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Abstract

In [G. Hopkins, W. Staton, Some identities arising from the Fibonacci numbers of certain graphs, Fibonacci Quart. 22 (1984)
225–228.] and [I. Włoch, Generalized Fibonacci polynomial of graphs, Ars Combinatoria 68 (2003) 49–55] the total number of
k-independent sets in the generalized lexicographic product of graphs was given. In this paper we study (k, l)-kernels (i.e. k-
independent sets being l-dominating, simultaneously) in this product and we generalize some results from [A. Włoch, I. Włoch,
The total number of maximal k-independent sets in the generalized lexicographic product of graphs, Ars Combinatoria 75 (2005)
163–170]. We give the necessary and sufficient conditions for the existence of (k, l)-kernels in it. Moreover, we construct formulas
which calculate the number of all (k, l)-kernels, k-independent sets and l-dominating sets in the lexicographic product of graphs
for all parameters k, l. The result concerning the total number of independent sets generalizes the Fibonacci polynomial of graphs.
Also for special graphs we give some recurrence formulas.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For general concepts we refer the reader to [2,10]. By a graph G we mean a finite, undirected, connected, simple graph.
V (G) and E(G) denote the vertex set and the edge set of G, respectively. By a Pn we mean a graph with the vertex set
V (Pn)={t1, . . . , tn} and the edge setE(Pn)={{ti , ti+1}; i=1, . . . , n−1},n�2. Moreover,P1 is the graph that consists of
only one vertex. Let Kx denote the complete graph on x vertices, x�1. Let G be a graph on V (G)={t1, . . . , tn}, n�2,
and hn = (Hi)i∈{1,...,n} be a sequence of vertex disjoint graphs on V (Hi) = {(ti , y1), . . . , (ti , yx)}, x�1. By the
generalized lexicographic product of G and hn = (Hi)i∈{1,...,n} we mean the graph G[hn] such that V (G[hn]) =⋃n

i=1V (Hi) and E(G[hn]) = {{(ti , yp), (tj , yq)}; (ti = tj and{(ti , yp), (ti , yq)} ∈ E(Hi))or{ti , tj } ∈ E(G)}.By Hc
i ,

i = 1, . . . , n we will denote the copy of the graph Hi in G[hn]. If Hi = H for i = 1, . . . , n, then G[hn] = G[H ], where
G[H ] is the lexicographic product of two graphs. By dG(x, y) we denote the length of the shortest path joining vertices
x and y in G.
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In [12] it has been proved:

Theorem 1 (Włoch and Włoch [12]). Let (ti , yp), (tj , yq) ∈ V (G[hn]). Then

dG[hn]((ti , yp), (tj , yq)) =

⎧⎪⎨⎪⎩
dG(ti , tj ) for i �= j,

1 for i = j and dHi
(yp, yq) = 1,

2 otherwise.

Let k�2, l�1 be integers. We say that J ⊂ V (G) is a (k, l)-kernel of a graph G if:

(1) for each ti , tj ∈ J , dG(ti , tj )�k,
(2) for each ts /∈ J there exists ti ∈ J such that dG(ts, ti)� l.

From the definition of (k, l)-kernel it follows that if J is a (k, l)-kernel of G, then J is also a (k0, l0)-kernel of G

where k0 �k and l0 � l. If the set J satisfies condition in (1) or in (2), then we shall call it a k-independent set of G

or an l-dominating set of G, respectively. We notice that 2-independent set is an independent set and 1-dominating
set is a dominating set of G. In addition a subset containing only one vertex and the empty set also are k-independent
sets. The set V (G) is an l-dominating set of G. If an l-dominating, l�1, set of G has exactly one vertex, then we
shall call this vertex an l-dominating vertex of G. Moreover the l-dominating vertex of G also is a (k, l)-kernel of G,
for k�2.

From the definitions of k-independent set, l-dominating set and by Theorem 1 it follows:

Proposition 1. Let k�2, n�2 be integers. A subset S∗ ⊂ V (G[hn]) is a k-independent set of G[hn] if and only if
there exists a k-independent set S ⊂ V (G), such that S∗ =⋃

i∈ISi , where I = {i, ti ∈ S}, Si ⊂ V (Hc
i ) and

(a) for k = 2, Si is an independent set of Hc
i ,

(b) for k�3, Si contains exactly one vertex from V (Hc
i )

for every i ∈ I.

Proposition 2. Let l�1, n�2 be integers. A subset Q∗ ⊆ V (G[hn]) is an l-dominating set of G[hn] if and only if
there exists an l-dominating set Q ⊆ V (G), such that Q∗ =⋃

i∈IQi , where I = {i, ti ∈ Q}, Qi ⊆ V (Hc
i ) and

(a) for l = 1, Qi is a dominating set of Hc
i if for each j ∈ I and i �= j , {ti , tj } /∈ E(G) or Qi is a nonempty subset of

V (Hc
i ) otherwise,

(b) for l�2, Qi is a nonempty subset of V (Hc
i ),

for every i ∈ I.

The concept of (k, l)-kernels was introduced by Kwaśnik in [5]. A (2, 1)-kernel is a kernel in Berge’s sense. A (3, 1)-
kernel is named as efficient dominating set and it was studied in [1]. The (k, k − 1)-kernels, k�2, were considered in
[3,5,13]. In [5] it has been proved:

Theorem 2 (Kwaśnik [5]). Let k�2, l�k − 1 be integers. Then every maximal (with respect to set inclusion)
k-independent set of G is a (k, l)-kernel of G.

The graph G has not always a (k, l)-kernel, for k�3 and l�1.

Theorem 3 (Kwaśnik [5]). Let k�2, l�1 be integers. If the set J is a (k, l)-kernel of G and |J |�2, then l� k−1
2 .

It is not easy to find a general rule when a graph G has a (k, l)-kernel. In fact there are some difficulties in finding a
complete characterization of graphs having a (k, l)-kernel for l < k − 1. For special case of k, l or for special classes
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of graphs see [1,5,12,13]. The main objectives of this paper are to study (k, l)-kernels in G[hn] and next counting
(k, l)-kernels, k-independent sets and l-dominating sets of this product. In [8] Prodinger and Tichy gave impetus to
the study of the number of independent sets of a graph and the literature includes many papers dealing with the theory
of counting of independent sets in graphs, see for instance [7,9]. The problem of counting of independent sets of a
graph is NP-complete. In the chemical literature the number of independent sets of a graph is referred to as the
Merrifield–Simmons index. This index is one of the most popular topological indices in chemistry. Results concerning
counting independent sets in graphs may have potential use in the combinatorial chemistry.

2. The existence of (k, l)-kernels in G[hn]

In this section we give necessary and sufficient conditions for the existence of (k, l)-kernel in G[hn]. By Theorem
2 for k�2 and l�k − 1 every maximal k-independent set of G[hn] is a (k, l)-kernel of G[hn].

Theorem 4. Let k�4, 2� l�k − 2, n�2 be integers. Then G[hn] has a (k, l)-kernel if and only if G has a
(k, l)-kernel.

Proof. Assume that G[hn] has a (k, l)-kernel, say J . From Theorem 1 and by Proposition 1(b) it follows that at
most one vertex from Hc

i , i = 1, . . . , n, can belong to the set J . Using the definition of the graph G[hn] immediately
follows that the set J1 = {ti ∈ V (G); J ∩ V (Hc

i ) �= ∅} is a (k, l)-kernel of the graph G. Suppose that G has a (k, l)-
kernel J ′ and let J ′ = {ti : i ∈ I}, where I ⊂ {1, . . . , n} and |I| = p, p�1. We shall show that for an arbitrary
sequence of graphs H1, . . . , Hn the graph G[hn] has a (k, l)-kernel. From the definition of the graph G[hn] and by
Proposition 1(b) we deduce that to obtain a (k, l)-kernel of G[hn] we have to choose exactly one of the x vertices in
each of the p-copies Hc

i , i ∈ I. Such chosen subset J ∗ of the V (G[hn]) is k-independent. We shall show that J ∗ is
l-dominating. Let (ti , yj ) /∈ J ∗. If ti /∈ J ′, then dG[hn]((ti , yj ), J

∗) = dG(ti , J
′)� l. In case ti ∈ J ′ by Theorem 1 holds

dG[hn]((ti , yj ), J
∗)�2. Consequently J ∗ is a (k, l)-kernel of G[hn]. Thus the theorem is proved. �

Theorem 5. Let k�3, n�2 be integers. Then G[hn] has a (k, 1)-kernel if and only if:

(a) for k�4 there exists a dominating vertex ti of G, 1� i�n, such that Hi has a dominating vertex,
(b) for k = 3 there exists a (3, 1)-kernel J = {ti; i ∈ I}, I ⊂ {1, . . . , n} of G such that Hi has a dominating vertex,

for every i ∈ I.

Proof. (a) Assume that G[hn] has a (k, 1)-kernel, for k�4. By Theorem 3 it follows that the (k, 1)-kernel J of the
graph G[hn] has exactly one vertex. Let J = {(ti , yj )}, 1� i�n, 1�j �x, be a (k, 1)-kernel of the graph G[hn].
Then by Proposition 2(a) immediately follows that ti is a dominating vertex of G and yj is a dominating vertex of
the graph Hc

i . Assume now that there exists a dominating vertex ti of the graph G such that Hi has a dominating
vertex. Consequently {ti} is a (k, 1)-kernel of G. Let yj be a dominating vertex of Hi . Then by the definition of the
lexicographic product we obtain that (ti , yj ) is a dominating vertex of G[hn]. So, {(ti , yj )} is a (k, 1)-kernel of G[hn].

(b) Assume that G[hn] has a (3, 1)-kernel, say J . Then by fact that (3, 1)-kernel is 3-independent, Proposition 1(b)
implies that at most one vertex from each copy of the graph Hi , i = 1, . . . , n can belong to the set J . So, for each
(ti , yp) ∈ J by Proposition 2(a) the vertex (ti , yp) is a dominating vertex of the graph Hc

i . Consequently, yp is a
dominating vertex of Hi . Moreover using the definition of the graph G[hn] it immediately follows that J1 = {ti ∈
V (G); J ∩ V (Hc

i ) �= ∅} is a (3, 1)-kernel of the graph G. Hence there exists a (3, 1)-kernel of G such that if ti ∈ J1,
then Hi has a dominating vertex.

Let us now suppose that there exists (3, 1)-kernel of G, say J ′ = {ti : i ∈ I}, where I ⊂ {1, . . . , n} and
|I| = p, p�1, such that if ti ∈ J ′, then Hi has a dominating vertex. We shall show that G[hn] has a (3, 1)-kernel.
Because Hi has a dominating vertex, so Hc

i in G[hn] also has a dominating vertex. By Proposition 1(b) and by
the definition of the graph G[hn] to obtain a (3, 1)-kernel of G[hn] we have to choose a dominating vertex in Hc

i ,
for each i ∈ I. Evidently such chosen subset J of the V (G[hn]) is a (3, 1)-kernel of G[hn]. Thus the theorem is
proved. �

Corollary 1. If Hi = Kx , i = 1, . . . , n, then G[Kx] has a (3, 1)-kernel if and only if G has a (3, 1)-kernel.



W. Szumny et al. / Discrete Mathematics 308 (2008) 4616–4624 4619

3. The number of all (k, l)-kernels of G[hn]

Let rk,l
G (n, p) denote the number of all p-element, p�1, (k, l)-kernels of the graph G on n, n�2, vertices. If Rk,l(G)

denotes the total number of (k, l)-kernels of the graph G, then it is clear that Rk,l(G) =∑
p�1r

k,l
G (n, p). For k = 2

and l = 1 we put r
2,1
G (n, p) = rG(n, p) and R2,1(G) = R(G).

Theorem 6. Let k�3, l�2, n�2, x�1. Then for an arbitrary graph G on n vertices and for an arbitrary sequence
hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices Rk,l(G[hn]) =∑

p�1r
k,l
G (n, p)xp.

Proof. From the definition of the graph G[hn] and by Theorems 1, 2 and 4 we deduce that to obtain a p-element,
p�1, (k, l)-kernel of G[hn] first we have to choose a p-element (k, l)-kernel of the graph G. Evidently we can do it
in r

k,l
G (n, p) ways. Because k�3 and l�2 by Propositions 1(b) and 2(b) to obtain a (k, l)-kernel of G[hn] we have to

choose one of the x vertices in each of the p chosen copies of Hi , i = 1, . . . , p. Each of these vertices can be chosen
in x ways, so we have r

k,l
G (n, p)xp p-element (k, l)-kernels of G[hn]. Hence Rk,l(G[hn]) =∑

p�1r
k,l
G (n, p)xp. �

If l = k − 1, k�3, then we obtain result from [13]:

Theorem 7 (Włoch and Włoch [13]). Let k�3, n�2, x�1. Then for an arbitrary graph G on n vertices and for an
arbitrary sequence hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices Rk,k−1(G[hn]) =∑

p�1r
k,k−1
G (n, p)xp.

Theorem 8. Let G[hn] be a lexicographic product of graph G on n vertices, n�2, and of a sequence hn=(Hi)i∈{1,...,n}
of vertex disjoint graphs on x vertices, x�1. Let J = {J1, . . . , Jj }, j �1, be a family of all (3, 1)-kernels of G such
that if ti ∈ Jr , 1�r �j , then Hi has a dominating vertex. Let J 
 Jr = {ti; i ∈ Ir} where Ir ⊂ {1, . . . , n}. If d(Hi)

is the number of dominating vertices of Hi , then R3,1(G[hn]) =∑j

r=1

∏
i∈Ir

d(Hi).

Proof. To obtain a (3, 1)-kernel of G[hn] by Theorem 5(b) we deduce that first we have to choose a (3, 1)-kernel from
family J. Let Jr ∈ J and Jr ={ti , i ∈ Ir}, where Ir ⊂ {1, . . . , n}. Next by Propositions 1(b) and 2(a) in each of Hc

i ,
i ∈ Ir we have to choose a dominating vertex of Hi . Evidently we can do it in d(Hi) ways. Hence from fundamental
combinatorial statements we have that R3,1(G[hn]) =∑j

r=1

∏
i∈Ir

d(Hi). Thus the theorem is proved. �

Corollary 2. If Hi = Kx , i = 1, . . . , n, then R3,1(G[Kx]) =∑
p�1r

3,1
G (n, p)xp.

Using the same methods we can prove:

Theorem 9. Let k�4, n�2 be integers. Let G[hn] be a lexicographic product of graph G on n vertices and of a
sequence hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices, x�1. Let J = {ti; i ∈ I}, I ⊂ {1, . . . , n}, be the
set of dominating vertices of G such that Hi has a dominating vertex. If d(Hi) is the number of dominating vertices of
Hi , then Rk,1(G[hn]) =∑

i∈Id(Hi).

Theorem 10. Let G[hn] be a lexicographic product of graph G on n vertices, n�2, and of a sequence hn=(Hi)i∈{1,...,n}
of vertex disjoint graphs on x vertices, x�1. Let J = {J1, . . . , Jj }, j �1, be a family of all kernels of G and let J 

Jr = {ti; i ∈ Ir} where Ir ⊂ {1, . . . , n}. Then R(G[hn]) =∑j

r=1

∏
i∈Ir

R(Hi).

Theorem 11. Let l�2, n�2, x�1 be integers. Let G[hn] be a lexicographic product of graph G on n vertices and
of a sequence hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices. Let J = {J1, . . . , Jj }, j �1, be a family of
all (2, l)-kernels of G and let J 
 Jr = {ti; i ∈ Ir} where Ir ⊂ {1, . . . , n}. If F ∗(Hi) is the number of nonempty
independent sets of Hi , then R2,l(G[hn]) =∑j

r=1

∏
i∈Ir

F ∗(Hi).

Let k�3, n�1 be integers. For the graph Pn on V (Pn) = {t1, . . . , tn} we use the following notation:
r̂
k,k−2
Pn

(n, p)—the number of all p-element (k, k − 2)-kernels of the graph Pn containing the vertex tn.

r̃
k,k−2
Pn

(n, p)—the number of all p-element (k, k − 2)-kernels of the graph Pn not containing the vertex tn.
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Theorem 12. Let k�3, n�2, p�1 be integers. If n > p(2k − 3), then r
k,k−2
Pn

(n, p) = 0.

Proof. It is obvious that to construct a p-element (k, k − 2)-kernel of the graph Pn we need at most p(2k − 3) vertices.
In otherwise if n > p(2k − 3) then for an arbitrary p-element k-independent set S of Pn there exists ti ∈ V (Pn) such
that dPn(ti , S)�k − 1, a contradiction. �

Theorem 13. Let k�3, n�2, p�1. Then the number r
k,k−2
Pn

(n, p) satisfies following recurrence relations:

r
k,k−2
Pn

(n, 1) = 0, n > 2k − 3,

r
k,k−2
Pn

(n, 1) = n, n�k − 1,

r
k,k−2
Pn

(2k − 2 − i, 1) = i, i = 1, . . . , k − 2,

r̂
k,k−2
Pn

(n, 1) = 0 if n�k,

r̂
k,k−2
Pn

(n, 1) = 1 if n�k − 1,

for p�2, r
k,k−2
Pn

(n, p) = 0 if n > p(2k − 3) and for n�p(2k − 3)

r
k,k−2
Pn

(n, p) = r̂
k,k−2
Pn

(n, p) + r̃
k,k−2
Pn

(n, p),

r̃
k,k−2
Pn

(n, p) =
k−2∑
i=1

r̂
k,k−2
Pn−i

(n − i, p),

r̂
k,k−2
Pn

(n, p) = r
k,k−2
Pn−k

(n − k, p − 1) − r̂
k,k−2
Pn−2k+2

(n − 2k + 2, p − 1).

Proof. Assume that p = 1. If n > 2k − 3, then by Theorem 12, r
k,k−2
Pn

(n, 1) = 0. If n�k − 1, then every vertex of

V (Pn) is a (k, k − 2)-kernel of Pn, so r
k,k−2
Pn

(n, 1) = n in this case. If n = 2k − 2 − i for i = 1, . . . , k − 2, then by

simple observation we have that r
k,k−2
Pn

(2k − 2 − i, 1) = i, i = 1, . . . , k − 2. Moreover, it is clear that r̂
k,k−2
Pn

(n, 1) = 0

if n�k and r̂
k,k−2
Pn

(n, 1) = 1 if n�k − 1. Let now p�2. If n > p(2k − 3), then by Theorem 12, r
k,k−2
Pn

(n, p) = 0. So
let n�p(2k − 3). Assume that F1 be the family of all p-element (k, k − 2)-kernels of Pn not containing the vertex
tn, hence |F1| = r̃

k,k−2
Pn

(n, p). Let F2 be the family of all p-element (k, k − 2)-kernels of Pn containing the vertex tn,

so |F2| = r̂
k,k−2
Pn

(n, p).Then it is clear, that r
k,k−2
Pn

(n, p) = |F1| + |F2| = r̃
k,k−2
Pn

(n, p) + r̂
k,k−2
Pn

(n, p). We have to

calculate the numbers r̃
k,k−2
Pn

(n, p) and r̂
k,k−2
Pn

(n, p).
Let S ∈ F1. Then tn /∈ S and exactly one of the vertices tn−1, . . . , tn−(k−2) belongs to S. Consequently, |F1| =∑k−2
i � 1̂r

k,k−2
Pn−i

(n−i, p). Assume now thatS∗ ∈ F2, so tn ∈ S∗. This means that tn−i /∈ S∗, i=1, . . . , k−1 andS∗=S′∪{tn}
where S′ is a (p − 1)-element (k, k − 2)-kernel of Pn−k and S′ is not a (p − 1)-element (k, k − 2)-kernel of graph
Pn−2k+2 containing the vertex tn−2k+2. Because there exist exactly r

k,k−2
Pn−k

(n− k, p − 1)− r̂
k,k−2
Pn−2k+2

(n− 2k + 2, p − 1)

sets S′, hence we obtain that r̂
k,k−2
Pn

(n, p) = r
k,k−2
Pn−k

(n − k, p − 1) − r̂
k,k−2
Pn−2k+2

(n − 2k + 2, p − 1). Thus the theorem is
proved. �

From Theorems 6, 13 and Corollary 2 we obtain:

Corollary 3. Let n�2, x�1 be integers. Then R3,1(Pn[Kx]) =∑
p�1r

3,1
Pn

(n, p)xp.

Corollary 4. Let k�4, n�2, x�1 be integers. Then for an arbitrary sequence hn = (Hi)i∈{1,...,n} of vertex disjoint

graphs on x vertices, x�1, Rk,k−2(Pn[hn]) =∑
p�1r

k,k−2
Pn

(n, p)xp.
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4. The total number of k-independent sets of G[hn]

In [4] the total number of independent sets of G[Kx] was given using the concept of the Fibonacci polynomial of
graphs. More general results for the number of all k-independent sets, k�3, of G[hn] were obtained in [11]. In this
section we give the total number of independent sets of G[hn]. This result generalizes the Fibonacci polynomial of
graph.

By Fk(G) we denote the number of all k-independent sets of G (named as the generalized Fibonacci number of a
graph) and we put F 2(G)=F(G). Moreover, let f k

G(n, p) be the number of all p-element, p�0, k-independent sets of
a graph G on n vertices and also we put f 2

G(n, p)=fG(n, p). Consequently Fk(G)=∑p�0f
k
G(n, p). The coefficients

fPn(n, p) and f k
Pn

(n, p) are equal to the Fibonacci numbers and the generalized Fibonacci numbers, respectively, see
[8,6]. For k-independent sets it has been proved:

Theorem 14 (Hopkins and Staton [4]). For an arbitrary graph G, on n vertices, n�2, F(G[Kx])=∑p�0fG(n, p)xp

Theorem 15 (Włoch [11]). Let k�3, x�1 be integers. Then for an arbitrary graph G on n, n�2, vertices and for an
arbitrary sequence hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices, x�1, Fk(G[hn]) =∑

p�0f
k
G(n, p)xp.

The polynomials appearing in above Theorems are the Fibonacci polynomial of a graph and the generalized Fibonacci
polynomial of a graph, respectively. For the graph Pn it has been proved

Theorem 16 (Hopkins and Staton [4]). Let n�2, x�1 be integers. Then F(Pn[Kx]) =∑
p�0

(
n−p+1

p

)
xp.

Theorem 17 (Włoch [11]). Let k�3, n�2 be integers. Then for an arbitrary sequence hn = (Hi)i∈{1,...,n} of vertex

disjoint graphs on x vertices, x�1, F(Pn[hn]) =∑
p�0

(
n−p−(p−1)(k−2)+1

p

)
xp.

Theorem 18. Let G[hn] be a lexicographic product of graph G on n vertices, n�2, and of a sequence hn=(Hi)i∈{1,...,n}
of vertex disjoint graphs on x vertices, x�1. Let S= {S1, . . . , Sj }, j �1 be a family of all nonempty independent sets

of G and let S 
 Sr = {ti; i ∈ Ir} and Ir ⊂ {1, . . . , n}. Then F(G[hn]) = 1 +∑j

r=1

∏
i∈Ir

(F (Hi) − 1).

Proof. The definition of G[hn] implies that to obtain an independent set of G[hn] first we have to choose an independent
set of G. Let S = {S1, . . . , Sj }, j �1, be the family of all nonempty independent sets of G. Assume that S 

Sr = {ti; i ∈ Ir} and Ir ⊂ {1, . . . , n}. Next by Proposition 1(a) in each of the Hc

i , i ∈ Ir , we have to choose a
nonempty independent set of Hc

i . Evidently we can do it in F(Hi) − 1 ways. Hence from fundamental combinatorial

statements we have
∑j

r=1

∏
i∈Ir

(F (Hi)−1) independent sets of G[hn] having at least one vertex. Moreover, the empty

set also is an independent set of G[hn]. Consequently F(G[hn]) = 1 +∑j

r=1

∏
i∈Ir

(F (Hi) − 1). Thus the theorem is
proved. �

If Hi = Kx for i = 1, . . . , n, then we obtain Theorem 14.

5. The total number of l-dominating sets of G[hn]

By T l(G) we denote the number of all l-dominating sets of G and we put T 1(G) = T (G). Moreover, by t lG(n, p)

we denote the number of all p-element, 1�p�n, l-dominating sets of a graph G on n vertices and also we put
t1
G(n, p)= tG(n, p). Consequently T l(G)=∑n

p�1t
l
G(n, p). In this section we determine the number T l(G[hn]), l�1,

where hn = (Hi)i∈{1,...,n} is an arbitrary sequence of vertex disjoint graphs on x vertices, x�1.

Theorem 19. Let l�2, n�2, x�1 be integers. Then for an arbitrary graph G on n vertices and for an arbitrary
sequence hn = (Hi)i∈{1,...,n} of vertex disjoint graphs on x vertices T l(G[hn]) =∑n

p�1t
l
G(n, p)(2x − 1)p.

Proof. From the definition of the graph G[hn] and by Theorem 1 we deduce that to obtain an arbitrary l-dominating
set of G[hn], first we have to choose an l-dominating set in the graph G. Assume that the chosen l-dominating set has
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p-element, 1�p�n. So, we can choose it in t lG(n, p) ways. Next by Proposition 2(b) we have to choose an arbitrary,
nonempty subset in each of the p chosen copies of Hi . Because an arbitrary nonempty subset of Hc

i can be chosen in
(2x − 1) ways, so we have t lG(n, p)(2x − 1)p such l-dominating sets. Hence T l(G[hn]) =∑n

p�1t
l
G(n, p)(2x − 1)p.

Thus the theorem is proved. �

Theorem 20. Let G[hn] be a lexicographic product of graph G on n vertices, n�2, and a sequence hn = (Hi)i∈{1,...,n}
of vertex disjoint graphs on x vertices, x�1. Let Q= {Q1, . . . , Qj }, j �1 be a family of all dominating sets of G and

let Q 
 Qr = {ti; i ∈ Ir} and Ir ⊆ {1, . . . , n}. Then T (G[hn]) =∑j

r=1

∏
i∈Ir

f̂ (Hi), where

f̂ (Hi) =
{

T (Hi) if for each j ∈ Ir and j �= i{ti , tj } /∈ E(G),

2x − 1 otherwise.

Proof. By Theorem 1 we have that to obtain a dominating set of G[hn] first we have to choose a dominating set of G.
LetQ={Q1, . . . , Qj }, j �1 be a family of all dominating sets of G and letQ 
 Qr ={ti; i ∈ Ir} andIr ⊆ {1, . . . , n}.
Next by Proposition 1(a) in each Hc

i , i ∈ Ir , we have to choose a dominating set of Hc
i if for each i �= j ∈ Ir holds

{ti , tj } /∈ E(G) or if otherwise we have to choose an arbitrary nonempty subset of Hc
i . Consequently we can do it in

T (Hi) ways or in 2x − 1 ways, respectively. By above considerations we put

f̂ (Hi) =
{

T (Hi) if for each j ∈ Ir and j �= i{ti , tj } /∈ E(G),

2x − 1 otherwise.

So by fundamental combinatorial statements T (G[hn]) =∑j

r=1

∏
i∈Ir

f̂ (Hi). Thus the theorem is proved. �

Corollary 5. For an arbitrary graph G on n vertices, n�2 holds T (G[Kx]) =∑n
p�1tG(n, p)(2x − 1)p.

Let l�1, n�2 be integers. For the graph Pn on V (Pn) = {t1, . . . , tn} we use the following notation. Let t̂ l
Pn

(n, p)

be the number of all p-element l-dominating sets of the graph Pn, containing the vertex tn. Consequently, we put
T̂ l(Pn) =∑

p� 1̂t
l
Pn

(n, p).

Theorem 21. Let l�1, n�1, p�1 be integers. Then t lPn
(n, p)=0 if n < p or n > (2l +1)p and for p�n�(2l +1)p

the number t lPn
(n, p) satisfies the following recurrence relations:

t lPn
(n, p) =

l∑
i=0

t̂ l
Pn−i

(n − i, p) for n� l + 1,

t̂ l
Pn

(n, p) = t lPn−1
(n − 1, p − 1) +

2l+1∑
k=l+2

t̂ l
Pn−k

(n − k, p − 1) for n�p�2

with the initial conditions

t lPn
(n, p) =

(
n

p

)
for p�n� l,

t̂ l
Pn

(n, p) = 0 for n < p,

t̂ l
Pn

(n, 1) = 1 if n� l + 1 and t̂ l
Pn

(n, 1) = 0 if n� l + 2.

Proof. If n < p or n > (2l + 1)p, then t lPn
(n, p) = 0, because there does not exist a p-element l-dominating set in this

case. If p�n� l, then an arbitrary p-element subset of V (Pn) is an l-dominating set of Pn, so t lPn
(n, p)=

(
n
p

)
. Assume

that l + 1�n�p(2l + 1). Let F be the family of all p-element l-dominating sets of graph Pn. Hence |F| = t lPn
(n, p).

Let S∗ ∈ F. It is clear that at least one vertex from vertices tn, tn−1, . . . , tn−l belongs to the set S∗. Consequently
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t lPn
(n, p)=∑l

i=0̂t
l

Pn−i
(n− i, p). Next we have to calculate the number t̂ l

Pn
(n, p), for n�1. If n < p, then t̂ l

Pn
(n, p)=0,

and moreover t̂ l
Pn

(n, 1) = 1 if n� l + 1 and t̂ l
Pn

(n, 1) = 0 if n� l + 2.
Let n�p�2. Then every subset S=S′∪{tn} is a p-element l-dominating set of Pn if S′ is an arbitrary (p−1)-element

l-dominating set of Pn−1 or S′ is not a (p−1)-element l-dominating set of Pn−1 but it is a (p−1)-element l-dominating
set of the graph Pn−k , k = l + 2, . . . , 2l + 1, containing the vertex tn−k . Hence by previous considerations we obtain
that t̂ l

Pn
(n, p) = t l

Pn−1
(n − 1, p − 1) +∑2l+1

k=l+2̂t
l

Pn−k
(n − k, p − 1) that completes the proof. �

Corollary 6. Let l�1, n�1 be integers. Then the number T l(Pn) satisfies the following recurrence relations:

T l(Pn) =
l∑

i=0

T̂ l(Pn−i ) for n� l + 1,

T̂ l(Pn) = T l(Pn−1) +
2l+1∑

k=l+2

T̂ l(Pn−k), n� l + 2

with the initial conditions

T l(Pn) = 2n − 1 if n = 1, . . . , l

and

T̂ l(Pn) = T l(Pn−1) + 1 if n = 2, . . . , l + 1

and

T̂ l(P1) = 1.

Proof. If n = 1, . . . , l, then

T l(Pn) =
n∑

p�1

t lPn
(n, p) =

n∑
p�1

(
n

p

)
= 2n − 1.

For n� l + 1 we obtain that

T l(Pn) =
∑
p�1

t lPn
(n, p) =

∑
p�1

(
l∑

i=1

t̂ l
Pn−i

(n − i, p)

)
=

l∑
i=1

⎛⎝∑
p�1

t̂ l
Pn−i

(n − i, p)

⎞⎠=
l∑

i=1

T̂ l(Pn−i ).

Now, we calculate the number T̂ l(Pn), n�1. If n = 1, then evidently T̂ l(P1) = 1.
If 2�n� l + 1, then

T̂ l(Pn) =
∑
p�1

t̂ l
Pn

(n, p) = t̂ l
Pn

(n, 1) +
∑
p�2

t̂ l
Pn

(n, p) = 1 +
∑
p�2

t̂ l
Pn

(n, p)

= 1 +
∑
p�2

t lPn−1
(n − 1, p − 1) = 1 +

∑
r=p−1�1

t lPn−1
(n − 1, r) = 1 + T l(Pn−1).

For n� l + 2 we have

T̂ l(Pn) =
∑
p�1

t̂ l
Pn

(n, p) =
∑
p�1

⎡⎣t lPn−1
(n − 1, p − 1) +

2l+1∑
k=l+2

t̂ l
Pn−k

(n − k, p − 1)

⎤⎦
=

∑
r=p−1�0

⎡⎣t lPn−1
(n − 1, r) +

2l+1∑
k=l+2

t̂ l
Pn−k

(n − k, r)

⎤⎦ .
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Because every l-dominating set has at least one vertex, so we can put that

T̂ l(Pn) =
∑
r �1

⎡⎣t lPn−1
(n − 1, r) +

2l+1∑
k=l+2

t̂ l
Pn−k

(n − k, r)

⎤⎦= T l(Pn−1) +
2l+1∑

k=l+2

T̂ l(Pn−k),

which ends the proof. �

If l = 1, by simple calculations we obtain that the total number of dominating sets of Pn can be calculated using
the third-order linear recurrence relations T (Pn) = T (Pn−1) + T (Pn−2) + T (Pn−3), n�4 with the initial conditions
T (P1) = 1, T (P2) = 3, T (P3) = 5.

From the Theorems 19, 21 and Corollary 5 immediately follows:

Corollary 7. Let l > 1, n�2, x�1, p�1 be integers. Then for an arbitrary sequence hn = (Hi)i∈{1,...,n} of vertex
disjoint graphs on x holds T l(Pn[hn]) =∑

p�1t
l
Pn

(n, p)(2x − 1)p.

Corollary 8. Let n�2, x�1, p�1 be integers. Then T (Pn[Kx]) =∑
p�1tPn(n, p)(2x − 1)p.

6. Concluding remarks

Note that while every maximal k-independent set of a graph G is a (k, l)-kernel of G, for l�k − 1 there are some
difficulties in finding a characterization of graphs having a (k, l)-kernel for l < k − 1 and we do not know a complete
characterization of them. So far only for specific graphs the problem of the existence of a (k, l)-kernel is solved. There
are a number of interesting open problem related to this area. Among all (k, l)-kernels with l < k−1 the most interesting
are (2s + 1, s)-kernels, s�1, which generalize efficient dominating sets. It is natural to ask about the characterization
of graphs having a (2s + 1, s)-kernel (in particular for fixed s).
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