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1. INTRODUCTION 

In this paper we consider the problem of finding the optimal approximation 
to a linear functional F in terms of a given set of other functionals, F1 ,...’ Fn = 
We shall assume that these functionals are defined on a class of real-valued 
functions of two real variables having properties similar to the space of func- 
tions B&a, p) discussed by Sard [21, Chap. 41. We shall call this class of 
functions P~(ol, ,8). In Section 4, we give a precise definition of Pq (u, fi) 
and introduce an inner product which makes j-a member of a Hilbert space 
with a reproducing kernel. We shall only consider linear functionals which 
are bounded with respect to the norm on the Hilbert space and for 
which Sard’s kernel theorem [21, p. 1751 holds. By the optimal approximation 
we shall mean the linear combination of the F,: which minimizes the norm of 
the error functional R. 

As we shall show in Section 2, the optimal approximation and error bounds 
can be found if the representers of the functionals involved are known. The 
representers can be determined if one knows the reproducing kernel for the 
space. The principal result of this paper is the construction of the reproducing 
kernel for a Hilbert space of functions in Tfl~q(~, /3). We then apply this result 
to the problem of finding the optimal approximation to a definite integral 
by a cubature sum. In Section 6 some numerical examples related to approxi- 
mate multiple integration are given. 

‘The results of this paper are related to the theory of bivariate spline 

* Thx work forms an essential portion of the author’s thesis for the Ph.D. degree in 
Mathematics at The University of Utah, written under the direction of Professor Robert 
E. Barnhill. The author was supported by a NASA Traineesbip for the duration of this 
research. 

77 
0 1972 by Academic Press, Inc. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82106302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


78 MANSFIELD 

functions in that the optimal approximations are splines, i.e., they are piece- 
wise polynomials. These splines differ from the bivariate splines of Ahlberg, 
Nilson, and Walsh [l, 31 in that the points of interpolation are not restricted 
to a rectangular grid. Also the splines in this paper are of total degree 2wz - 1 
rather than being-of odd degree in each variable. 

For functions of one variable, the problem of optimal approximation 
has been studied extensively. References are given below. Let F@)[a, b] = 
(f /f(“-‘) abs cant, f(“) E L2[a, b]f. If the functionals J$ , i = l,..., 12 have 
the property that k of them are linearly independent over rk-1, the set of 
polynomials of degree less than or equal to k - 1, F(7i)[a, b] is a Hilbert 
space with respect to the norm 

11 ZI ij2 = lb [v(@(x)]~ dx + t [F,(v)~. 
a a=1 

de Boor and Lynch [12] and Golomb and Weinberger 1151 have calculated 
the reproducing kernel forP@, b] with respect to this norm. If F*(f) = f(xJ, 
i = I,..., n, the optimal approximation is the natural polynomial spline 
(type II’ spline in the terminology of Ahlberg, Nilson, and Walsh) of degree 
2k - I which interpolates f at the points x, , i = l,..., n. The connection 
between splines and the optimal approximation of functionals was first 
pointed out by Schoenberg /23]. Related results have been obtained by 
Secrest 127-291, who pointed out the connection between splines and the 
optimal approximations of Golomb and Weinberger [15], and by Ahlberg 
and N&on [2] and Schoenberg [25]. 

2. REPRE~ENTER~ IN HILBERT SPACE AND 
THE OPTIMAL APPROXIMATION OF LINEAR FUNCTIONALS 

Let H be a real Hilbert space. Let F be a bounded linear functional on H. 
We wish to approximate F by a sum C’F=, AF, where the Fi are a given set 
of bounded linear functionals with representers #i . Golomb and Weinberger 
[15] and de Boor and Lynch [12] show that the optimal approximation 
F(f) to F at f equals F(ii) where E is the element of the Hilbert space of 
minimum norm among all elements interpolating f’ with respect to the 
Ff ) i = l,..., n. Then Q can also be characterized [12] as the element of the 
subspace S = (& , i = l,..., n> which interpolates f with respect to the 
Fi , i = I ,..., n. 

Optimal error bounds can be obtained from the hypercircle inequality 

I F(f) - FGQI G II a II P2 - 64 W’“, (2.1) 

where a is the optimal error functional and P* 2 /ijJ2. Let 4 be the representer 
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of the functional F. Then /I a /j = ]j 4 - xy=, Ai*& // where the &* are ihe 
optimal weights. Let I$ = C#J - C%, Ai*& . It is shown in [12] that 
F&$) = 0, i = l,..., IZ. Thus 

Therefore the optimal approximation and error bounds can be calculated 
if the functions 6 and E can be found. Assume H has the reproducing kernel 
K(X, Y). If L is a bounded linear functional and i; is its representer then 
/z(X) = L,K(X, Y), where the subscript Y means that L operates on K(X? Yj 
as a function of Y. Thus $ and W can be calculated directly from the repro- 
ducing kernel. 

3. CONSTRUCTIONOFTHEREPRODUCINGKERNELFORTWEI~~ELLBERTSPACE TEsj 

For p >, 1, let F(“)[a, b] = {g / g(p-P)abs cant, g(Y) E L2[a, b]). Let cx be 
an arbitrary point in [a, b] and let Pi be the linear projection defined by 

Then pi = CjCi Pj is also a linear projection, i = 0, I, 2,.,. . 
For all functions g E F(@[a, b] we have the Taylor series representation 

where 
1 if a: < t < x, 

#(a, t, x) = -1 if s < t < 3:: 
0 otherwise. 

Likewise for q > 1 and p an arbitrary point in [c, d] let Q, be the 1inea.r 
projection on F(*)[c, d] defined by 

(3.3) 

Then gj = CiCj Qi is also a linear projection,j = 0, 1, 2,... . For all functions 
iz E P![c, a] we have the Taylor series representation 
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Let D be the rectangle [a, b] x [c, G?]. We now wish to construct a Taylor 
series expansion for real-valued functions defined on D. We initially assume 
that f E Fcgn)[a, b] @ F(“‘)[c, d], where ~1 = p + q. We expand the identity 
operator as foIlows: 

z=z~z=P,~Q,+P,@(z-~q)+(z-~H,)~~q 

+ (I- p,> 0 v - QJ 
(3.4) 

= & j;* pi 0 Qi + ,& pi 0 u - !a + (1 - is,) 0 c a 
i<q 

+ (I- &J 0 v - Q,). 

We can write (Z - Q,) as (Z - &.+) + CqGi<m-i Qj . Likewise 

(Z - P,) = (Z - P,-j) + 1 Pi . 
j&i <m-j 

Therefore, 

1 pi 0 v - a = c c pi 0 Qi + c [Pi 0 (I - Q,.Jl, i <‘P i<P Q<j<rn-i i<P 
and 

Z = 1 Pi 0 Qj + C [(Z - En-j> 0 Qjl + C [Pi 0 (I- &m-i)] 
itj <m j<q i-G9 
+ (I - P,) 0 (I- e,>. (3.5) 

This implies that f(x, ~7) E Fcm)[a, b] 0 F(l”)[c, d] has the representation 

+ y (JF - 8)” 

s 

b (-y - t)m-j-l 

j=O j! a (o-j- I)! #(a, tv x>fm-j,j(t, B) dt 

+ 5’ (x - q d 0) - u)rn-i-l 

i! s (Pll -i- I)! d~(fl, zl, ~)h,m-i(~, 4 da i&l c 

+ r: .fc (pl1)! (q - I)! 
a (’ - t)“-l (’ - “)‘-’ #(a, t, x) I)(& u, y)fp,q(t, u) dt du, 
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where we use the notation jL,j to denote partial derivatives. This is just the 
representation obtained by Sard [21, p. 1633. 

(3.5) gives a decomposition of P’)[a, b] @F(“z)[c, cij into a direct sum of 
subspaces, 

is an inner product on F(“)[a, b] @j Pz)[c; d]. We note that ]jtflf] is a semi- 
norm with null-space Z? equal to the set of polynomials of degree less than 
or equal to 171 - 1. The dimension of 9 is k = IU(BZ + 1)/Z. 

It can easily be seen that F[“)[a, b] @~f?“)[c, d] is not the largest class of func- 
tions for which (3.6) holds. Equivalently, F(““)[LI~ b] @ PrrJ[c, d] is not complete 
under this norm. We complete this space by completing each subspace. The 
completion of (I - FTn-j) F(“‘)[a, b] is (I - P,+-J) F(“‘-j)[a, b], j = (I,..., 4 - 1, 
and the completion of (I- Q,,-J Pm)[c, d] is (I- &,,,-J F(m-i)]c, d], t = 
0 ,..., p - 1. This makes all of the tensor product spaces in the summations 
complete. We claim that the completion of (I - P,) P)[a, 6] @I 
(I - Q,) Pj[c, cl] is the set x of all functions with the property that 

fp-l,,-l (x, yj is abs corn, f,,, E L”[D] 

P,f = Q,f = 0. 

(3.3) 

(For a definition of absolute continuity as applied to functions of two 
variables see Sard [21, p. 5341.) To prove this let (PI be a Cauchy sequence 
in x. Then (f&j is a Cauchy sequence in L’[D] which converges to an elemect 
e E L”[D]. We must show that there exists an elementfE x with the propertyy 
.il,, = @. 

Then f,,, = e. We now show thatfc s. There exist constants M, N such that 

(x - tp-1-i < M 
(p-l-ii)! ’ 

Q<i<p-1. 

( y ~ up-’ 
(q - 1 -.j)! 

< N 
’ 

O<j<q-1. 
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Since e E L2[D], there exists a sequence {ep} of continuous functions defmed 
on D such that 

II e - ep 11~2 40 as p-j cci. 

We let 
.x 

s” = 
J j 

II (x - t)“-1 (y - ,,)Q-1 

oi 0 (p-l)! --- (4 - I>! 
e@(t, zi) dt du, p = 1, 2,.... 

Then for i <p, j < q 

cx - t)“-l-? 0 - u)4-1--1 [e(t, uj - e@(t, u)] dt dll 1 
(p - 1 - i)! (q - 1 -.j)! 

1 [i 1 f)rL, :,‘~~~~~ ii3 dt du)lP 11 e - e@ llLa 
I 

< (b - aj(d - C) MN !I e - e@ jjl,~ + 0 

uniformly as EL. + co. Therefore fi,j , i < p, j < q, are continuous since 
they are the uniform limits of continuous functions. The function 
fDP1,,&x, JI) = jz li e(t, U) dt du is absolutely continuous since f,,,&, u) = 
e(x,y) is in L2[D] and thus is defined a.e. and is integrable on D. Clearly 
fsatisfies the last property in (3.8). Thus we have a space which is the direct 
sum of complete spaces and therefore is complete. We call this space 
??g(ol, /I). It has the properties 

&EWI, i <p,j < 4, 
fm-j-l,j(x, B> abs cont,f+dx, 13) E L2b, bl, j = O,..., 4 - 1, 
fi,ln--i-l(a, y) abs cant, fi,m-i(ol, y) E L”[c, d], i = 0 ,..., p - 1, 

(3.9) 

fD-l,n-l(x, Y> abs cont,f,,, E LYDI. 

Since the derivatives fD+Jx, v), i = 0 ,..., q - ,j, j = 0 ,..., q - 1, need only 
exist along the line y = /I, all partials with respect to y must be taken before 
any partials with respect to x of order greater than p are taken. A similar 
condition holds forh,n+j(x, y), j = 0 ,..., p - i, i = 0 ,..., p - 1. 

We now construct the reproducing kernel for P,q(ol, p) with norm (3.7). 
Let G1 ,..., Gi , be the functionals defined by 

G,(f) = .h,i(~> PL ,u = l,..., k, 

and let q1 ,..., ql: be elements of Z with the property 

GJqJ = afi , 1 < i, j < k. 
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Note that the qI ,..., qk are just the functions (x - ~)~ji! (J: - ,B>j,/$, i + i c ~1. 
We also let X be the point (x, u) and let Y = ([, 7). 

wd 02?-1(y, q) is dejined similarly. 

Proof. The proof is based on the fact-that P~(ol, /3) is the direct stim of 
tensor products of single-variable spaces for which the reproducing kernels 
are known. Let K&IT, Y) be the reproducing kernel of the i-th element in the 
direct sum. Then (f, xi Ki)fu) = Ci(fi , KJiCy, = xih(X) = f(X), whereA is 
the projection off onto the i-th subspace. Thus K*(X, Y) = xi Ki(X, T). 
Each subspace is the tensor product of two single-variable spaces. It can easily 
be seen that the norms on each of these subspaces have the property that 
(f, g)i = ((f, g&‘, g,);, where g is the product of elements g, and gz in the 
component spaces and the primes are used to indicate the inner products on 
these spaces. Thus each KJX, Y) is the product of the reproducing kernels 
on the respective single-variable spaces. 

de Boor and Lynch 1121 have calculated the reproducing kernel for the 
space F(“)[a, b] with norm given by 

(f,f) = y [p’(a)]” + Jb [fyx)]’ dx. (3.11) 
i=O a 

It is 

where g”(x, t) = (x - t)“-l/(p - l)! C,!J(OJ, r, x). 
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Thus 

K*(X, V 

= -fl q&Y) qi( Y) + “2 (’ ; ‘)’ (’ j ” ,l gm-i(x, t) g”-‘((, t) dt 
j=O 

+ ?f (x - cx)i (.$ - ay d 

i=O i! i! I 
gm--i( y, u) gsz-i(q 24) du D 

+ [ j”, gp(x, 0 g”(5, 0 dt] [ jl gq(y, 4 gqh, 4 du]. (3‘13) 

Evaluation of the integrals in (3.13) gives (3.10), which concludes the proof. 

4. CONSTRUCTION OF THE REPRODUCING KERNEL FOR THE HILBERT SPACE H 

In de Boor and Lynch [12] it was shown that the optimal approximation 
F(f) to F at f is exact for the n-dimensional subspace spanned by the 
representers of the Fi , i = I,..., rz. We would like to have this approximation 
also be exact for functions in 9, i.e., polynomials of degree less than or equal 
to 1~ - 1. We do this by considering a norm similar to (3.7) but involving 
the approximating functionals Fl ,..., F., , rather than the Gi , i = l,..., k. 
This will force A? to be contained in the subspace S = <& ,..., &} where 4i 
is the representer of Fi , i = l,..., n. 

We shall assume that F, Fl ,..., F, are linearly independent and are of the 
form 

where the functions pi” are of bounded variation. We also assume that the 
functionals Fl ,..., F, , have the property that there exists a set of weights 
Ai , i = I,..., IZ such that F(j) - Cy=, AiFi(f) = 0 for all f E 9, the null 
space of [f, f]. Let Fl ,..., Fz be a subset of the Fi which is maximally linearly 
independent over 9. If I = k, then 

(fxf) = i F’ifl’ + [f,fl (4.2) 
i=l 
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defines a norm on T”*Q(a, ,Q. If 1 < k, then there exists a subspace V, of dimen- 
sion 1~ - I with the property that FI(f) = a*~ = Fn(4) = 0 for allfin $i, I By 
our assumption, F(f) = 0 fcr allf~ VO. Let ds, ,..., QJCPl be k - 1 of the func- 
tionals Gi, i = l,..., k, chosen so that Fl ,...) Fz , @I ,..., @k-t f are linearly 
independent over 9. Let P be the linear projection defined by 

where p1 )... ,J+-~ are elements of V, with the property that 

@Jpj) = 6if , 1 < i: j < k - I’. 

Note that the pi are a subset of the qi , i = I,..., Ic. Our approximation 
problem is not affected if we consider the problem on H = (I - P) P*(rP jY)- 
Hi is a Hilbert space with respect to the norm 

(f,f > = Lf>f 1 + 23 [Fi(f)l”, (4.3) 
(=I 

In many applications it will happen that k = I. As an example of when this 
is not the case consider T3.3(0, 0) with n = 7? F((f) = j:l jll f (x, y> dx dy, 
Fi(f) = f (xi , JJ~), i = l,..., 7, where the (xi , JJ are the points of the Radon 
7-point, fifth-degree cubature formula. (See Stroud [3 11.) In this case k = 21. 
This formula is exact for all elements in 2, the set of polynomials of degree 
less than or equal to five, and thus we can construct a Hilbert space in the 
manner described above. 

We now construct the reproducing kernel function for the Hilbert Space ,E;I. 
Let 

k-l 

k--E 
(I - P),,, (I - P),,, K,“(X, Y) = f(X, Y) = K”(X, Y) - 1 p&t j pi{ Y). 

i=i (4.4) 

Let fE PQ(ol, p). Then 

(2 - P)f (Y) = (f, K*(X, Y) - K,“W, k’)) T = (f,f> = (f,fj, 

Therefore we have shown 
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LEMMA 1. The reproducing kernel function for the Hilbert space H with 
norm given by 

Let P be the projection operator from W onto (I - P)9 defined by 

where the I&, i = l,..., I are defined by q$ E (I - P)% and 

THEOREM 2. The reproducing kernel K(X, Y) for the Hilbert space H 
with norm given by (4.3) is 

Proof. Let 2: E H. 

We now must show that 

where the interchange of integration and the operator P is justified by Sard’s 
kernel theorem [21, p. 1751. But [u,f(X, Y)lx = (I - p)Iv(Y) where P is 
the projection from H onto (I - P)9 defined by 

?f(X) = 5 G(f) GO 
i=l 

Then (I - & (I - g)+ = (I - &o, which completes the proof. 
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Remark 1. The proof of the preceding theorem is largely independent of 
the particular Hilbert space X. It in fact holds for any real Hilbert space 2 
whose norm is obtained by adding a finite sum of syuares of linear functionals 
to a semi-norm [*, *] with a finite dimensional null space q of dimension. I, 
Assume that the reproducing kernel K*(X, Y) can be found for a particular 
norm 

where G, ,..., Gs , are any set of “sufficiently smooth” linear functionah+ 
i.e., functionals which are bounded and for which the identity 

holds, which are linearly independent over r. Let L, ,..., .LE be any other set 
of “sufficiently smooth” linear functionals which are also linearly independent 
over 71 and let P be the projection operator from X onto -q defined by 

where ql ,..., q1 are elements of 7 with the property 

Lj(qj) = 6, I < i; j < L 

Then proceeding in the same way as in the proof of Tlzeorem 2, it can be 
shown that the reproducing kernel for SF with norm given by 

(u, u) = [u, u] + i [L,u]” 
i=l 

iS 

Remark 2. The functions &, i = I,..., I, in the reproducing kernel 
K(X, Y) are the representers of the functionals F, ,..., FL . To see this fet u E H. 
Then 

Thus the optimal approximation P is exact for functions in (I - P&C?!. Since 
F is obviously exact for functions in V, , it is exact for all functions in 9”. 
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5. APPLICATION TO CUBATURE 

In this section we apply the results of the preceding section to obtain formu- 
las for the optimal approximation and error bounds for the approximation of 
the functional F(f) = Jz Jz f(x, y) dx ~$7 by a cubature sum Cy=, AeFi(f) = 
xy=, Aif y,). We shall also assume that the maximal number of the 
functionafs Fi , i = I,..., n which are linearly independent over 9, the set of 
polynomials of degree less than or equal to nz - 1, is Ic, the dimension of 1. 
For this case the reproducing kernel is 

Since E is a linear combination of the representers #i, i = l,..., IZ, we find 
that Q has the form 

qx, y) = p(x, y) + -ir: h&Y, Xj) y(x, y) E 2. (5.2) 
1-l 

If the set of interpoIation points includes the point (a, fi), (5.2) becomes 

(5.3) 

where X, = (n, /3>. This simpli~cation results from the fact that cl”p-I(x, a) = 
82*-1~, /3) = 0 and thusf(X, XJ EZ 0. We first assume that (01, ts> is not one 
of the interpolation points. We shall determine the M + k coefficients in (5.2) 
by solving a linear system of equations. We obtain n of these equations from 
the interpolation conditions. We obtain the remaining equations from the 
fact that 27 1 u for a11 2, E 9 = (u E H / F,(v) = 0, i = l,..., n]. In Lemma 2 
we proved that J? has the property that for any v E H 
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This implies that for all functions v E 9 

Since zi E 9, the first sum in (5.4) is zero. The second sum will be zerc for 
all u E 9 if and only if 

These 11 + k equations are linearly independent since the only function 
which satisfies both (5.5) and the homogeneous interpolatory conditions 
is the zero function. 

We determine the IZ + k - 1 coefficients in (5.3) in the same way. We 
obtain n of the equations from the interpolatory conditions. Instead of (5.4) 
we obtain 

If (01, ,!3) is one of the interpolation points, v(m, p) = 0 since v E Fcl. Thus (5.6) 
will be zero for all v E 9 if and only if 

g h,(cL - x# (p - ya)j = 0 0 < t +,j < nz. (5.7) 
7#U 
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Thus (5.7) provides the remaining k - 1 equations to determine-the coeffi- 
cients of (5.3). 

It would be desirable to find other representations for certain configurations 
of points since the systems of equations we have obtained are ill-conditioned 
and therefore their use may result in inaccurate results if n is very large. The 
use of the representations (5.2) and (5.3), however, does not require that the 
representers rj& ,. . ., dL , be explicitly known. In most cases it appears that these 
functions would be quite difficult to find. 

The function &x, y) equals R,(K(X, I’)). We recall that i? = F - CyEl &Fi , 
where the & are the optimal weights. Also R(v) = 0 for all u E 9. Therefore 

- - 

B<x~ Y> = RYf - RY ( gl 4i(x).7(xi 9 y)) 

= F,f - f &fW, Xi) - dx, Y), 
i=l 

(5.8) 

where q(x, y) E 9. If (oI, p) is one of the interpolation points, say X, , we obtain 

We shall determine the n + k coefficients of (5.8), the $ , i = l,..., 12, and 
the k coefficients of the polynomial q(x, y), by solving a linear system of 
equations. We obtain II of these equations from the fact that 6 E .9. Thus 

$(x1 , yi) = 0 i = l,..., 12. (5.10) 

We get the remaining equations from the fact that R(v) = 0 for all v E 9 and 
thus R((ar - x)~ (p - y)i) F 0, i + ,j < nz. This implies that 

= I (a - a)i+1 - (a - @ifI 

t 

(p - ,>i+1 - (/-jJ - (jJy+1 

i+ 1 )( .i-+ 1 ) 

If (LX, p) is one of the interpolation points, we replace (5.11) by 

f A,(cx - x# c/3 - y,y 
14 
lfrc 

(& - ,)i+1- (a - by+1 = 

( 

(/j - ,>j+1- @-@+I 

i+l I( j+l 1 
0 < i f.j < n2. 

i+j<m. 
(5.11) 

(5.12) 
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Eqs. (5.10) and (5.11), and (5.10) and (5.12) are linearly independent 
since the corresponding coefficient matrices are the same as those used to 
find the coefficients in the formula for 11. 

The calculation of F&j) = Ji, cf(X! Y) df & is straightforward. 

If (o1, /I) is not one of the interpolation points, all of the weights, A, i = I,..., n: 
were obtained in the calculation of $. If (0~~ /3) = X, ) one of the interpolation 
points, all of the weights except A, were obtained in the calcuIation of 4. 
2,‘ can be determined from the fact that R(1) = 0. Thus 

i 2ir = (b - a)(d - c), 
I=1 

A, = (b - a)(d - c> - f A, . 
Z=l 
i+u 

(5.14) 

The calculation of F(4) = Ji Jf C&X, JJ) & ~JJ is straightforward. Assume 
I/ f j] = r and [f,f] = AP. Since the function ii has the property that 
F&i) = F<(f), i = l,..., n, we can rewrite the hypercircle inequality (2.1) to 
get 

Tf (01, /3) is not one of the interpolation points, 
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using (5.5). If (a~, p) = X, , one of the interpolation points, instead of (5.16), 
we obtain 

[ii, ii] = i h,f(Xj , yj) - f(a, /3) i ;\j * (5.17) 
i=l i=l 
ifP i#U 

The function C can be considered to be a bivariate spline function in that 
it minimizes a pseudo-norm, namely, [-, -1, subject to the constraint that it 
interpoIate the function .f at the points Xi, i = l,..., YI. E is a piecewise 
polynomial function of degree 2m - 1. If the point (01, /3) is in the interior 
of the rectangle D, all partial derivatives of order p in x have a jump at the 
line x = CX, and all partial derivatives of order q in y have a jump at the fine 
y = /I. Rega r dl ess of where the point (a, p) is in the rectangle D, the partial 
derivatives of order 2p - 1 in x have jumps at the lines x = x~, i = I,..., n, 
and the partial derivatives of order 2q - 1 in y have jumps at the lines 
y =: yj , i = I,..., fZ. 

6. NUMERICAL EXAMPLES 

In this section we give several examples related to approximate multiple 
integration on a rectangle. We choose as the functional F(f) to be approxi- 
mated, the integral ST1 ftl dy dx/.~ -+ y + 4. Since f(x, y) = I/(X i- y + 4) 
is infinitely differentiabie on D = [-1, I] x [-1, I], it is a member of 
Pq(,, /3) for all p and q and all (01, p) in D. We choose several values of p 
and q and two different points (01, /?) and compute the corresponding optimal 
approximations and error bounds. We use the two sets of points 

and 
4 = W, 01, (1, 9, t-1, 11, (1, --I), C-1, 111, 

G? = f@, Oh (-LO), (1, O), t-w, GQ, W& w, UP, -v% 

(-l/2, -m, C-1, -0, (0, -0, (1, -11, C-1, 11, a 11, 0, N. 

In the first example we consider f(x, y) to be a member of the class of 
functions FJ(a, p> in the Hilbert space H. We carry out the calculations for 
two different points (LX, p). In each case (01, /3) is one of the points of the 
cubature sum. Therefore to calculate Z we use the equations t7(xa , yi) = 
.f(Xe , yi), i = l,..., n, and (5.7). To calculate 4 we use equations (5.10) and 
(5.12). We solve the linear systems of equations by inversion of the coefficient 
matrices using a maximal pivot method. Since the coefficient matrices for 
the calculation of both i7 and 4 are the same, only one matrix inversion is 
necessary. 
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TABLE 1 

Set of points 

F(4 0.105357(01) 0.104628(01) 

II R /I2 0.280159 0.120729 

MS 0.171642(-01) 0:171642(-01) 

jzi, a] 0.992063(-02) 0.!37910(-01) 

3 0.450482(-01) 0.201802(-01) 

m - Fe4 -0.707544(-02) 0.22043!(-03) 

Set of points 

F(4 0.108G54(01) 0.105251(01) 

/I R 11% 0.123803(01) 0.238149 

IW 0.124486(-01) 0.1244486(-01) 

LG. a1 0.854701(-02) 0.107326(-01) 

B 0.695000(-01) 0.202149(-01) 

F(f) - F(zl) -0.400425(-01; -0.~01050(-02) 

To calculate the optimal approximation, F(E), we use Eq. (5.13) where 
the weights & are obtained as coefficients in the formula for 4 (5.9). To 
calculate // R [I, the function-independent part of the error bound 

we integrate 6. In practice the calculation of M2, the square of the pseudonorm 
[f,f]; is quite difficult. An upper bound for M” can always be found, however, 
by replacing each integral by the product of the maximum of the square of 
the appropriate derivative times the measure of the domain of integration. 

- - The pseudo-norm [u, U] is calculated by (5.17) where the hi are coefficients 
in the formula for tc. Table 1 lists the optimal approximation and error 
bounds obtained when we let (01, /FIj = (0,O). Table 2 lists the optimal 
approximation and error bounds when (a, ,6) = (4, 1)‘ The numbers in 
parentheses indicate the exponents and B denotes the error bound, 
(I iT /j [W - [ii, ii]]“‘“. 
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TABLE 3 

(a, 8) = (0,O) 

Set of points 

F(zi) 0.104190(01) 

II a IP 0.284981(-02) 

M2 0.420252(-01) 

k Cl 0.122915(-01) 

B 0.920517(-02) 

F(f) - W) 0.459631(-02) 

TABLE 4 

ia, 8) = (171) 

Set of points E, 

FW 0.104731(01) 

II R II? 0.106450(-02) 

M2 0.293879(-01) 

1% Cl 0.359353(-02) 

B 0.524005(-02) 

F(j) - F@) -0.810142(-03) 

In the second example we considerf(x, u) = l/(x + y + 4) to be a member 
of P2(~, /3). Table 3 lists the optimal approximation and error bounds 
obtained when ((Y, /3) = (0,O). Table 4 lists the optimal approximation and 
error bounds when (a, /3) = (1. 1). 

All of the preceding calculations were carried out in double precision 
floating point arithmetic on the Univac 1108 Computer at the University 
of Utah Computer Center. 

Much of the work on error analysis of cubature formulas has dealt with 
cross-product formulas in contrast to the results of this paper. References 
can be found in Stroud and Secrest [32]. If two single variable formulas are 
used, one of which is exact for polynomials of degree < p - 1, and the other 
is exact for polynomials of degree < 4 - 1, the cross-product formula 
obtained from them is exact for polynomials in two variables of degree less 
than or equal to p - 1 in one variable and less than or equal to q - 1 in 
the other. T~LIS the optimal cubature formulas discussed in this paper differ 
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from cross-product formulas even if a cross-product set of points is used 
since the optimal formulas are exact for all polynomials of total degree less 
than or equal to 1~1 - 1, where III = y + 4. 

The author wishes to thank Professor Carl de Boor for suggestions which have resulted 
in a clearer presentation of many of the results in this paper. 
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