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Summary

In mammals, the X and Y chromosomes are subject to

meiotic sex chromosome inactivation (MSCI) during

prophase I in the male germline, but their status there-
after is currently unclear. An abundance of X-linked

spermatogenesis genes has spawned the view that
the X must be active [1–8]. On the other hand, the

idea that the imprinted paternal X of the early embryo
may be preinactivated by MSCI suggests that silencing

may persist longer [9–12]. To clarify this issue, we es-
tablish a comprehensive X-expression profile during

mouse spermatogenesis. Here, we discover that the X
and Y occupy a novel compartment in the postmeiotic

spermatid and adopt a non-Rabl configuration. We
demonstrate that this postmeiotic sex chromatin

(PMSC) persists throughout spermiogenesis into ma-
ture sperm and exhibits epigenetic similarity to the

XY body. In the spermatid, 87% of X-linked genes re-
main suppressed postmeiotically, while autosomes

are largely active. We conclude that chromosome-
wide X silencing continues from meiosis to the end of

spermiogenesis, and we discuss implications for pro-
posed mechanisms of imprinted X-inactivation.

Results

Postmeiotic Sex Chromatin: A Novel
Nuclear Compartment

In mice, spermatogenesis requires 3 weeks and includes
meiosis and spermiogenesis (Figure 1A) [13]. During
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meiosis, the XY spermatocyte undergoes two division
rounds (meiosis I and II) to generate four haploid sperma-
tids that bear either an X or a Y. During spermiogenesis (2
weeks), the spermatid is functionally transformed into
mature spermatozoa. To examine the XY transcriptional
status at each stage, we carried out Cot-1 RNA fluores-
cence in situ hybridization (FISH) on smears of seminifer-
ous tubules (Figure 1). Cot-1 sequences are enriched for
repetitive DNA and occur in the introns of nascent tran-
scripts. Thus, hybridization of RNA to Cot-1 probes de-
lineates domains of new transcription [10, 14]. After
RNA FISH, we performed DNA FISH with X- or Y-painting
probes to identify the sex chromosomes.

Types A and B spermatogonia are premeiotic cells
bearing unsynapsed sex chromosomes and distinct
pericentric heterochromatin (DAPI intense). In such cells,
RNA/DNA FISH demonstrated pannuclear Cot-1 signals
suggestive of genome-wide transcription (Figure 1B).
While the X was clearly transcribed, the heterochromatic
Y lay within a ‘‘Cot-1 hole.’’ In the primary spermatocyte,
the inactivated ‘‘XY body’’ becomes evident for the first
time. At pachytene, the peripherally located XY body ex-
cluded Cot-1 hybridization in all cells examined (Fig-
ure 1C; n = 100), consistent with MSCI. The XY body
also excluded the active form of RNA polymerase II
(see Figure S1A in the Supplemental Data available
with this article online).

To determine what happens after the XY body dis-
solved, we examined secondary spermatocytes, a tran-
sient cell type distinguishable from others by their re-
duction to one sex chromosome and their lack of
a prominent chromocenter. RNA FISH showed that the
X and Y continued to exclude Cot-1 hybridization and
adopted a DAPI-intense appearance reminiscent of an
XY body (Figures 1D and 1E). This indicated that, de-
spite the dissolution of the XY body, the X remained
undertranscribed. Furthermore, that transcriptional
suppression continued into spermiogenesis (16 steps).
Distinguished by their occurrence as ‘‘tetrads’’ of X-
and Y-bearing nuclei with prominent chromocenters,
steps 1–8 round spermatids demonstrated Cot-1 holes
coincident with all X and Y domains (Figures 1F–1H;
100% of Xs with Cot-1 holes, n = 66; 100% of Ys with
Cot-1 holes, n = 63), as well as coincident Pol-II holes
(Figures S1B and S1C). Intriguingly, the X and Y were
uniquely DAPI intense among all chromosomes and oc-
cupied a position alongside the chromocenter (Figures
1F–1H).

During the elongating spermatid stage (steps 9–11),
we observed a progressive decrease in Cot-1 signals,
consistent with the replacement of histones by prot-
amines. In step 9 (Figures 1I and 1J), Cot-1 signals could
be observed in 79% of nuclei (n = 56). Among sperma-
tids with residual Cot-1 signals, the X and Y continued
to exclude Cot-1 hybridization (Figures 1I and 1J;
100%, n = 44). By steps 10 (Figures 1K and 1L) and 11
(Figures 1M and 1N), general transcription appeared to
cease, as shown by the pannuclear loss of Cot-1 signals.
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Figure 1. Discovery of Postmeiotic Sex Chromatin and Its Continuity to the End of Spermiogenesis

(A) Schematic of spermatogenesis. ?, unclear status of X and Y activity after MSCI. Spermiogenesis was staged according to the standard

method [13]. The panel is partly adapted from Russell et al. [13]. Reprinted with permission from Cache River Science, an imprint of Quick

Publishing, LC, 888-PUBLISH, fax 314-993-4485, email cacheriverpress@sbcglobal.net.

(B–R) For the cell types indicated on each panel, shown are Cot-1 RNA FISH (red signals), and/or chromosome-specific FISH of the X or Y (green

signals).

(S) Radial arrangement of the autosome (Chr. 8) in RS. In contrast, the sex chromosomes adopt a compact, perichromocenter configuration. All

images except (F) are single z-sections. Arrowhead, XY body. Arrows, PMSC.
Despite nuclear symmetry loss and chromocenter de-
formation, both X and Y were still discernible as DAPI-
intense juxtachromocenter structures (Figures 1I–1N).
Significantly, the XY body-like structure persisted in
elongated spermatids (steps 12–16) and in mature sper-
matozoa (Figures 1O–1R). Therefore, contrary to current
understanding [1–4, 6], the transcriptional suppression
initiated by MSCI does not end with meiosis I, but rather
continues into meiosis II and spermiogenesis long after
the dissolution of the XY body.
We term this new structure ‘‘postmeiotic sex chroma-
tin’’ (PMSC) and suggest that it may have been over-
looked previously [5] because of sensitivity to experi-
mental conditions. When subjected to hypotonic
nuclear swelling, PMSC and its associated Cot-1 or
pol-II holes are easily lost (Figure S2). In the course of
our analysis, we also noted that both X- and Y-PMSC
in the spermatid exhibited distinct chromosome con-
figuration as compared to autosomes. Chromosome-
specific painting revealed that, while autosomes were
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Figure 2. The XY Body and PMSC Are Similarly Marked by H3-2meK9 and HP1b

Immunofluorescence detecting H3-2meK9 or HP1b marks (red signals) in the cell types noted. All images are single z-sections. Arrowheads,

XY body. Arrows, PMSC.
organized radially around the chromocenter in a Rabl
configuration [15], the X and Y occupied a compact
juxtachromocenter domain that did not extend to the
nuclear periphery (Figure S1 and data not shown).

The Epigenetic Character of the XY Body and PMSC

To determine whether the chromatin is significantly re-
modelled during the XY body to PMSC transition, we fol-
lowed the epigenetic profiles during spermatogenesis.
Here, we found that HP1b localized first to the XY
centromeres at midpachytene and spread through the
XY body only during diplotene (Figures 2A and 2B)
[16]. We further observed that HP1b also marked the X
and Y in secondary spermatocytes (Figures 2C and
2D) and round spermatids (Figures 2E and 2F; 100% of
X-PMSC, n = 112; 100% of Y-PMSC, n = 117). Indeed,
HP1b could be detected on PMSC until the replacement
of histones with protamines (Figures 2G–2J; 100% at
steps 9–10, n = 69; 0% at step 11 and after). Similar re-
sults were obtained for HP1g (data not shown).
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Figure 3. Further Epigenetic Comparison be-

tween the XY Body and PMSC

Immunofluorescence detecting various chro-

matin marks (red signals) as indicated in the

cell types noted. All images are single z-sec-

tions. Arrowheads, XY body. Arrows, PMSC.

Small arrowheads indicate X and Y centro-

meres in (K), Y centromere in (L), and acroso-

mal granule in (N).
HP1 is recruited by dimethylation of H3-K9 (H3-
2meK9) [17]. Accordingly, late pachytene and diplotene
cells displayed robust H3-2meK9 staining on the XY
body (80%, n = 26), while this was not the case for mid-
pachytene cells (94% with low H3-2meK9, n = 48) (Fig-
ures 2K and 2L). In secondary spermatocytes, H3-
2meK9 remained enriched on the X and Y (Figures 2M
and 2N) [5]. Contrary to previous observation [5], we fur-
ther found that the H3-2meK9 mark persisted in round
spermatids on both X- and Y-PMSC (Figures 2O and
2P; 66% of nuclei, n = 178) (34% showed diffused nu-
clear staining; Figure S3A).
The dynamics of H3-K9 trimethylation (H3-3meK9) and
H3-K27 mono- and trimethylation (H3-1meK27 and H3-
3meK27) were also similar between the XY body and
PMSC. H3-3meK9 was not enriched on the XY body
nor PMSC at any time (Figures 3A and 3B and data not
shown). In contrast, H3-1meK27 and H3-3meK27 were
specifically excluded from the XY body (Figures 3C and
3E), the segregated X and Y of secondary spermatocytes
(data not shown), and PMSC of round spermatids
(Figures 3D and 3F; 100% exclusion, n = 53 for H3-
1meK27; 100%, n = 64 for H3-3meK27). H3-K9 acetyla-
tion patterns were also excluded from the XY body to
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PMSC of round spermatids (Figures 3G and 3H). These
similarities from XY body to PMSC suggest that meiotic
and postmeiotic silencing is a continuous process.

The XY body and PMSC were not identical in every re-
spect, however. First, while histone H2AX was phos-
phorylated (gH2AX) on the XY body (Figure 3I), gH2AX
did not persist beyond diplotene of meiosis I [18] and
was not observed on PMSC (Figure 3J). Furthermore,
while macroH2A1 associated with the XY body
(Figure 3K) [16], it did not localize to X-PMSC in round
spermatids (0%, n = 87; data not shown). A small focus
of macroH2A1 did remain on the Y centromere of sec-
ondary spermatocytes (data not shown) and Y-PMSC
in round spermatids (100%, n = 111; Figure 3L) [16]. Ad-
ditionally, while the XY body and female Xi were ubiqui-
tylated on H2A (Figure 3M and data not shown) [19–21],
no PMSC displayed this mark (Figure 3N). Finally, while
H4-acK16 was excluded from XY body (Figure 3O), H4-
acK16 was diffusely present in round spermatids
(Figure 3P). Thus, although the XY body and PMSC ap-
pear continuous, the X and Y are progressively remod-
elled from meiosis to spermiogenesis.

Microarray Analysis of the Male Germline
X Chromosome

To examine X chromosome expression on a gene-by-
gene basis, we next performed microarray analysis on
four spermatic subpopulations, including type A and
type B spermatogonia (AS, BS), pachytene spermato-
cytes (PS), and steps 1–8 round spermatids (RS). On
Affymetrix MG-430 2.0 chips, 1306 X-linked loci repre-
sented 676 distinct genes. Of these, 379 genes (Groups
A–D) were expressed at some time during spermatogen-
esis, while the remaining 297 genes (Group E) had very
low or undetectable expression at any stage (Figure
4A; Table S1).

To obtain a chromosome-specific average, we calcu-
lated the mean expression value across all genes on
the X, Y, or autosomes (Figure 4B). While the average
did not vary significantly on autosomes across the four
cell types, the X showed a pachytene-specific downre-
gulation with only a partial recovery in round spermatids
(Figure 4B, Figure S4). We used Pearson’s c2 analysis to
test the null hypothesis that levels in PS and RS did not
decrease relative to the spermatogonial average, [(AS +
BS)/2]. In a two-group comparison between [(AS + BS)/
2] versus PS and [(AS + BS)/2] versus RS by a one-sided
test, we found the differences to be highly significant on
the X, with p < 10E-15 with respect to PS and p = 3.0 3
10E-11 with respect to RS. In contrast, the same test ap-
plied to all autosomal genes gave p > 0.5 with respect to
both PS and RS.

For the 379 expressed X genes, we created a visual
‘‘heatmap’’ to follow their expression pattern in AS, BS,
PS, and RS (Figure 4C). Along the vertical axis, genes
were hierarchically clustered based on expression
across the four cell types. For each gene, the expression
level was represented along a red-to-green color gradi-
ent, with red denoting the highest and green denoting
the lowest level for a given gene. In cases where the X
genes were expressed premeiotically, nearly all were
suppressed or significantly downregulated in PS, dem-
onstrating that MSCI globally silences the X and Y. Sig-
nificantly, a large majority of genes showed continued
repression in RS. In contrast, autosomal expression
bore no relationship to MSCI. On the Y, only 10 genes
(on the chip) were expressed, thereby precluding general
conclusions about Y expression patterns. Nonetheless,
Y genes appeared to reactivate after MSCI, possibly be-
cause spermiogenesis-specific genes, such Ssty1 and
Ssty2, were represented in the Y subset (Figure 4B and
Table S1). Similar results were obtained with microarray
analysis by means of MG-U74v2 chips (data not shown)
and RT-PCR of select genes (Figure S5). Real-time RT-
PCR values for each gene were normalized to that of
b-actin, a gene whose expression did not fluctuate sig-
nificantly among the four cell types (data not shown).
Among 19 genes tested on the X, 14 showed repression
in RS, including those with autosomal retrogenes such
as G6pdx, Pgk1, and Pdha1. Five of 19 genes displayed
activity in RS, including Ube1x and Ube2a, consistent
with previous reports [6, 7].

We next determined the extent to which pachytene-
repressed genes ‘‘recovered’’ their expression (Fig-
ure 4D). To determine whether a specific gene was
repressed in PS, we used the criterion:

0:5 3 maxðEAS;EBSÞ > EPS;

where E represented expression of the cell type denoted
by the subscript. By this criterion, a gene that showed
pachytene signal intensity at <50% of that in AS or BS
was defined as ‘‘repressed.’’ To determine whether
a pachytene-repressed gene was reactivated after mei-
osis, we calculated the ‘‘recovery rate’’ in RS as follows:

Recovery rate = fERS 2 EPSg=fmaxðEAS;EBSÞ2 EPSg:

On this basis, five groups of X genes were evident
(Figures 4A, 4E, and 4F, Table S2). Of 379 active X genes,
311 were expressed in spermatogonia and all were sub-
ject to MSCI (Figure 4A). Significantly, the vast majority
(278/311) remained silent after meiosis. Group A genes
included Hprt1, Mecp2, and Pdha1 and showed an aver-
age expression in RS that was barely above PS levels
(Figure 4D, inset). Only 33 showed a recovery rate
of >0.5 in RS (Group B, e.g., Pctk1, Ube2a, and Pdk3).
This indicated that only 10.6% (33/311) of spermatogo-
nially expressed genes reactivated after meiosis. Group
C genes were expressed only in RS (e.g., Arp-T1 [sperm
head protein] and Akap4 [flagellum protein]). Group D
genes resembled Group A genes in that they were
downregulated in PS and/or repressed in RS, but could
not strictly be classified as A because their PS levels
slightly exceeded 0.5 3 max(EAS, EBS) (possibly due to
long transcript half-lives). Finally, Group E were not ex-
pressed at any time during spermatogenesis.

Taken together, these data demonstrated that 87.0%
of 676 X genes are suppressed in RS (278 Group A +
13 D + 297 E = 588). Notably, this degree of suppression
is comparable to that for the inactive human X, on which
75%–85% of genes are suppressed [22]. Thus, postmei-
otic X silencing is extensive. In contrast to the zygotic XP

[10], the strength of PMSC silencing did not vary with
distance from the X-inactivation center (Xic) (Figures
4G and 4H; Table S3), perhaps in keeping with the fact
that MSCI [7, 23] and possibly also PMSC silencing do
not depend on Xist, while imprinted XCI in the embryo
requires Xist [24]. However, active genes in Groups B
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Figure 4. Microarray Analysis of the X in Male Germ Cells

(A) Classification of X genes according to their expression pattern during spermatogenesis.

(B) Mean expression level of all genes on the X, Y, and autosomes. p derived from Pearson’s c2 analysis.

(C) Expression heatmaps of the X, Y, and autosomal genes. For autosomes, 1000 genes were randomly selected by a computer program.

(D) Histogram of recovery rates from 311 PS-repressed genes. Inset, mean expression levels of the 311 genes.

(E) Heatmaps of normalized gene expression profiles for each gene group.

(F) Developmental profiles of each group shown in (E).

(G) Heatmap of 676 X genes ordered according to their position along the X chromosome. Group E genes are represented on the heatmap by an

invariant olive color across all stages.

(H) Frequency of Groups A–E genes binned at 5 Mb intervals. Asterisks denote clusters of Group C genes.
and C tend to cluster (Figure 4G, asterisks), suggesting
domain-specific features for escape from PSMC silenc-
ing. Thus, while PMSC and the zygotic XP resembled
each other in having incomplete inactivation, they differ
in how distance from the Xic influences silencing.

Discussion

We have discovered that the postmeiotic X occupies
a novel nuclear compartment in the male germline and
is transcriptionally suppressed on 87% of its genes.
The X-PMSC adopts a non-Rabl configuration (as does
Y-PMSC) and persists as a hypoactive structure from
meiosis II to the end of spermiogenesis. Because
PMSC is already evident in the secondary spermato-
cyte, we propose that PMSC descends directly from
the XY body. Thus, X chromosome silencing initiated
by MSCI does not end with the dismantling of the XY
body, but is maintained in the secondary spermatocyte
and PMSC during spermiogenesis (Figure 5).

Despite the continuity of XY body and PMSC, the X-
chromatin is progressively remodelled. First, g-H2AX,
ATR, BRCA1, macroH2A1, and H2A-ubiquitylation
appear during the intiation of MSCI (Figure 3) [18–20,
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Figure 5. Model: A Continuity of Silencing

from XY Body to PMSC to the Imprinted XP

The silencing initiated by MSCI during meio-

sis I persists into meiosis II and spermiogen-

esis (PMSC). The X is then delivered to the zy-

gote as a preinactivated X, accounting for the

imprinted XP of the early mouse embryo.

Barred chromosomes represent suppressed

transcription. Black circles represent peri-

centromic heterochromatin or chromocenter.
25, 26]. Once the XY body is established, H3-2meK9,
HP1b, and HP1g accumulate at the pachytene-diplotene
transition and persist into PMSC, while g-H2AX, mac-
roH2A1, and H2A-ubiquitylation are lost (Figures 2 and
3). These late marks may carry through silencing from
meiosis to spermiogenesis. Furthermore, because ma-
ture spermatozoa retain 2%–15% of histones [27, 28]
and associated proteins such as HP1b [29], such marks
may provide the basis for inheritance of transcription
states (see below).

Our analysis demonstrates that the X is treated differ-
ently from autosomes during meiosis and after. What
physiologic purpose could this serve? We consider
two hypotheses. First, according to theories of sex chro-
mosome evolution, the X accumulates female reproduc-
tive genes over time, while the Y accumulates male re-
productive genes [30]. If so, one possible raison d’etre
of PMSC may be to suppress oogenesis-promoting
genes that might interfere with spermiogenesis. A sec-
ond and not mutually exclusive possibility is that
PMSC facilitates dosage compensation by enabling
transmission of a partially preinactivated XP to the em-
bryo [10]. MSCI may be based on MSUD (meiotic silenc-
ing by unpaired DNA) [20, 26]—the idea that the sex
chromosomes are silenced by virtue of their being in-
completely synapsed during pachytene. Indeed, a paral-
lel work suggests that MSUD leads directly to PMSC in
the round spermatid [31]. As fathers transmit the X
only to daughters, MSUD-driven XP silencing would
have instantly achieved dosage compensation between
daughters and sons as the Y degenerated in increments
over time [32, 33].

Based on current data, we suggest that preinactiva-
tion offers a most parsimonious origin for imprinted
XP-inactivation in the zygote (Figure 5). However, the
conclusion is not mutually exclusive with the ‘‘de novo
inactivation’’ hypothesis, which proposes that imprinted
XCI does not occur until the 4- to 8-cell stage [34]. The
continuity of silencing from XY body to zygotic XP is ge-
netically separable: while MSCI is Xist independent, im-
printed XCI depends on Xist [7, 23, 24]. In C. elegans,
MSUD-mediated silencing of XP is lost after w5 zygotic
divisions [35]. Likewise in mammals, the inherited XP

may reactivate without recruiting the secondary Xist-de-
pendent silencing mechanism. Thus, a two-step pro-
cess in which germline silencing requires a de novo
Xist mechanism to maintain zygotic silencing would rec-
oncile the preinactivation and de novo hypotheses.

Supplemental Data

Supplemental Data include five figures, three tables, and Supple-

mental Experimental Procedures and can be found with this article
online at http://www.current-biology.com/cgi/content/full/16/7/

660/DC1/.
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