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Numerical modeling of free field vibrations due to pile driving
using a dynamic soil-structure interaction formulation
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Abstract

This paper presents a numerical model for the prediction of free field vibrations due to vibratory and impact pile driving. As the
focus is on the response in the far field, where deformations are relatively small, a linear elastic constitutive behavior is assumed for
the soil. The free field vibrations are calculated by means of a coupled FE–BE model using a subdomain formulation. The results
show that, in the near field, the response of the soil is dominated by a vertically polarized shear wave, whereas in the far field,
Rayleigh waves dominate the ground vibration and body waves are importantly attenuated. Finally, the computed ground vibrations
are compared with the results of field measurements reported in the literature.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Construction vibrations often affect adjacent and surrounding buildings in urban environments. The induced waves
propagate in the soil and may interact with nearby structures, which induces vibrations that may cause cracks in its
walls or in the facade. Permanent settlement, densification and liquefaction may also occur in the soil due to such
vibrations. The present study aims to develop a model to predict free field vibrations in the environment due to pile
driving. The vibration transmission through the soil is complex, as the soil behavior of the around the pile is difficult
to describe. Ground motions due to pile driving generally depend on (1) the source parameters (method of driving,
energy released, and pile depth), (2) the interaction between the driving machine, the pile and the soil, and (3) the
propagation of the waves through the soil. Research on pile driving problems has concentrated on two main directions.
Setting up numerous field measurements, several authors have focused on environmental effects (far field or external
effects) [5,8]. Some efforts have been also made to develop models to assess the driving efficiency, investigating the
driveability and the bearing capacity of driven piles (near field or internal effects) [7].

During pile driving, the transmitted energy through the soil is very high and causes plastic deformations in the
near field. In the far field, however, reported data show that the induced vibrations cause deformations in the elastic
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range [5]. As the focus is on the response in the far field, where deformations are relatively small, a linear elastic
constitutive behavior is assumed for the soil.

In this study, a model for both vibratory and impact driving is proposed to predict free field vibrations. Using a
subdomain formulation for dynamic soil-structure interaction, developed by Aubry et al. [1,2], the dynamic soil–pile
interaction problem is investigated. A coupled FE–BE model is presented, in which the pile (bounded domain) and
the soil (unbounded domain) are modeled using the finite element (FE) method and the boundary element (BE)
technique, respectively. The subdomain formulation has been implemented in a computer program MISS (Modélisation
d’Interaction Sol-Structure) [3]. The program MISS is used to determine the impedance functions and the modal
responses of the soil in the frequency domain. The dynamic impedance of the soil is calculated by means of a boundary
element formulation based on the Green’s function of a horizontally stratified soil.

2. Numerical modeling

The proposed model is based on the following hypotheses: (1) the soil medium is elastic with frequency indepen-
dent material damping (hysteresis damping), (2) no separation is allowed between the pile and soil medium, (3) all
displacements and strains remain sufficiently small, and (4) the pile is embedded in a horizontally layered soil.

The domain is decomposed into two subdomains: the unbounded semi-infinite layered soil denoted by �ext
s and the

bounded structure (pile) denoted by �p. The interface between the soil and the pile is denoted by � (Fig. 1a).

2.1. Governing equations

The deformations are assumed to be small enough to allow for a linear approximation of the constitutive equations,
so that all equations can be elaborated in the frequency domain. The displacement wave fields in each subdomain during
the dynamic excitation are denoted by u�(x, �) where � = s denotes the soil and � = p refers to the pile. The stress
tensors ��(u�) can be expressed as linear functions of the strain tensors ε�(u�) using Hooke’s law:

��ij = ����kk	ij + 
���ij , (2.1)

where the components of the small strain tensor are calculated from the displacements as follows:

��ij = 1
2 (u�i,j + u�j,i ), (2.2)

where �� and 
� are the Lamé parameters. In order to account for the dissipation of the internal energy in the soil
(material damping), complex Lamé coefficients are used:


∗
s = 
s(1 + 2i�s), �∗

s = �s(1 + 2i�s), (2.3)

where �s is the material damping ratio.

a b

Fig. 1. (a) Geometry of the subdomains and (b) the scattered wave fields usc(up).
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First, the pile �p is considered. The boundary �p =�p� ∪� of the pile �p is decomposed into a boundary �p� where
tractions tp are imposed and the soil–pile interface �. The displacement vector up of the pile satisfies the following
Navier equation and boundary conditions:

div �p(up) = −
p�
2up in �p, (2.4)

tp(up) = t̄p on �p�, (2.5)

with t(u) = �(u) · n the traction vector on a boundary with a unit outward normal vector n.
Second, the exterior soil domain �ext

s is taken into consideration. The boundary �ext
s = �s� ∪ �s∞ ∪ � of the soil

domain �ext
s is decomposed into the boundary �s� where tractions are imposed, the outer boundary �s∞ where radiation

conditions are imposed and the soil-structure interface �. A free boundary or zero tractions are assumed on �s�. The
displacement vector us of the soil satisfies the Navier equation and the following boundary conditions:

div �s(us) = −
s�
2us in �ext

s , (2.6)

ts(us) = 0 on �s�. (2.7)

Displacement compatibility and stress equilibrium are imposed on the interface �:

us = up on �, (2.8)

tp(up) + ts(us) = 0 on �. (2.9)

According to the compatibility condition (2.8), the displacement vector us is termed as the wave fields usc(up) that are
radiated in the soil due to the pile motion up, imposed on the interface � (Fig. 1b):

us = usc(up) in �ext
s . (2.10)

The wave field usc(up), radiated in the soil, satisfies the elastodynamic equation in �ext
s and the following boundary

conditions (Fig. 1b):

div �s(usc(up)) = −
s�
2usc(up) in �ext

s , (2.11)

ts(usc(up)) = 0 on �s�, (2.12)

usc(up) = up on �. (2.13)

2.2. Variational formulation

The equation of motion of the dynamic soil–pile interaction problem can be formulated in a variational form for any
virtual displacement field v imposed on the pile:∫

�p

ε(v) : �p(up) d� − �2
∫
�p

v · 
pup d� =
∫
�p�

v · tp d� +
∫
�

v · tp(up) d�, (2.14)

where : denotes the contraction of two tensors.
Accounting for the equilibrium on the soil–pile interface � in Eq. (2.9), the variational Eq. (2.14) becomes:∫

�p

ε(v) : �p(up) d� − �2
∫
�p

v · 
pup d� +
∫
�

v · ts(usc(up)) d� =
∫
�p�

v · tp d�. (2.15)

A modal reduction technique is applied where an approximate solution is sought in a subspace of finite dimension. The
pile displacement vector up is decomposed as a linear combination of vibration modes �m(m = 1, . . . , q):

up �
q∑

m=1

�m�m = ��, (2.16)
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where the modes �m(m = 1, . . . , q) are collected in a matrix � and the modal coordinates �m(m = 1, . . . , q) are
collected in a vector �. Several alternatives are possible for the selection of the modes �m to describe the kinematics
of the pile. In a Galerkin formulation, a similar modal decomposition is used for the vector v of virtual displacements:

v =
q∑

m=1

�m	�m = ���, (2.17)

where �� is a vector with virtual modal coordinates. Introducing the decompositions (2.16) and (2.17) in the virtual
work expression (2.15) and expressing that the resulting equation must hold for any set of virtual modal coordinates
�� results into the following q-dimensional system of equations:[∫

�p

ε(�) : �p(�) d� − �2
∫
�p

�T
p� d� +
∫
�

�Tts(usc(�)) d�

]
� =

∫
�p�

�Ttp d�. (2.18)

2.3. Discretization of the variational formulation

In a FE formulation, the displacement field up is approximated as up � Npup, where Np are the globally defined
shape functions and up is the displacement vector at all nodal points. Analogously, the strain vector εp is approximated
as εp = LNpup = Bpup, with L the matrix with derivative operators. The stress vector is defined as �p = Dpεp, with Dp
the constitutive matrix for an isotropic linear elastic material.

Applying the same FE approximation to the modes of the pile �m � Np�m, the modal decomposition (2.16) of the
pile displacement vector can be written as follows:

up � Npup �
q∑

m=1

Np�m�m = Np��. (2.19)

Introducing this discretization into the system of equations (2.18) results in the following system of discretized
equations, neglecting the effect of material damping in the pile:

�T[Kp − �2Mp + Ks]�� = �Tfp, (2.20)

where the stiffness matrix Kp and the mass matrix Mp of the pile are defined as

Kp =
∫
�p

BT
p DpBp d�, Mp =

∫
�p

NT
p 
pNp d� (2.21)

and the vector of external forces fp on the pile is defined as

fp =
∫
�p�

NT
p t̄p d�. (2.22)

The dynamic stiffness matrix or impedance matrix Ks of the semi-infinite layered soil domain �ext
s around the pile is

equal to

Ks =
∫
�

NT
p ts(usc(Np)) d�, (2.23)

although it is preferable to compute directly its projection on the imposed displacement fields � of the pile:

�TKs� =
∫
�
(Np�)Tts(usc(Np�)) d�. (2.24)

This impedance matrix is calculated using a boundary element technique. As the BE method is based on the Green’s
functions of a horizontally layered half space, only a discretization of the interface � between the soil and the pile is
required and the number of the unknowns is drastically reduced.
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A computation procedure is developed to solve the governing system of equations (2.20). This procedure can be
partitioned into two parts. First, using the Structural Dynamics Toolbox in MATLAB, the finite element model of the
pile is made. In the second part, using the program MISS, the soil impedance �TKs� as well as the modal responses
of the soil usc(�) are computed. The solution of the dynamic soil–pile interaction problem in terms of the modal
coordinates allows to compute the soil tractions on the interface and, subsequently, in the free field.

3. Numerical example

The free field vibrations due to driving of a concrete pile in a semi-infinite medium are investigated. The pile has
a length Lp = 10, m, a diameter dp = 0.50 m, a Young’s modulus Ep = 40 000 MPa, a Poisson’s ratio �p = 0.25, and
a density 
p = 2500 kg/m3. The longitudinal wave velocity of the pile Cp = 4000 m/s. The contributions of different
types of waves are investigated for several penetration depths ep = 2, 5 and 10 m (Fig. 2).

The pile is modeled using 8-node isoparametric brick elements. Only the axial modes of the pile are excited due
to vertical pile driving and considered in the modal superposition. The number of required modes depends upon the
frequency content of the dynamic force. Fig. 3 shows the flexible modes of the pile with free boundary conditions. The
first axial mode at 200.0 Hz corresponds to the first compression-tension mode.

The soil consists of a homogeneous half space with a Young’s modulus Es = 80 MPa, a Poisson’s ratio �s = 0.4,
a material damping ratio �s = 0.025 and a density 
s = 2000 kg/m3. The shear wave velocity of the half space is

Fig. 2. Geometry of the problem.

a

b

c

Fig. 3. First three flexible axial modes of the pile with free boundary conditions at (a) 200.0 Hz, (b) 400.3 Hz, and (c) 601.1 Hz.
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Fig. 4. The norm of the particle velocity in a homogeneous half space due to vibratory pile driving at 20 Hz for penetration depths (a) ep = 2 m, (b)
ep = 5 m, and (c) ep = 10 m.

Cs = 120 m/s.The size of each boundary element should be sufficiently small with respect to the minimum wavelength
�min = Cs/fmax, where Cs is the shear wave velocity in the soil and fmax is the highest frequency in the dynamic
excitation. It is proposed that the element size should be smaller than �min/8.

3.1. Ground vibrations due to vibratory pile driving

First, ground vibrations due to vibratory driving are considered. A standard hydraulic vibratory driver ICE 44-30V
is selected. It operates at the frequency f = 20 Hz with an eccentric moment me = 50.7 kgm, resulting in a centrifugal
force Fp = 800 kN. The results are presented in the (r, z) plane, where the vertical coordinate varies from z = 0.0 m
at the ground surface to z = 20 m. The horizontal coordinate varies from the pile shaft at r = 0.50 m up to a distance
r = 20.5 m from the pile center.

Fig. 4 shows the norm of the particle velocity due to vibratory pile driving at 20 Hz for different penetration depths
ep = 2, 5 and 10 m. The characteristics of the propagating waves induced by vibratory driving can be classified as
follows: (1) because of the soil-shaft contact, vertically polarized shear waves are generated which propagate radially
from the shaft on a cylindrical surface; (2) at the pile toe, shear and compression waves propagate in all directions from
the toe on a spherical wave front; (3) Rayleigh waves propagate radially on a cylindrical wave front along the surface.
When the pile toe is near the surface, ground motions are influenced only by toe resistance, and the response of the
soil around the pile shaft is dominated by Rayleigh waves. As the pile is driven, the contact area along the pile shaft
increases, and vertically shear waves dominate the response around the pile shaft. Fig. 4 shows how Rayleigh waves
attenuate slower than body waves and propagate in a restricted zone close to the surface of the half space.

Fig. 5 illustrates the decrease of the peak particle velocity (PPV) at the surface with the distance r from the pile
for three penetration depths ep = 2, 5 and 10 m. The dashed-dotted line on the figure represents data obtained by
several field measurements during vibratory pile driving [8]. The slope of the attenuation curve can be interpreted as an
attenuation coefficient that represents the effect of both damping mechanisms. The numerical predictions reveal a larger
attenuation coefficient for distances larger than 15 m, which may be attributed to the increased relative importance of
material damping. The present model predicts higher ground vibrations in the far field, especially when the penetration
depth is small. This may reflect the fact that during vibratory pile driving, higher (plastic) strains are induced in the
soil, leading to more material damping [5].

3.2. Ground vibration induced by impact driving

Ground vibrations due to impact driving are subsequently investigated.A BSP-357 hammer is used to drive a concrete
pile with the same characteristics as in the previous example.



H.R. Masoumi, G. Degrande / Journal of Computational and Applied Mathematics 215 (2008) 503–511 509

1 10 100

1

10

100

1000

P
P

V
 [
m

m
/s

]

r [m]

Fig. 5. PPV versus the distance from the pile due to vibratory pile driving at 20 Hz. Results obtained for the penetration depths ep = 2 m (− � −),
ep = 5 m (− ◦ −), and ep = 10 m (− ∗ −) are compared with results of field measurements (dashed-dotted line) [8].
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Fig. 6. (a) Time history and (b) frequency content of the impact force of a hammer with an impact velocity v0 = 1 m/s.

Fig. 6 shows the time history and frequency content of the hammer impact force. The force is evaluated using a
2DOF model developed in [4]. The hammer cushion is a steel plate with a stiffness kc = 1.6 × 106 kN/m. The ram
and anvil masses of the hammer are mr = 6860 kg and ma = 850 kg, respectively. The pile impedance is equal to
Zp = 1960 kNs/m.

In order to obtain an accurate inverse Fourier transform of the response from the frequency domain to the time
domain, the frequency step �f must be sufficiently small with respect to CR/rmax, where rmax represents the largest
considered distance from the pile axis.

The boundary element analysis applied for the computation of the soil’s impedance of structures embedded in the soil
may suffer from the appearance of fictitious eigenfrequencies. For vibratory pile driving, the frequency of excitation
is low, between 10 and 50 Hz, and fictitious eigenfrequencies are usually not a matter of concern. For impact driving,
however, the frequency content of the loading is higher and fictitious frequencies need to be mitigated. A solution
technique for elastodynamic problems has been proposed in [6], by analogy with Burton and Miller’s approach for
acoustic problems.

Fig. 7 shows the norm of the particle velocity in a homogeneous half space due to impact driving at different time
steps t = 30, 80 and 160 ms and for different penetration depths. The following observations can be made: (1) body
waves dominate around the toe and propagate on a spherical wave front; (2) vertically shear waves dominate around
the pile and propagate radially on a cylindrical wave front; and (3) Rayleigh waves propagate near the surface with a
velocity slightly less than shear waves.



510 H.R. Masoumi, G. Degrande / Journal of Computational and Applied Mathematics 215 (2008) 503–511

0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]

0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]

0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]
0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]
0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]

0 5 10 15 20

0

5

10

15

20

r [m]

z
 [
m

]

a b c

Fig. 7. The norm of the particle velocity in a homogeneous half space due to impact pile driving at time steps (a) t = 30 ms, (b) t = 80 ms, and (c)
t = 160 ms for different penetration depths ep = 5.0 m and 10.0 m.

4. Conclusions

A coupled FE–BE model has been developed to predict ground vibrations due to vibratory and impact pile driving.
Using a subdomain formulation, a linear model for dynamic soil–pile interaction has been implemented. The pile is
modeled using the finite element method. The soil is modeled as a horizontally layered elastic half space using a
boundary element method.

The characteristics of the propagating waves around the pile have been investigated. In the case of vibratory driving,
the induced waves can be classified into: (1) the vertically polarized shear waves around the shaft; (2) the body waves
around the pile toe, and (3) the Rayleigh waves on the surface. Propagating waves due to impact driving are more
complex. It is observed that deformations around the shaft are dominated by the vertically shear deformation where the
normal and the radial deformations are small compared to shear deformations. In the far field, however, body waves
are attenuated and Rayleigh waves dominate the zone near the surface, independent of the penetration depth.
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