−1h(s)ds + ȳ1(t − t1) + y1 −


1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds +

m
k=1

ȳk


t,

for t ∈ (t1, t2],

...

1
Γ (q)

 t

0
(t − s)q−1h(s)ds +

k
i=1

ȳi(t − ti) +

k
i=1

yi

−


1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds +

m
k=1

ȳk


t, for t ∈ (tk, tk+1], k = 1, 2, . . . ,m,

(17)

is a unique solution of the following impulsive problem
cDq

t u(t) = h(t), t ∈ J ′, q ∈ (1, 2),
∆u(tk) = yk, ∆u′(tk) = ȳk, k = 1, 2, . . . ,m,
u(0) = 0, u′(1) = 0.

(18)

Proof. A general solution u of the 1th equation of (18) on each interval (tk, tk+1) (k = 0, 1, . . . ,m) is given by

u(t) =
1

Γ (q)

 t

0
(t − s)q−1h(s)ds + ak + bkt, for t ∈ (tk, tk+1), (19)

where t0 = 0 and tm+1 = 1.
Then, we have

u′(t) =
1

Γ (q − 1)

 t

0
(t − s)q−2h(s)ds + bk, for t ∈ (tk, tk+1). (20)

Applying the boundary conditions of (18), we find that

a0 = 0, bm = −
1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds. (21)

Next, using the right impulsive condition of (18), we derive

bk = bk−1 + ȳk, (22)

which by (21) imply

bj = −
1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds −

m
k=j+1

ȳk, j = 0, 1, 2, . . . ,m − 1. (23)

Furthermore, using the left impulsive condition of (18), we derive

ak + bktk = ak−1 + bk−1tk + yk,
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which by (22) is equivalent to

ak = ak−1 + (bk−1 − bk)tk + yk = ak−1 + yk − ȳktk,

so by (21) we obtain

aj =

j
k=1

(yk − ȳktk), j = 1, 2, . . . ,m. (24)

Hence for j = 1, 2, . . . ,m, (23) and (24) imply

aj + bjt =

j
k=1

(yk − ȳktk) +


−

1
Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds −

m
k=j+1

ȳk


t

=

j
k=1

ȳk(t − tk) +

j
k=1

yk −


1

Γ (q − 1)

 1

0
(1 − s)q−2h(s)ds +

m
k=1

ȳk


t. (25)

Now it is clear that (19), (21) and (25) imply (17).
Conversely, assume that u satisfies (17). By a direct computation, it follows that the solution given by (17) satisfies (18).

This completes the proof. �

5. Main results

This section deals with the existence and uniqueness of solutions to problem (3).
We are ready to state the first existence and uniqueness results.

Theorem 5.1. Let f : J × R → R be a continuous function mapping. Assume that there exists a positive constant L such that

(A1): |f (t, u) − f (t, v)| ≤ L|u − v|, for all t ∈ J, u, v ∈ R,

with L ≤
Γ (1+q)
2(1+q) . Then problem (3) has a unique solution on J.

Proof. Setting supt∈J |f (t, 0)| = M and

Br = {u ∈ PC(J, R): ∥u∥PC ≤ r} ,

where

r ≥ 2


1 + q

Γ (1 + q)
M +

m
i=1

|ȳi| + 2
m
i=1

|yi|


.

Define an operator F : Br → PC(J, R) by

(Fu)(t) =
1

Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds +

k
i=1

ȳi(t − ti) +

k
i=1

yi

−


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds +

m
i=1

ȳi


t, t ∈ (tk, tk+1], k = 0, 1, 2, . . . ,m.

It is obvious that F is well defined due to f : J × R → R and is jointly continuous and maps bounded subsets of J × R to
bounded subsets of R.

Step 1. We show that FBr ⊂ Br .
For u ∈ Br , t ∈ J ′, we have

|(Fu)(t)| =

 1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds +

k
i=1

ȳi(t − ti) +

k
i=1

yi

−


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds +

m
i=1

ȳi


t


≤

 1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds

+  1
Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds

+ m
i=1

|ȳi| + 2
m
i=1

|yi|
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≤
1

Γ (q)

 t

0
(t − s)q−1

|f (s, u(s)) − f (s, 0)|ds +
1

Γ (q)

 t

0
(t − s)q−1

|f (s, 0)|ds

+
1

Γ (q − 1)

 1

0
(1 − s)q−2

|f (s, u(s)) − f (s, 0)|ds +
1

Γ (q − 1)

 1

0
(1 − s)q−2

|f (s, 0)|ds

+

m
i=1

|ȳi| + 2
m
i=1

|yi|

≤ L
1 + q

Γ (1 + q)
r + M

1 + q
Γ (1 + q)

+

m
i=1

|ȳi| + 2
m
i=1

|yi|

≤ r.

Step 2. We show that F is a contraction mapping.
For u, v ∈ Br and for each t ∈ J ′, we obtain

|(Fu)(t) − (Fv)(t)| =

 1
Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds −

t
Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds

−


1

Γ (q)

 t

0
(t − s)q−1f (s, v(s))ds −

t
Γ (q − 1)

 1

0
(1 − s)q−2f (s, v(s))ds


≤

1
Γ (q)

 t

0
(t − s)q−1

|f (s, u(s)) − f (s, v(s))|ds

+
1

Γ (q − 1)

 1

0
(1 − s)q−2

|f (s, u(s)) − f (s, v(s))|ds

≤


L

Γ (q)

 t

0
(t − s)q−1ds


∥u − v∥PC +


L

Γ (q − 1)

 1

0
(1 − s)q−2ds


∥u − v∥PC

≤ L
1 + q

Γ (1 + q)
∥u − v∥PC

≤
1
2
∥u − v∥PC ,

which implies that

∥Fu − Fv∥PC ≤
1
2
∥u − v∥PC .

Therefore F is a contraction.
Thus, the conclusion of theorem follows by the contraction mapping principle. The proof is completed. �

Our next result is based on the following well-known fixed point theorem due to Krasnoselskii.

Theorem 5.2. Let M be a closed convex and nonempty subset of a Banach space X. Let A, B be the operators such that

(i) Ax + By ∈ M whenever x, y ∈ M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists a z ∈ A such that z = Az + Bz.

Now we are ready to state and prove the following existence result.

Theorem 5.3. Let f : J×R → R be a continuous functionmappingwith |f (t, u)| ≤ µ(t), for all (t, u) ∈ J×Rwhereµ ∈ L
1
σ (J, R)

and σ ∈ (0, q − 1). Then problem (3) has at least one solution on J.

Proof. Let us choose

r ≥

∥µ∥
L
1
σ (J)

Γ (q)
 q−σ

1−σ

1−σ
+

∥µ∥
L
1
σ (J)

Γ (q − 1)
 q−σ−1

1−σ

1−σ
+ 2

m
i=1

|ȳi| +

m
i=1

|yi|,

and denote

Br = {u ∈ PC(J, R): ∥u∥PC ≤ r}.
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We define the operators P and Q on Br as

(Pu)(t) =
1

Γ (q)

 t

0
(t − s)q−1f (s, u(s))ds −


1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds


t,

(Qu)(t) =

k
i=1

ȳi(t − ti) +

k
i=1

yi −
m
i=1

ȳit.

For any u, v ∈ Br and t ∈ J , using the estimation condition on f and Hölder inequality, t

0

(t − s)q−1f (s, u(s))
 ds ≤

 t

0
(t − s)

q−1
1−σ ds

1−σ  t

0
(µ(s))

1
σ ds

σ

≤

∥µ∥
L
1
σ (J) q−σ

1−σ

1−σ
,

 1

0

(1 − s)q−2f (s, u(s))
 ds ≤

 1

0
(1 − s)

q−2
1−σ ds

1−σ  1

0
(µ(s))

1
σ ds

σ

≤

∥µ∥
L
1
σ (J) q−σ−1

1−σ

1−σ
.

Therefore,

∥Pu + Qv∥PC ≤

∥µ∥
L
1
σ (J)

Γ (q)
 q−σ

1−σ

1−σ
+

∥µ∥
L
1
σ (J)

Γ (q − 1)
 q−σ−1

1−σ

1−σ
+ 2

m
i=1

|ȳi| +

m
i=1

|yi| ≤ r.

Thus Pu+Qv ∈ Br . It is obvious that Q is a contraction with the constant zero. On the other hand, the continuity of f implies
that the operator P is continuous. Also, P is uniformly bounded on Br since

∥Pu∥PC ≤

∥µ∥
L
1
σ (J)

Γ (q)
 q−σ

1−σ

1−σ
+

∥µ∥
L
1
σ (J)

Γ (q − 1)
 q−σ−1

1−σ

1−σ
≤ r.

Now we need to prove the compactness of the operator P .
Letting Ω = J × Br , we can define sup(t,x)∈Ω |f (t, u)| = fmax, and consequently for any tk < τ2 < τ1 ≤ tk+1 we have

|(Pu)(τ2) − (Pu)(τ1)| =

 1
Γ (q)

 τ2

0
(τ2 − s)q−1f (s, u(s))ds −

τ2

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds

−


1

Γ (q)

 τ1

0
(τ1 − s)q−1f (s, u(s))ds −

τ1

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds


≤

 1
Γ (q)

 τ2

0


(τ2 − s)q−1

− (τ1 − s)q−1 f (s, u(s))ds
+

1
Γ (q)

 τ1

τ2

(τ1 − s)q−1f (s, u(s))ds
+  (τ2 − τ1)

Γ (q − 1)

 1

0
(1 − s)q−2f (s, u(s))ds


≤ fmax


2(τ1 − τ2)

q
+ τ

q
1 − τ

q
2

Γ (1 + q)
+

τ1 − τ2

Γ (q)


,

which tends to zero as τ2 → τ1. This yields that P is equicontinuous on the interval (tk, tk+1]. So P is relatively compact
on Br .

Hence, by PC-type Arzela–Ascoli Theorem (see Theorem 2.12 in the case of X = R), P is compact on Br . Thus all the
assumptions of Theorem5.2 are satisfied and the conclusion of Theorem5.2 implies that problem (3) has at least one solution
on J . The proof is completed. �

In order to obtain the data dependence of solutions, we revise (A1) to the following assumption.
(A2) There exist L > 0 and λ ∈ (0, 1 −

1
p ) where p(q − 2) + 1 > 0 with p > 1 such that

|f (t, u) − f (t, v)| ≤ L|u − v|
λ, for each t ∈ J, and all u, v ∈ R.

Further, we give the following data dependence result.

Theorem 5.4. Assume that the conditions of Theorem 5.3 and the additional condition (A2) hold. Let v(·) be another solution of
problem (3) with impulsive conditions ∆v(tk) = yk, ∆v′(tk) = ȳk, k = 1, 2, . . . ,m, and boundary value conditions v(0) = 0,
v′(1) = 0. Then there exists a constant M∗ > 0 such that ∥u − v∥PC ≤ M∗.
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Proof. By Theorem 5.3, problem (3) has a solution u(·) in PC1(J, X). Keeping inmind our conditions, v(·) be another solution
of problem (3) with impulsive conditions ∆v(tk) = yk, ∆v′(tk) = ȳk, k = 1, 2, . . . ,m, and boundary value conditions
v(0) = 0, v′(1) = 0. Note the condition (A2), we obtain

|u(t) − v(t)| ≤
L

Γ (q)

 t

0
(t − s)q−1

|u(s) − v(s)|λds +
L

Γ (q − 1)

 1

0
(1 − s)q−2

|u(s) − v(s)|λds.

By Lemma 2.10, we obtain ∥u − v∥PC ≤ M∗. This completes the proof. �

Remark 5.5. Under the assumptions of Theorem 5.4, we do not obtain the uniqueness of the solutions.

Remark 5.6. By Remark 2.11 we see thatM∗ is the unique positive solution of

M∗ =
L

Γ (q)
M

λp
p−1
∗ +

L
Γ (q − 1)


1

p(q − 2) + 1

 1
p

M
λp
p−1
∗ ,

so

M∗ =


L

Γ (q)
+

L
Γ (q − 1)


1

p(q − 2) + 1

 1
p
 1

1− λp
p−1

.

6. Examples

In this section, we give three examples to illustrate the usefulness of our main results.

Example 6.1. Let us consider the first impulsive fractional boundary value problem
cD

3
2
t u(t) =

cos t
(t + 10)2

|u(t)|
1 + |u(t)|

, t ∈ [0, 1] \


1
4


,

∆u

1
4


= y1, ∆u′


1
4


= ȳ1,

u(0) = 0, u′(1) = 0.

(26)

Set

f (t, u) =
cos t

(t + 10)2
|u(t)|

1 + |u(t)|
, (t, u) ∈ [0, 1] × [0, ∞).

Let u, v ∈ [0, ∞) and t ∈ [0, 1]. Obviously,

|f (t, u) − f (t, v)| ≤
cos t

(t + 10)2
|u − v| ≤

1
100

|u − v|.

Set q =
3
2 , L =

1
100 and L ≤

Γ ( 5
2 )

2× 5
2

=
1
5Γ ( 5

2 ) =
3
√

π

20 . Thus all the assumptions of Theorem 5.1 are satisfied. Hence, the

impulsive fractional boundary value problem (26) has a unique solution on [0, 1].

Example 6.2. Let us consider the second impulsive fractional boundary value problem
cD

3
2
t u(t) =

et

(t + 1)2
|u(t)|

1 + |u(t)|
, t ∈ [0, 1] \


1
4


,

∆u

1
4


= y1, ∆u′


1
4


= ȳ1,

u(0) = 0, u′(1) = 0.

(27)

Set

f (t, u) =
et

(t + 1)2
|u(t)|

1 + |u(t)|
, (t, u) ∈ [0, 1] × [0, ∞).

Let u, v ∈ [0, ∞) and t ∈ [0, 1]. Obviously,

|f (t, u)| ≤
et

(t + 1)2
.

Set q =
3
2 , σ =

1
4 , L = 1 and µ(t) =

et

(t+1)2
∈ L4([0, 1], R). Thus all the assumptions of Theorem 5.3 are satisfied. Hence,

the impulsive fractional boundary value problem (27) has at least one solution on [0, 1].
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On the other hand, for any u, v ∈ R, we have

|f (t, u) − f (t, v)| ≤

 |u|
1 + |u|

−
|v|

1 + |v|

 ≤ |u − v| ≤ 2|u − v|
1
4 , for |u − v| ≤ 1,

|f (t, u) − f (t, v)| ≤

 |u|
1 + |u|

−
|v|

1 + |v|

 ≤ 2 ≤ 2|u − v|
1
4 , for |u − v| ≥ 1.

So we can use Theorem 5.4 with λ =
1
4 , L = 2 and p =

3
2 to get a data dependence result of problem (27). Remark 5.6 gives

M∗ =
256


1+ 3√2

4
π2 . Note Theorem 5.1 is not applicable to problem (27).

Example 6.3. Now we justify that in general, assumption |f (t, u)| ≤ µ(t) in Theorem 5.3 is reasonable for µ ∈ L
1
σ (J, R)

and not for some continuous functions µ. Let a > 0 and take the function

f (t, u) = 1 for |u| ≤ 1,
f (t, u) = (|u| − n)min{t−a, n + 1} + (n + 1 − |u|)min{t−a, n} for |u| ∈ (n, n + 1),

with any t ∈ J . Then 1 ≤ f (t, u) ≤ t−a for any u ∈ R and t ∈ J . Moreover, f (t, n) = min{t−a, n} → t−a as n → ∞ for
any t ∈ J fixed. So µ(t) = t−a is the best function satisfying |f (t, u)| ≤ µ(t) for any u ∈ R and t ∈ J . Clearly f (t, u) is
continuous. Next t−a

∈ L
1
σ (J, R) only if 0 < a < σ < 1. So Theorem 5.3 is applicable if 0 < a < σ < q − 1.

Remark 6.4. Let |f (t, u)| ≤ µ(t) for all (t, u) ∈ J × R where f : J × R → R is continuous, µ ∈ L
1
σ (J, R) and σ ≥ 1. Set

fn(t) = max
J×[−n,n]

|f (t, u)|, n = 1, 2, . . . .

Then {fn}∞m=1 is a nondecreasing sequence of continuous functions such that fn(t) ≤ µ(t) for any t ∈ J . Then limn→∞ fn(t) =

µ∗(t) is lower semi continuous, i.e., µ−1
∗

((r, ∞)) is open for any r ∈ R. Note that it could be µ∗(t) = ∞ for some t ∈ J .
Then µ∗ is measurable, µ∗(t) ≤ µ(t) for any t ∈ J , and so µ∗ ∈ L

1
σ (J, R). This means that without loss of generality we

can suppose that µ ∈ L
1
σ (J, R) is lower semi continuous on J . On the other hand, let µ ∈ L

1
σ (J, R) be nonnegative and lower

semi continuous on J . Then by Theorem 10 on Page 153 in [31] there is a nondecreasing sequence of nonnegative continuous
functions {fn}∞m=1 such that limn→∞ fn(t) = µ(t). Then we set

f (t, u) = f1(t)|u| for |u| ≤ 1,
f (t, u) = (|u| − n)fn+1(t) + (n + 1 − |u|)fn(t) for |u| ∈ (n, n + 1),

with any t ∈ J . Then 0 ≤ f (t, u) ≤ µ(t) for any u ∈ R and t ∈ J . Moreover f (t, n) = fn(t) → µ(t) as n → ∞ for any t ∈ J
fixed. So µ(t) is the best function satisfying |f (t, u)| ≤ µ(t) for any u ∈ R and t ∈ J . Clearly f (t, u) is continuous.

7. Conclusions

An essence error of the formula of solutions which appeared in the recent study on the boundary value problems for
impulsive fractional differential equations are reported in this work. A correct formula of solutions for a certain boundary
value problem for fractional differential equations with Caputo fractional derivative and linear impulsive perturbed
conditions are presented. By applying the well known fixed point theorems, new existence and uniqueness theorems of
solutions are established. More important, impulsive fractional boundary value problems can be consider as a powerful tool
to deal with physics models in real words.

Our future work will be devoted to study the following interesting models (see [18,19]), which can be regarded as the
more beautiful physics models in some sense.

(i) Impulsive fractional hybrid boundary value problems
cDq

t u(t) = f (t, u(t)), t ∈ J ′,
∆u(tk) = Ik(u(t−k )), ∆u′(tk) = Jk(u(t−k )), k = 1, 2, . . . ,m,
u(0) + u′(0) = 0, u(1) + u′(1) = 0,

(28)

where f , Ik, Jk: R → R are suitable functions.
(ii) Impulsive fractional integral boundary value problems

lcDq
t u(t) = f (t, u(t)), t ∈ J ′,

∆u(tk) = Ik(u(t−k )), ∆u′(tk) = Jk(u(t−k )), k = 1, 2, . . . ,m,

αu(0) + βu′(0) =

 1

0
g1(u(s))ds, αu(1) + βu′(1) =

 1

0
g2(u(s))ds,

(29)

where f , Ik, Jk, g1, g2: R → R are suitable functions and α > 0, β ≥ 0 are real numbers.
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